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We report the band structure and optical properties of Si-Si,_,Ge, superlattices calculated by
k-p theory using the envelope-function approximation. In this paper we have demonstrated that
direct-band-gap Si-Si,_, Ge, superlattices can be achieved by a suitable choice of layer thicknesses.
We have presented detailed results for Si-Siy sGeg s superlattices grown on Sij ;5Ge, »5 buffer layers
with layer thicknesses in the range from 4 to 24 monolayers. Our calculations indicate that the opti-
cal absorption strengths can vary by 3—4 orders of magnitude even for layer thickness variations as
small as 1-2 monolayers. Thus, it is important to control the layer thicknesses to a monolayer ac-

curacy to obtain the enhanced optical absorption strengths.

Although these optical absorption

strengths are 3—4 orders of magnitude larger than bulk Si or Ge, they are still 3 orders of magnitude
smaller than the absorption strengths due to direct transitions in materials such as GaAs.

I. INTRODUCTION

Silicon and germanium have been extremely important
materials in the field of semiconductor electronics for the
past few decades. Traditionally Si has been the material
of choice for semiconductor electronics not only because
of its electronic properties, but also because of its superi-
or mechanical properties and the excellent insulating
qualities of its oxide.! However, due to their indirect
band gaps, Si and Ge have not been suitable for op-
toelectronic  applications. The optical absorption
strengths of pure Si and Ge are about 6 orders of magni-
tude lower than a typical optoelectronic material such as
GaAs.? However, recent advances in crystal-growth
techniques such as molecular-beam epitaxy (MBE) have
allowed the fabrication of layered epitaxial structures
known as superlattices.® In particular the Si-Si,_,Ge,
superlattices seem to offer the intriguing possibility of
greatly enhancing the optical properties over pure Si or
Ge.*"'* A typical Si-Si,_, Ge, superlattice grown in the
[001] direction can be considered as a crystal with an ex-
tended unit cell along the growth axis. This has the
consequence of reducing the Brillouin zone in the growth
direction and qualitatively folding the bulk energy band
into the reduced zone. For materials such as Si and Ge,
this raises the possibility of tailoring the folding of the in-
direct conduction band. If the folded A minimum can be
brought to the zone center I', the resulting band struc-
ture would be direct.® In such a case there will be (T -
I'¢) direct optical transitions allowed between the top of
the valence band and the bottom of the direct conduction
band. We have estimated that superlattice ordering in-
duced direct optical transition rates in Si-Si;_,Ge, su-
perlattices can be 3—4 orders of magnitude stronger than
in phonon-assisted optical absorption of pure Si and Ge.
A major issue of interest then is whether such quasidirect
Si-Si, _,Ge, superlattices are promising candidates for
optoelectronic devices. We also discuss a simple criterion
for obtaining approximately direct band structure given
by

ksl dSl+kSll—xGe Si; _,Ge

St T *=2nmw+8 . (1)

Here, d5 and dSl“"Ge" are the la Gyer thicknesses of the
constituent layers, k5. and kn:}n * ¥ are wave vectors of
the longitudinal A¥-valley minima, and & is a phase shift
that is independent of the layer thicknesses.

In Sec. II of this paper we have briefly outlined the
full-zone k-p theory!® used to calculate the band struc-
ture and optical properties of Si-Si;_,Ge, superlattices.
We have performed the calculations of the superlattice
band structure in the envelope-function approximation
(EFA). Although the EFA has been used for the study of
the conduction bands of Si-Si; _,Ge, by earlier investiga-
tors, ! this work is the first study on the optical proper-
ties of the Si-Si; _,Ge, system based on the EFA. Sec-
tion III is devoted to a brief discussion of the role of
strain in determining the alignments of the various bands
in coherently strained Si-Si;_, Ge, superlattices. We
outline a novel method of describing the motion of the
conduction bands with strain, by incorporating appropri-
ate deformation potentials at the zone center. In Sec. IV
we analyze the superlattice band structure for a few illus-
trative cases, and discuss the main features of the band
structure of indirect superlattices. A new result we find
in Si-Si; _, Ge, superlattices is that the lowest conduction
band splits into a doublet due to an interference effect be-
tween the electrons from the two longitudinal valleys. In
Sec. V we describe the calculations of the optical proper-
ties based on the envelope-function approximation. Our
calculations indicate that the optical absorption strengths
can change over 3-4 orders of magnitude for layer thick-
ness variations as small as 1-2 monolayers. In Sec. VI,
we summarize the general conclusions for Si-Si;_,Ge,
superlattices.

