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A quench of a d-dimensional spin system from a random initial configuration, {S;(0)}, to a criti-
cal point is considered. The decay with time ¢ of the autocorrelation with the initial condition is
go(1)={(S;(0)-S,(¢)) ~t e /Z, where z is the usual dynamic critical exponent. Naively, A, =d, but I
find A, <d in simulations of pure Ising models in d =2, 3 and the +J Ising spin glass in d =3. This
suggests that A, is a new critical exponent for nonequilibrium dynamics. For a spin glass the decay
of go(#) is the same as that of the remanent magnetization; the exponent A, /z observed in the spin-
glass simulation is in good agreement with a recent experimental measurement by Granberg et al.

I. INTRODUCTION

For a spin glass, one of the most readily measured
nonequilibrium dynamic quantities is the temporal decay
of a remanent magnetization. This quantity has often
been measured in the spin-glass ordered phase,! and has
recently been used as a diagnostic for detecting various
“aging” effects.>> Here I consider the decay of a
remanent magnetization at the spin-glass transition tem-
perature, T,.*

The remanent magnetization in a spin glass is a specific
example of a much more general nonequilibrium auto-
correlation, ®

go(t)=(S,;(0)-S,(2)) , (1)

where {S;(0)} is a nonequilibrium disordered initial con-
dition (time zero), ¢ is the time, and the average is over
spins i in an infinite system evolving towards equilibrium
at a given temperature 7. In this paper, I specifically
consider critical points T=T, of both spin glasses and
nonrandom ferromagnets. The nonequilibrium initial
condition must not have an expectation value of the or-
der parameter that develops below T,, otherwise the
long-time behavior of g,(¢) is dominated by the nonlinear
relaxation of that order parameter.’ It is in this sense
that the initial condition is disordered. Furthermore, we
require that the correlations of the order parameter in the
initial state be only of finite spatial range, &,. These con-
ditions are met rather generally by a quench from the
disordered phase T > T,; for the spin glass, a quench at
T, produced by turning off a magnetic field also results in
a suitably disordered initial condition because the mag-
netic field does not directly couple to the order parame-
ter. (Note even a small magnetic field suffices; see the dis-
cussion in Sec. IV.)

The long-time behavior of g,(¢) at T, can be obtained
analytically for a few models; the following examples are
discussed in more detail in Sec. II. In nonrandom Gauss-
ian models, where interactions between different Fourier
modes are nonexistent, go(¢)~t ~?/% where d is the spa-
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tial dimensionality and z is the usual dynamic critical ex-
ponent. The exactly solvable one-dimensional Glauber
kinetic Ising model®>® also reduces to a Gaussian model,
so has go(t)~t /% at T,=0, with d=1, z=2. The dy-
namics of the infinite-range (Sherrington-Kirkpatrick)
spin glass* can be analyzed for T=T,: go(t)~t %% at
T,, which can be interpreted as the result appropriate for
the upper critical dimension for spin glasses, d =6, where
z=4.

Let us define the nonequilibrium dynamic critical ex-
ponent A, via

Golt)~t e g e @)

for long times at T, where £, ~t!/% is the growing none-
quilibrium correlation length. (Here, and throughout this
paper, I assume that the critical point has conventional
dynamic scaling.*”) The above-mentioned analytic re-
sults suggest that perhaps A, =d rather generally. (Below
T., qo(t)~&;*, with a generally different exponent A, as
is discussed in Ref. 3.)

One might expect that for a sufficiently long time, g(#)
will be essentially the same as the equilibrium relaxation
behavior [the analogous equilibrium autocorrelation
function has been called g (¢) for spin glasses*]. However,
this is only true for T > T,, where the equilibrium corre-
lation length £ is finite, and therefore the nonequilibrium
correlation length £,(¢) can approach £ at long enough
times. For T'<T,, on the other hand, the equilibrium &
is infinite, while &, (¢) is finite for any finite ¢, so one never
gets truly near equilibrium. Thus, the asymptotic long-
time decay of q,(¢) is fundamentally different from that
ofg(t)for T=T,.