II. THEORY

In this paper we have investigated the possibility of en-
gineering a direct-band-gap superlattice within the frame-
work of a full-zone k-p theory. The k-p method is par-
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ticularly suitable for the calculation of the optical proper-
ties because of its ability to directly calculate various op-
tical matrix elements. We have used the full-zone k-p
theory introduced by Cardona and Pollack!’ to calculate
the bulk band structure of Si and Ge. The parameters for
the calculation of unstrained band structures of Si and Ge
are taken from Cardona and Pollack.!> To accurately
represent the strained band structures of Si and Ge we
have slightly modified the zone-center energies. The
properties of Si; _ Ge, alloys were determined by a linear
interpolation of the p-matrix elements and the zone-
center energies of Si and Ge.

It is well known that the wave function at an arbitrary
point in the Brillouin zone can be expanded in terms of a
linear combination of the zone-center basis set. We have
kept the lowest 15 zone-center basis states corresponding
to the [000], eight [111], and six [001] plane waves of an
empty fcc reciprocal lattice. In the notation of group
theory, the irreducible representations of these 15 states
correspond to the three threefold-degenerate representa-
tions T'ys5,T'%s, 55, one twofold representation 'y, and
four onefold representations 'Y, T}, T}, T'%. In Table I we
have given the values used for the zone-center energies in
our calculations. We have used atomic units throughout
this work to express our results. The momentum opera-
tor p= —iV is a vector operator and thus belongs to the
I'}s irreducible representation of the O] (Fd3m) space
group. The application of group theory dictates that
there are only ten independent momentum matrix ele-
ments between the 15 zone-center basis states. In Table
II, we have enumerated the values of these momentum
matrix elements appropriate for bulk Si and Ge.

In the [001] direction, the 15X 15 k-p Hamiltonian can
be block diagonalized into one 5X 5, three 3 X3, and one
1X1 submatrice. The bottom of the conduction band in
the [001] direction (AY) is then given by the second larg-
est eigenvalue of the following 3 X 3 matrix:

Es+k? kT k, T’
k,T E!+k? 0 . 2)
k, T 0 El+k2

The top of the valence band in the [001] direction (AY)
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is given by the second largest eigenvalue of the following
3 X 3 matrix:

Els+k?  k,Q 0
k,Q E\s+k} k0 (3)
0 k,Q’ E§‘5,+k22

The matrices of Egs. (2) and (3) are expressed in atomic
units in which the unit of length is the Bohr radius, # is
the unit of action, and the rydberg is the unit of energy.
In these fundamental units, the unit of mass becomes 1
times the electron rest mass and the charge of an electron
V2. The parameters used for the actual calculations are
presented in Tables I and II.

The light-particle band at the top of the valence band
A} is given by a root of the 5X 5 submatrix.!> The pres-
ence of the spin-orbit interaction complicates the situa-
tion by doubling the size of the Hamiltonian matrix from
15X 15 to 30X 30. However, the main effect of the k-
independent part of the spin-orbit interaction is to couple
one A{ heavy particle and the A light particle from the
threefold degenerate T'is valence-band edge to give the
conventional light hole and the spin-orbit split-off bands.
However, the other A heavy-particle band remains the
same in the presence of the spin-orbit interaction to give
the conventional heavy-hole band. The identification of
the heavy-hole band to the A band can be made even in
the presence of diagonal strain. For most of this work we
have focused our attention on only the heavy-band and
the longitudinal AY ellipsoids of the lowermost conduc-
tion bands since they are the relevant bands for near-
band-gap optical transitions. For the purpose of our dis-
cussions we have denoted the longitudinal conduction
band AY by |c) and the heavy-hole bands A% as [v). In
the zone-center representation, both these states are
column vectors of 15 elements with only three nonzero
components. It is fairly easy to work out the optical ma-
trix elements in this basis set, because the matrix ele-
ments of the 15X 15 momentum operator are known.
Our calculations indicate that for [001] grown superlat-
tices, {c|p,lv)=0. However, {c|p, |v)= (clp,lv)70.
Thus, only light polarized in a plane perpendicular to the

TABLE 1. Matrix elements of the momentum operator p (in atomic units) used in the k-p calcula-
tions. The alloy properties are calculated by averaging the Si and Ge values.

p-matrix element Si Ge

P2i{Ths|plTL)) 1.20 1.36

Qi |pITs)) 1.05 1.07

R (2i{T}s|pIT 1)) 0.830 0.8049
P”(2i{Ths|pIT%)) 0.100 0.100
P'(2i{T%|p|T%)) —0.090 0.1715
Q'(2i{TI%|pITis)) —0.807 —0.752
R'(2i{T%|p|T»)) 1.210 1.4357
P"(2i{T%|pIT%)) 1.32 1.6231
T(2i{T{|pITs)) 1.08 1.2003
T'(2i{T}|p|T5)) 0.206 0.5323
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TABLE II. Zone-center regions (in rydbergs) used in the k-p
calculations. The alloy properties are calculated by averaging Si
and Ge values.

Zone-center state Si Ge

s ) 0.0000 0.0000
Ik 0.2650 0.0728
s 0.2520 0.2320
rs 0.5200 0.5710
T} —0.9500 —0.9660
| I 0.7100 0.7700
s 0.9400 1.2500
ri 0.9900 1.3500

superlattice growth axis is allowed to induce optical tran-
sitions.

To study the band structure of Si-Si;_,Ge, superlat-
tices it is necessary to work out the complex band struc-
ture of the constituent bulks. The bulk Hamiltonian can
be viewed as a quadratic function of a scalar parameter
k, (for the case k, =k, =0) involving 15X 15 matrices. It
can be shown that one can recast the problem of finding
k, to an eigenvalue problem double the size of the origi-
nal Hamiltonian when E, k,, and ky are speciﬁed.”’18
We have used this method in the calculation of the com-
plex band structures of the constituent bulks.

The superlattice band structure is calculated in the
multicomponent envelope-function approximation. The
eigenstates we find from k-p theory can be propagated
from one interface to the other within a given bulk layer.
However, to match the wave functions across the inter-
face, we need to impose boundary conditions on the wave
functions and their normal derivatives. The first match-
ing condition we used was that, for each wave function,
the zone-center components are the same across the in-
terface. This assumption can be justified by the observa-
tion that a perfect interface cannot change the symmetry
of a zone-center wave function; each symmetry com-
ponent has an equal magnitude on both sides of the inter-
face.!” The second condition is to match the current car-
ried by each wave function to be the same on both sides
of the interface. This is an important condition that has
to be satisfied to preserve charge conservation at the in-
terfaces. Finally, we impose the Bloch condition that re-
lates the amplitude of the wave function at a given point
in a superlattice unit cell to the amplitude in an adjacent
cell at the same corresponding point by a factor of the
form ¢®17%’ Here d , and d, are layer thicknesses
within a single period of the superlattice, and Q denotes
the superlattice wave vector within the reduced Brillouin
zone. The Bloch condition can be cast into an eigenvalue
problem whose solution gives the values of the superlat-
tice wave vector Q.

It is important to note that, in typical calculations of
‘the complex band structure by the k-p method, the phys-
ical solutions are usually accompanied by several unphys-
ical solutions that have to be discarded.!”!® We identify
these unphysical solutions if the energy bands are purely
imaginary or complex in the energy range of interest ( —5
eV to +5 eV centered around the top of the valence-band
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edge). There are other bands that have to be discarded
because their real parts do not lie within the first Bril-
louin zone. These spurious bands result from the inabili-
ty of the k-p Hamiltonian to correctly mimic the periodic
band structure in the repeated-zone scheme with the
roots of a finite-order polynomial in k,. Smith and
Mailhiot!” have shown that the correction terms from
these neglected bands are quite small and on the order of
107 of the leading-order terms. We have consistently
neglected the contributions to the band structure from
these bands. Comparisons of calculations done with the
tight-binding method and the envelope-function method
based on GaAs systems have shown that the latter is fair-
ly accurate even for ultrathin superlattices.?® This
justifies our application of the envelope-function approxi-
mation for the study of Si-Si,_ , Ge, superlattices.

III. BAND OFFSET AND STRAIN

Although Si and Ge surfaces are chemically compati-
ble, there is =~4% lattice mismatch between the two ma-
terials. This situation makes strain play an important
role in determining the relevant band alignments between
these two materials. The heterojunction band offset for
Si/Ge interfaces has been investigated by several groups.
Kuech et al.?! estimated the band discontinuities from
reverse-bias capacitance measurements to be
AE,=0.39+0.04 eV. Margaritondo et al.?? report a
valence-band offset of 0.2 eV based on photoemission
studies. Mahowald et al.?3 obtain 0.410.1 eV based on
the same technique. The theoretical predictions of Har-
rison?* places the valence-band offset for Si/Ge at 0.38
eV. Tersoff®® theory predicts a value of 0.18 eV. More
recent predictions of Harrison and Tersoff’® set the
valence-band offset at 0.29 eV. The above predictions
can be in substantial error because there has been no pro-
vision for the effects of strain.

However, recent ab initio density functional calcula-
tions by Van der Walle and Martin?”"?® have considered
the effects of strain on the valence-band offsets explicitly.
They find that the average positions of the valence-band
edges of Si and Ge have an offset independent of strain
AE}'~0.54+0.04 eV. People and Bean** have been
able to obtain remarkable agreement with several experi-
mental results for the band-edge positions of Si/Ge struc-
tures based on the valence-band offsets predicted by Van
de Walle and Martin®”?® combined with a phenomeno-
logical deformation potential theory. In this paper we
have used a method similar to People and Bean®'3° to ob-
tain the heterojunction band alignments. Although there
is still controversy about the value of the valence-band
offset between Si and Ge, we expect the main features of
the results discussed in this paper to be fairly indepen-
dent of the value of the valence-band offset because of the
extremely high effective masses of the longitudinal con-
duction bands.