In the absence (so far) of an analytical calculation of
the effect of mode coupling on A, say in an € expansion,®
I have performed Monte Carlo simulations to measure
qo(t) at T,. For d=3, the +J Ising spin glass has
A, ~2—m=~2.3<d for effective exponents in the readily
numerically accessible regime. However, because of the
lack of precise knowledge of T,, 7, and z, and the very
slow dynamics (large z), this estimate of A, may not be
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very reliable. In order to get a nontrivial estimate of A,

under the most favorable conditions, I have simulated the.

critical, nonrandom square-lattice Ising ferromagnet,
finding A, =1.59%0.02 as the effective exponent for times
up to 400 Monte Carlo steps per spin (MCS’s) and thus
correlation lengths up to at least 20 lattice units. The
power laws are well established over enough of a range
that one can say A, <d for this d=2 Ising model with a
high level of confidence. Simulations out to only 40
MCS’s suggest A, ~2.8 for the nonrandom d=13 Ising fer-
romagnet.

Thus, it appears that A, may indeed be a new ex-
ponent, although there is still the possibility of a scaling
relation between it and the known independent exponents
d, z, 11, and v. To further understand this phenomenon, it
would be nice to have more experimental measurements
of the long-time decay of the remanent magnetization
m(t) at T, in spin glasses. My simulations find
m(t)~t *’% with A,/z~0.37 in d=3 for the +J Ising
spin glass. The one experimental measurement of
power-law decay of the remanent magnetization near 7,
after quenching from a large field that I have found is
that of Granberg et al.! They study the amorphous me-
tallic spin glass (Feg 15Nig g5)75sP¢BgAl;. They find a de-
cay that is faster than a power law for temperatures
above a certain temperature, which is probably 7, (al-
though this T, is ~1% below the T, they obtained by
other techniques). At this T, they find A, /z~0.39, in
surprisingly good agreement with the present simulation
result. For T <T,, the decay slows down, as expected.

II. ANALYTIC RESULTS

For simplicity, let us start with a particular disordered
initial spin configuration, S;(0). Then we may write

N
Go()=7 3 $,(0)-(S,(1)) &)
i=1
for a system of N spins, where the average is now over all
thermal histories starting from the same initial
configuration. [In fact, g,(¢) is self-averaging, so one his-
tory for N— o suffices to measure it accurately.] The
thermodynamic limit N — oo is assumed here and in the
following. For a nonrandom ferromagnet it is appropri-
ate to Fourier transform:

o)== 3 8,(0)-(S_y(1)) . @
N k

For an initial condition with correlation length &;,, S,(0)
is a random vector with magnitude of order &2~ ™72 for
&ok << 1. Lengths are here measured in units of the lat-
tice spacing, and &, is defined such that it is unity in a ful-
ly disordered configuration. In a Gaussian model, as well
as the one-dimensional Ising-Glauber model, mode cou-
pling does not enter, and we have

(S(1)) =S, (0)e k. (5)

At T,, we have TI'y= Ak? for small k, and thus,
go(t)~t~94/% at long times ¢t >>d£5/ A. For the infinite-

range ferromagnet, all spins are equally coupled and
I',=T for all k0. This results in go(t)~e ~'" for very
high d the initial decay is exponential, followed by a
crossover to the power law at long times.

How should Eq. (5) change when mode coupling is in-
troduced? The simulations presented below support the
expectation that, averaging over disordered initial condi-
tions, at T, one has the scaling form

(d—A,)/z

(S(0)-S_y(1)) ~1 F(tk?) , 6)

where F(x) is a scaling function satisfying
F (x)—constant for x —0. For large x, F (x) presumably
falls off faster than any power law. The exponent z is that
of the usual equilibrium dynamic scaling. Note that for
A.<d, Eq. (6) implies an instability of the low k
modes—their averages initially grow before decaying at
tXk™A
Let us now consider a spin glass with Hamiltonian
H= ZJijSi'Sj ,
ij

where the J;; are quenched random variables. The order
that occurs in a spin glass is the establishment of a ran-
dom local magnetization pattern that is chosen in detail
by the specific exchanges J;; and the temperature. 34 A
uniformly magnetized state, as produced by a large mag-
netic field, is disordered as far as the spin-glass ordering
pattern is concerned. Thus, if our initial state has
S;(0)=m,, then

qo(t)=mgy-{m(z)) ,

where (m(¢)) is the remanent magnetization. This
equivalence of g,(¢) and m () is precise for an Ising spin
glass with uncorrelated exchanges chosen from sym-
metric  probability distributions: P (J;)=P(—J;).
There the fully polarized initial configuration S;(0)=+1
is statistically equivalent under a gauge transformation
(S;—€;S;, €,==x1) to any other random initial condi-
tion.