The effects of strain on a threefold-degenerate I' state
can be easily included by the deformation potentials a, b,
and d as introduced by Bir and Pikus.3! In our calcula-
tions we have described the uniaxial splitting of the
valence-band edge by the method described by
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Hesagawa.>? The effects of strain on the indirect conduc-
tion minima can be described by a uniaxial splitting and a
hydrostatic shift with respect to the unstrained position
of the valence-band edge.3*33 According to the recent
calculations of Van de Walle and Martin,?”?® the hydro-
static deformation component of the valence-band offset
is quite small. In other words, the offset between the
average position of the valence bands of Si and Ge is
roughly independent of strain. We have taken the defor-
mation potential parameters for Si and Ge from
Balslev. 3

We have also done alternative calculations to charac-
terize the strain effects of the (Al°) conduction bands by
introducing deformation potentials for the shifts and the
splittings of the zone-center states I'ys, 'y, and T’} that
constitute the Al states. We find that it is sufficient to
describe a uniaxial and a hydrostatic deformation poten-
tial for the I'5 triplet, to adequately describe the motion
of the sixfold AY valleys with strain. Since we have
transferred all strain effects into deformation potentials
associated with threefold-degenerate zone-center states
I'|5 (for the conduction band) and I',s (for the valence
band), we are able to predict the variation of the k

min

Sl—Slo':_)Geo_5 Band Diagram

i ffer
(Sig, 750805 Buffer)
150 meV ( 200 meV
[ — T fourfold CB
100 meV
twofold CB
1050 meV
1200 meV
300 meV
HH VB
'SlO.SCeO.5 Si
FIG. 1. Schematic diagram of a Si-Si;_,Ge, superlattice

band alignment indicating the relative positions of the twofold
and fourfold conduction bands, and the heavy-hole valence
bands. Strain distribution is calculated appropriate for pseu-
domorphic growth on a Si-Siy ;5Geg 55 buffer layer. These band
alignments are based on the valence-band offset of Van de
Walle. The conduction-band offset seen by the electrons belong-
ing to the twofold valleys is 300 meV. The valence-band offset
seen by the heavy holes is also 300 meV.
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(minimum of the AY band) as a function of strain. Our
calculations indicate that strain does not change k;, by
more than 2-3 % of its unstrained value. However, the
energies of the A'f minima are affected substantially by
[001] strain, which splits the original sixfold degeneracy
into twofold longitudinal valleys and fourfold transverse
valleys. Figure 1 shows the relative band alignments of a
Si-Siy sGe, 5 superlattice grown on a Si-Si; ,5Ge ,5 buffer
layer. Most of our calculations of the band structure and
optical properties are based on this superlattice.

IV. BAND STRUCTURE

The superlattice band structure of the lowest conduc-
tion band of Si-Sij sGe, s was calculated using the four
bulk states representing the +k ; +Ak. The k_;, is the
position of the indirect minimum of the longitudinal con-
duction band. In our calculations of the superlattice con-
duction bands, we have neglected the two unphysical
bands that are obtained from the diagonalization of the
6 X 6 companion matrix corresponding to the 3 X3 Ham-
iltonian matrix given in Eq. (2). Similarly, only two
bands have been retained for the calculation of the super-
lattice valence bands, since four of the six complex bands
that are obtained from the 6 X6 companion matrix relat-
ed to the 3 X3 Hamiltonian given in Eq. (3) correspond to
unphysical solutions.

The most significant feature of the conduction band of
indirect superlattices is that, due to the presence of the
two longitudinal indirect valleys, the number of allowed
solutions are doubled compared to the conduction band
of a direct superlattice such as GaAs-Al,Ga,_,As
(x =0.3). Because of the interference between the elec-
trons from the two longitudinal valleys, this additional
degeneracy can be split and the lowest conduction band
can then become a doublet that is slightly separated in
energy. The actual splitting due to the interference effect
is quite small (typically less than 10 meV). However, the
magnitude of this splitting is a sensitive function of the
layer thicknesses and the details of the matching condi-
tions used; the envelope-function calculations give small-
er interference effects than tight-binding calculations. >’
The interference effect in multivalley quantum-well struc-
tures has been studied by many investigators.*> 37 Our
predictions on the interference effect in Si-Si;_, Ge, are
in qualitative agreement with the work of Chang and
Ting. >

In Fig. 1 we have shown the band alignments of the Si-
Siy sGeg s superlattice. The positions of the strain split
lowest conduction-band edges are shown as the twofold
and the fourfold conduction bands. The twofold bands
are the longitudinal valleys with heavy effective masses
along the growth direction with k,=0. The fourfold
bands are the transverse ellipsoids in the x-y plane with
k,#0. The well material for the conduction band of the
superlattice is Si. In Si layers grown on buffer layers with
a larger in-plane lattice constant, the twofold minima lie
below the fourfold minima. In the barrier material
Siy sGeg s, this situation is reversed. For the rest of this
paper we have assumed that the strain distribution of the
superlattice is determined by setting the in-plane lattice
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constant of each layer equal to that of the buffer layer.
For superlattice layers that do not exceed the critical
thickness, >®% this is a reasonable assumption.*’ Howev-
er, since we have picked a buffer layer midway between Si
and Si; sGeg 5, these results would also be applicable for
free-standing superlattices with equal Si and Si; ;Geg 5
layer thicknesses. By a free-standing superlattice we
mean a configuration in which the in-plane lattice con-
stant has been determined by minimizing the elastic free
energy of the structure. *

We expect no coupling between the twofold and the
fourfold valleys since k  is conserved across the interface.
Thus the barrier seen by the twofold states in going from
Si to Si;_, Ge, layers is =300 meV, although the lowest
conduction state in the barrier is the fourfold minimum
that is only 150 meV above the Si twofold states.?® The
heavy longitudinal masses of the twofold bands confines
the superlattice states typically less than 100 meV from
the bulk band edge. The fourfold states on the other
hand have smaller effective masses, and the superlattice
states lie above the fourfold band edge in strained Si.
Thus, we can neglect the presence of the folded fourfold
minima since they correspond to higher conduction
states. Furthermore, one does not expect optical transi-
tions from the fourfold minima since their k; component
does not get zone folded to I'.

In a typical situation, the band structure of the Si-
Sig sGeg s superlattice is expected to be indirect. For su-
perlattices to be quasidirect, a special condition on the
layer thicknesses has to be satisfied. To a crude approxi-
mation, we can derive the condition for such quasidirect-
ness by considering that the conduction band of Si-
Si;_,Ge, superlattice to be composed of a slowly varying
envelope function of the Kronig-Penney form, superim-
posed on top of a rapidlg varying carrier wave that oscil-
lates at k3 or k:i‘n_ =7 in the appropriate layer. To
achieve a quasidirect superlattice, the phase of the carrier
wave should be roughly a multiple of 27; more precisely,
phase of the carrier wave should cancel with the phase of
the envelope function at the end of a superlattice period.
Thus we arrive at the approximate relation given in Eq.
(1) for direct superlattices. This simple relation agrees re-
markably well with the results of a more complicated
analysis based on imposing the Bloch condition on the
multicomponent envelope functions.

The character of the lowest conduction band in Si-
Si;_,Ge, superlattices can undergo significant changes
for a layer thickness variation of 1-2 monolayers. To il-
lustrate this, in Figs. 2(a), 2(b), and 2(c) we present how
the superlattice band structure changes from a direct po-
sition in Fig. 2(a), to an indirect position where the lowest
point of the conduction band is pinned at the Brillouin-
zone edge in Fig. 2(c). The superlattices shown in Fig. 2
are assumed to be grown along the [001] direction. Our
notation of an n Xm superlattice defines a structure with
n monolayers of Si, and m monolayers of Si,_,Ge,
within a single period. In Fig. 2(a) we have shown how a
direct superlattice can be achieved with a 7.2 mono-
layer X 7.2 monolayer superlattice; since a 7X7 superlat-
tice is only approximately direct, we had to use fractional
monolayers to achieve an illustrative direct superlattice.
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FIG. 2. Band structure of Si-Siy sGe, s superlattices for three
illustrative layer thicknesses. The upper bands correspond to
the longitudinal twofold conduction bands, and the lower bands
correspond to the heavy-hole bands. Here, SL Q, denotes the
superlattice wave vector and 7/L denotes the edge of the re-
duced Brillouin zone. (a) shows a direct band structure corre-
sponding to a 7.2 X 7.2 monolayer superlattice. (b) shows the in-
direct band structure of a 5X35 monolayer superlattice. (c)
shows the indirect band structure of a 6X6 superlattice where
the minimum of the conduction band occurs at the edge of the
reduced Brillouin zone.

In Si-Si,_,Ge, superlattices when the layer thicknesses
are approximately equal, and the band structure is almost
quasidirect, the energy splitting of the lowest
conduction-band doublet becomes very small (almost de-
generate). However, if the barrier and the well have
different thicknesses for a quasidirect superlattice, then
the interference effect splits the almost-degenerate con-
duction band to a doublet slightly separated in energy
[two direct bands analogous to Fig. 2(c)]. In Fig. 2(b) we
show the band structure of a 5X5 Si-Se,_, Ge, superlat-
tice. The splitting of the lowest conduction band into a
doublet is clearly shown. For a direct material with the
same effective mass, the corresponding superlattice band
structure would be a single conduction band at the aver-
age position of the lowest two conduction bands shown.
In this case, the minimum of the superlattice conduction
band lies at an arbitrary point along the A axis. In Fig.
2(c) we show a 6X6 superlattice which has the
conduction-band minimum at the reduced zone bound-
ary. Again, the conduction band appears as a doublet
due to the interference effect. In Fig. 2 we have also
shown the band structure of the corresponding heavy-
hole state. The dispersion is less for the conduction
bands (=100 meV) because of their higher effective
masses. However, it should be noted that even when
varying the layer thicknesses by a small amount as from 5
to 7 monolayers, the band structure of the superlattice
conduction band changes quite significantly, in contrast
to the valence band that stays almost the same. This has
the implication that, to achieve a given band structure, it
is important to control the layer thicknesses to roughly
within a monolayer.