Unfortunately, a Gaussian spin-glass model (‘“‘soft”
spins with no |S|* term) with short-range couplings on a
finite-dimensional lattice does not have a proper critical
point. Instead, rare, localized modes go unstable at high
temperatures. Only for the infinite-range model is there a
proper critical point. In the infinite-range relaxational
model [“model 4 (Ref. 7)], the relaxation rates I' of the
linear response modes (eigenvectors of the matrix J;;) are
simply the eigenvalues of a random matrix. In the ther-
modynamic limit, the distribution of these eigenvalues is
known;* at T, one has

go(t)~ [dT p(De T,

with p (I')~T'!2 for [ —0. This results in go(z)~¢ ~3/2
Since the critical exponents of the infinite-range model
generally apply at the upper critical dimension, this result
appears quite analogous to A, =d: The upper critical di-
mension for spin glasses is d=6, where z=4. However,
we must note that for the infinite-range model-A4 fer-
romagnet, we did not find that A, =4, where d=4 is the
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upper critical dimension; rather g,(t) decays exponential-
ly even at T, for this nonrandom system.

III. MONTE CARLO SIMULATIONS

Since this work was motivated by an attempt to under-
stand the remanent magnetization decay in spin glasses, I
first simulated the three-dimensional nearest-neighbor +J
Ising spin glass with spin-flip dynamics (model 4) on a
simple cubic lattice at its estimated”® critical tempera-
ture, 7=1.18J. The longest runs were on samples of size
10°=1000 spins with periodic boundary conditions. For
each of 2000 realizations of the exchanges two “‘replicas”
(with identical J;;’s) were started in independent random
initial configurations, [Sf(0); a=1,2]. The quantity
2

) %

was measured to monitor the growing spin-glass (SG)
correlations.> At T, this is expected by scaling to grow
as Ysg(t)~t'?>"™M/2 The results for g,(¢) and Ygg(2)
versus ¢ are shown in a log-log plot in Fig. 1. The results
shown in Fig. 1 do not appear to be affected by the finite
sample size, as determined by seeing when and how
finite-size effects appear in smaller samples. The slopes
for the time range 100-2500 MCS’s are (2—7)/z ~0.39
and A,/z=0.37. This suggests that A_ is less than or
roughly equal to (2—%), and thus quite a bit less than
d=3. The current estimates of the critical exponents are’
z=6+1 and'® 2—7=2.310.2. However, for this system
there is a large uncertainty in T ; according to Bhatt and
Young,® T, could perhaps be as high as 1.3J. Further-
more, the data in Fig. 1 are only for times that are quite
short by spin-glass standards. Since this estimate of
A.=~2.2 for the spin glass probably has large uncertain-
ties, let us examine a much more accessible critical point.

The nonrandom nearest-neighbor square-lattice (d=2)
Ising ferromagnet has!! T,=2J/In(1+V2). The static
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FIG. 1. Results for the +J Ising spin glass at 7=1.18J =T,
in d=3 dimensions. The solid circles show g,(#), which is iden-
tical to the remanent magnetization after starting in a fully sa-
turated configuration. The unadorned error bars show Ysg(2).

critical exponents are known exactly,!' =1, v=1, and
the usual dynamic critical exponent for spin-flip (model
A) dynamics is'? z=2.15+0.05. For this system, I have
simulated lattice sizes of up to 572 spins with periodic
boundary conditions. Data for smaller sizes show that
the results presented here for N =572 are not finite-size
affected. Averages were taken over 50000 independent
random initial conditions run for 398 MCS’s using a sin-
gle spin-flip heat bath algorithm (398 ~ 10%%). The results
for go(t) and (M?(¢)) /N are presented in Fig. 2, where
M (1) is the total magnetization of the sample. Well es-
tablished power-law fits are seen for times 10-398 MCS’s.
The scaling expectation is that {M?%(¢)) ~t2~"/% the
slope in Fig. 2 agrees with this within the accuracy of our
knowledge of z. The fit to g,(z) gives A, /z =0.74+0.01;
here and in the following the error bars are statistical
only; there is also the possibility of some systematic error
due to measuring at too early times.