The optical band gap of Si-Si,_,Ge, superlattices de-
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pends on the positions of the heavy-hole state and the
lowest conduction states. In Fig. 3 we present the
heavy-hole valence-band position as a function of the Si
and Si, sGe, 5 layer thicknesses. We have assumed that
the in-plane lattice constant is set by the Sij5Geg »s
buffer layers. The valence-band offset for Fig. 3 is
E ,S,IO'SGCO'S—E $i=300 meV. Since the Si layers act as the
barrier material for the heavy-hole band, the effect that
the Si layer thickness has on the position of the heavy-
hole band is quite small. Thus the motion of the
valence-band edge position is mainly due to the variation
of the layer thicknesses of the Si, sGe, 5 layers. The zero
of energy for the contour lines of Fig. 3 is the position of
the heavy-hole band of the Si layer. On the other hand,
Fig. 4 shows the energy of the lowest superlattice
conduction-band state as a function of the layer
thicknesses.
Egl°‘50e°‘5——Egi=3OO meV. This corresponds to the band
offset between the twofold minima. The zero of energy
for the contours of Fig. 4 is still the position of the
heavy-hole band of the Si layers. The bottom of the well
(conduction band of Si) lies at 1.2 eV and the top of the
barrier (conduction band of Si,sGeys) lies at 1.5 eV.
Since Sij sGeq s layers act as the barrier material for the
conduction band, the effect its layer thickness has on the
position of the conduction band is quite small. Thus the
motion of the conduction-band edge position is predom-
inantly due to the layer-thickness variations of the Si lay-
er. However, notice that the variation in energy for the
conduction-band states is considerably less than in the
case of the valence-band states of Fig. 3. This is because

Si/SiosGe HH VB edge (eV)

buffer)

0.5

Siys0ey Layer Thickness (ML)

4 14 24
Si Layer thickness (ML)

FIG. 3. Contour plot of the Si-Siy;Geys superlattice
valence-band edge (heavy hole) position as a function of the lay-
er thicknesses of Si and SiysGe, s within a single superlattice
period. The valence-band offset seen by the heavy holes is as-
sumed to be 300 meV. The strain distribution corresponds to a
Si-Sij sGep s superlattice grown pseudomorphically on a S-
Sip.75Gep 5 buffer layer. The zero of energy corresponds to the
unstrained position of the heavy-hole band edge of pure Si (see
Fig. 1) ML =monolayer).
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The conduction-band offset for Fig. 4 is

1B

Si/Sio twofold CB edge (eV)

buffer)

€05
(Si

075 025

Lo

S'o,sceo.s Layer Thickness (ML)

Si Layer thickness (ML)

FIG. 4. Contour plot of the Si-SiysGe,s superlattice
conduction-band (twofold) edge as a function of the layer
thicknesses of Si and SiysGe,s within a single superlattice
period. The valence-band offset seen by the twofold states is as-
sumed to be 300 meV. The strain distribution corresponds to a
Si-Sig sGey s superlattice grown pseudomorphically on a Si-
Sip 75Geg 5 buffer layer. The zero of energy corresponds to the
unstrained position of the heavy-hole band edge of pure Si (see
Fig. 1).

of the large effective mass associated with the conduction
band.

Due to the interference effect, the actual minimum of
the lowest conduction band gets shifted up or down de-
pending on the layer thicknesses. This can be seen from
Fig. 4 as the small oscillations in the contour curves

roughly garallel to the lines of constant

k3dS+ko - Gexg®1-x%x 1t should be noted that as

the well (Sx layer) width increases, the effects due to the
interference effect also get reduced. The actual shift in
energy due to the interference effect typically does not
exceed 10 meV, and decreases with the increase of the
well widths as 1/L},.'® Here, Ly is the well width
within a single repeat of the superlattice.

Although the interference effect leads to small shifts in
energy, it dominates the determination of the position in
Q where the minimum of the folded conductlon band
occurs. On a contour plot of d5 and d Slo.sG¢o, 5, the
domain for obtaining quasidirect superlattices can be ex-
pected to be a family of lines such as in Eq. (1). However,
in our model the interference effect gives rise to a width
for these lines, thus enhancing the domain for obtaining
quasidirect superlattices to a two-dimensional subspace.
Theoretically it is now possible to achieve an exactly
direct superlattice by tailoring the layer thicknesses to lie
within one of these two-dimensional domains. The de-
tails of the width of the strips that give rise to direct band
structure on a contour plot of and dS andd ™%~ * is a
sensitive function of the matching condition. The prob-
lem of achieving exactly direct band structure is only of
academic interest. In reality, it is adequate to achieve ap-
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FIG. 5. Gray scale plot of Q.,;, (wave vector of the lowest
conduction state) as a function of the layer thicknesses of Si and
Siy.,5Gey o5 Within a single period of the superlattice. Here, Q i,
is in atomic units. For comparison the Brillouin zone edges of
Si and Siy sGeg s in the [001] direction have wave vectors 0.612
and 0.587 in atomic units (1/bohr). The series of light strips
corresponds to roughly direct band structure while the darker
regions correspond to indirect band structure. This figure
shows excellent agreement with the qualitative prediction of Eq.
(1).

proximately direct superlattices, since transitions are al-
lowed from each point along the folded valence band to
the corresponding point in the conduction band. The
contour plot of Fig. 5 shows the wave vector for the
minimum position of the conduction band based on the
matching of the zone-center components across the inter-
face. The lighter regions correspond to approximately
direct superlattices. The darker regions correspond to
situations when the minimum of the conduction band
occurs closer to the reduced zone edge. The results of
Fig: 5 clearly indicate that one obtains quasidirect and/or
indirect superlattices in strips of the layer-thickness
space. This verifies our prescription for quasidirect su-
perlattices based on Eq. (3). It should also be noted that
the wave vector shown in Fig. 5 is in atomic units
(1/bohr). The wave vectors get smaller as the layer
thicknesses are increased since the size of the Brillouin

. . ce 14
zone is proportional to 7/(dSi+d ©5"03),

V. OPTICAL PROPERTIES

While a direct band gap is necessary for good optical
absorption, it is not sufficient. We also need a finite value
of the optical matrix element. In this section we present
the theory for the calculation of the optical properties.
The optical absorption is proportional to the square of
the momentum matrix element between the conduction
and the valence bands. The optical matrix element M,
between a valence state of k, and a conduction state of k,
can be written as

ik, —k )z
MopZIL(uclpluv)e Fo=ke2 gy 4)
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The optical matrix element is related to the imaginary
part of the dielectric function €,(w) by

)= zﬂlMoplziﬂw-%)m, (5)

if a parabolic density of states is assumed. The constant
A is given by

A =2e#H2/m*2m* /#)3/? . (6)

The integration domain of (4) is over the whole length of
the crystal. In Eq. (5) the sum is over all the bands that
contribute to optical transitions at the appropriate ener-
gy. The quantities » and w, are the energies of the in-
cident radiation and the band gap. In Eq. (6) m* is the
combined density of states mass.*! In the case of an in-
direct transition, Eq. (5) has to be modified since the com-
bined density of states is no longer parabolic.

In Eq. (4) u, and u, are the periodic parts of the Bloch
functions corresponding to the conduction and valence
states. They are rapidly varying functions on a scale
smaller than a monolayer, and can be expanded in terms
of the zone-center k-p basis set. Since the representation
for the momentum operator in the zone-center basis set is
known, the matrix element {u,|plu, ) over a unit cell can
be evaluated easily. Here u, and u, are wave functions
normalized over a unit cell of the bulk. The resulting ex-
pression can then be written as

, ik, —k,
Mo, =M, [ "dz %)

where we have taken the rapidly varying {u.|plu,) part
of the integrand outside the integral, and replaced it with
its average over a unit cell

M;p=(uc|p|uv) . (8)

|M,|* is related to the optical absorption strengths of
the bulk materials. The integral in Eq. (7) becomes a 6
function of (k, —k_.) when integrated over the length of
the crystal. This is the familiar k conservation condition
for optical transitions between different bands (assuming
that photons have negligible k). In bulk Si and Ge, the
matrix element between the periodic part of the Bloch
function {u,|plu,) is nonzero for x and y polarizations
for transitions from the [001] valleys to the top of the
valence bands although the k conservation condition is
not satisfied. Thus, it would be possible to observe these
transitions in a direct Si-Si, _, Ge, superlattice where the
k conservation condition is satisfied.

In a superlattice, the corresponding change to (7) and
(8) are

SL—kCSL)z

M= [ (U2)p@)|U @)™ dz. )

Here, U, (z) and U,(z) are the envelope functions that are
periodic on the scale of a superlattice unit cell. We can
first perform the integrations over a unit cell of the super-
lattice to obtain

i(kSL—kShz

MG =Mg | e dz , (10)

where
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M3 =(U.(2)|p(2)|U,(2)) . (11)

The strength of the optical transitions is then related to
M 'o?,'“ 2. These envelope functions are normalized to a
single unit cell of the superlattice. It is possible to
achieve KS'=kS5" condition at energies fairly close to the
band edges, in superlattices approximately satisfying the
quasidirect conduction given in Eq. (1).