To check the scaling proposed in Eq. (6), I have also
measured (M (0)M(t)) /N; this corresponds to k=0 in
Eq. (6). To directly get an estimate of A, that does not
depend on knowing z, let us define the nonequilibrium
correlation length

M%)

~ ~t1/z . (8)

En=

]l/(Z—n)

Given this definition and Eq. (6), we expect
d—2
(MO)M(t))~E, "°. 9

The log-log plot suggested by Eq. (9) is Fig. 3. The slope
there indicates A, =1.5940.02. This is completely con-
sistent with the above-mentioned estimates of A /z and z,
and thus the scaling proposal in Eq. (6).

To see the dimensionality dependence of A, I have also
examined the d=3 simple cubic nonrandom Ising fer-
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FIG. 2. Data for the d=2 nonrandom Ising ferromagnet at
T.. The solid circles show g,(t), while open circles show the
growth of { M*(¢)) with exponent (2—7)/z =0.81+0.01.
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FIG. 3. Growth of {M(0)M(t)) with £,(t). These data
represent the time range, 4-398 MCS’s, shown in Fig. 2.

romagnet at T=4.512J ~T,. Here accuracy comparable
to that obtained in d=2 for 400 MCS’s can, with the
same computer time, only be obtained up to 40 MCS’s.
At these very early times A, ~2.8. Thus, A, appears to be
closer to d here than in d=2, as might be expected if
A.=d for d = 4, where a Gaussian fixed point governs the
critical dynamics.?

IV. DISCUSSION

In the above simulations, the quench is effectively from
infinite initial magnetic field. Let us now consider, for
the spin glass, the dependence on the initial magnetic
field 4 of the remanent magnetization decay m (¢) after an
isothermal field quench at T,. Experimentally, one may
not have available a saturating (effectively infinite) mag-
netic field, and it is likely to be most convenient to use
the smallest possible field.

The equilibrium spin-glass correlation length at T,
with an applied field scales for small h as*!?
E,~h~#@F27m) and the relaxation time diverges for
h—0 as 7, ~&7. Let us first assume that equilibrium in
the presence of the field is attained by letting the system
sit at T, with the field on for a waiting time t,>7,. If
the system is then quenched instantaneously and iso-
thermally to A=0, the initial relaxation for times ¢t <<7,
will be on length scales where the correlations are little
affected by the applied field. The resulting initial decay
will therefore be that of linear response at equilibri-
um,>!® namely m(t)~ht ¢ 72%"/22 For long times
t>71,, we should enter the long time decay,

—A,/ .
m(t)~t <, and the two regimes should be connected
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by a crossover scaling form:
m(t)~ht~@72FM2R (¢ /1y ) . (10)

In order to have the correct short- and the long-time be-

havior, the scaling function must behave as R (x)— const
(d—2+7—2A,)/2z

for x —0, and R(x)~x for x — . The

resulting long-time behavior for small 4 is

—A./z, (3d—2+n—4r,)/(d +2—7)

m(t)~t h ) (11

which, given the above-mentioned estimates of 7 and A,
has the surprising feature that the remanent magnetiza-
tion at fixed time ¢ >>7, increases with decreasing h.!*
This suggests that experimentally one should actually
make the measurement of the long-time decay of m (¢)
with a rather small preparing field 4 in order to find the
maximum signal.

If the system is prepared in too small a field, then equi-
librium will not be attained and the results will be
waiting-time dependent for ¢, <7,. In this regime, we
should have m (¢)=ht ~\=2*M/22R (¢ /1,)), with R(x) be-
ing presumably a quantitatively different function from
R (x) in Eq. (10), but having the same behavior for x —0
and x — 0.

The above discussion of the field dependence of m (?)
assumes that we know T; in reality, there is always quite
a bit of uncertainty in T, so we should also examine the
temperature dependence of m (¢). For T near T,, there is
a critical relaxation time**!3 that diverges at T, as
T, ~[T-TC|°". For times ¢ <<, the system behaves
as if it is critical; deviations from criticality in the corre-
lation functions become significant for t * 7,. For t >>7,,
we thus should expect the scaling form

rlGUT =T, (12)

m(t)~t
with G (0)=constant, G(x)~ IxI)\‘v(lnlxl )"MY  for
x——o0,3 and G(x) decaying faster than any power
law, presumably as some sort of “‘stretched” exponential,
for x —+ . Thus the long-time curvature of m(¢)
versus ¢ on a log-log plot changes sign at T,,. This might
actually serve as yet another way of estimating T,.
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