In Fig. 6(a) we have shown the typical charge density
of the wave function at the conduction-band edge (from
the indirect band edge of a 5X 5 superlattice). This wave
function is composed of a rapidly varying carrier wave
that is superimposed on top of a slowly varying envelope
function that mimics a conventional Kronig-Penny solu-
tion. However, only the valence-band wave function has
a slowly varying envelope function as shown in Fig. 6(b).
Thus, the coupling between these states through the
momentum matrix element is quite small. These wave
functions essentially have different Fourier components
and are still almost orthogonal in spite of the band fold-
ing. Thus, in a typical situation, M evaluates to a

op
small number less than 1072 (atomic units). Thus in

Sig.5CGeg 5

Si

CB ¥ (arb. units)

Sig.sC¢g5

0.8 |

0.6

VB ¥y (arb. units)
o
»H

Distance (ML)

FIG. 6. The charge density of the superlattice envelope func-
tions corresponding to a 6 X6 Si-Si; sGey s structure. The con-
duction band ¢y* can have rapid oscillations compared to the
valence band. The ¥* of these wave functions were normal-
ized to a superlattice unit cell. The p matrix elements between
the conduction- and valence-band wave functions can be expect-
ed to be quite small since they have different Fourier com-
ponents.
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FIG. 7. Gray-scale plot of the |M,,|? (square of the optical
matrix element) as a function of the layer thicknesses of Si and
Sig sGeg s within a single period of the superlattice. Here,
|M,,|? is in atomic units. For comparison bulk GaAs has a
|M,,|* of 1.86. The darker regions have the enhanced optical
matrix elements. In this figure it is clearly seen that layer-
thickness variations of 1-2 monolayers can change the optical
matrix elements by 3-4 orders of magnitude.

comparison to the square of the optical matrix element of
bulk GaAs [M, |*~1.8 au.,* the direct absorption
strengths of Si-Si;_, Ge, superlattices are 3-4 orders of
magnitude smaller.

In Fig. 7 we have shown the square of the optical ma-
trix element versus the layer thicknesses for the transition
from the lowest conduction-band state to the correspond-
ing valence-band state. The expected matrix elements are
quite small as explained in the previous section. Howev-
er, the major contribution to the optical matrix element
integral comes from the interfaces. Thus, the phase of
the conduction-band wave function at each interface
plays an important role in determining this quantity. As
seen in Fig. 7 we see that changing the layer thicknesses
of either layer by approximately 2-3 monolayers (phase
change of 7) changes the absorption strength from dark-
er regions to lighter regions and vice versa. Thus, the op-
tical absorption strength of Si-Si; _, Ge, superlattices is a
very sensitive function of the layer thickness. The max-
imum optical matrix elements occurs at small layer
thicknesses where a large interface to volume ratio exists.
As the layer thicknesses are increased, the optical matrix
elements decrease because the interface to volume ratio in
the superlattice decreases. In the parameter space of
4-24 monolayers, the maximum optical absorption
strengths seem to occur at near 7X7 Si-Si; _, Ge, super-
lattice.

VI. CONCLUSION

We have presented a theory for the calculation of the
band structure and the optical properties of the Si-
Si,_,Ge, superlattices based on the envelope-function
approximation. We have shown how the band structure
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of indirect superlattices such as Si-Si;_,Ge, can be
tailored to obtain roughly direct band gaps by following a
simple prescription such as Eq. (1). We have also shown
that only the p, and p, polarizations are allowed for opti-
cal transitions between the conduction and valence bands
of such direct superlattices grown along the [001] direc-
tion. The optical absorption strengths associated with
these new quasidirect transitions can be 3-4 orders of
magnitude larger than the phonon-assisted absorption
strengths of pure Si or Ge. However, the band folded
states have much weaker optical absorption properties
compared to the absorption from direct materials (=3 or-
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ders of magnitude lower). It is important to control the
layer thicknesses fairly accurately (up to a single mono-
layer accuracy) to achieve the enhanced optical absorp-
tion.
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FIG. 5. Gray scale plot of Q. (wave vector of the lowest
conduction state) as a function of the layer thicknesses of Si and
Sig.25Gey, »s within a single period of the superlattice. Here, Q.
is in atomic units. For comparison the Brillouin zone edges of
Si and Siy sGe s in the [001] direction have wave vectors 0.612
and 0.587 in atomic units (1/bohr). The series of light strips
corresponds to roughly direct band structure while the darker
regions correspond to indirect band structure. This figure

shows excellent agreement with the qualitative prediction of Eq.
(1.
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FIG. 7. Gray-scale plot of the |M,,|* (square of the optical
matrix element) as a function of the layer thicknesses of Si and
Sig sGey s within a single period of the superlattice. Here,
\M‘,pl2 is in atomic units. For comparison bulk GaAs has a
\M‘,p|2 of 1.86. The darker regions have the enhanced optical
matrix elements. In this figure it is clearly seen that layer-
thickness variations of 1-2 monolayers can change the optical
matrix elements by 3—4 orders of magnitude.



