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The spin-resonance amplitude of conduction electrons in a cubic crystal has been calculated keep-
ing terms up to fourth order in the wave vector k in the 2 X 2 effective-mass Hamiltonian. Apart
from corrections to the magnetic dipole amplitude, we find that the terms yop&(cr, Bo k
+cr Bo~k +o,Bo,k, ) and g "ps [tr k, Bo kI yield electric dipole amplitudes proportional to k Bo.
While in the ordinary Voigt and cyclotron-resonance-active Faraday configurations only the yo
term is effective, in the cyclotron-resonance-inactive Faraday configuration both the yo and g"
terms contribute. We have calculated the angular dependence of the yo amplitude for arbitrary
crystal orientations, the g" amplitude being isotropic. In narrow-band-gap materials the admixture
of hole states into the electron eigenstates also contributes an isotropic electric dipole spin-flip am-
plitude proportional to k.Bo, which is distinct from those mentioned.

I. INTRODUCTION

2
1 e

Ho =, p+ —Ao +—,'gop~cr Bo,2m' c

where m * and go are the eA'ective mass and g factor, re-
spectively. The eigenvalues of Hp are the Landau levels

Ak~
E„"(kq)=a~, (n + —,')+ ~ +go@,Bos,

2m
(2)

where co, =e8o/m *c is the cyclotron frequency, n is the
Landau principal quantum number (n =0, 1,2, . . . ), and
Ak& and s are the eigenvalues of the components of p and
—,
'o. along the direction of Bo. The corresponding eigen-
states can be written in the following factorized form, '

In the presence of a magnetic field Bo=VX Ao, the
electrons in an orbitally nondegenerate band of a cubic
crystal in which the energy minimum occurs at the center
of the first Brillouin zone are described, in the loest ap-
proximation, by the Hamiltonian

along the direction of Bo, and y, describes the spin state;
these eigenstates are highly degenerate with respect to
the quantum number nb (nb =0, 1,2, . . . ); since nb is im-
material for our purposes, from now on it will be ignored.

Here, we are mainly interested in the spin-Aip reso-
nance at energy %co, =gop&BO corresponding to transi-
tions in which the spin s is reversed while the principal
quantum number n remains unchanged. The spin reso-
nance is electric dipole forbidden in the approximation of
Eq. (1), but becomes allowed and is called electric dipole
spin resonance (EDSR) when either higher-order terms
are included in Ho or the mixing of states from nearby
bands into the electron eigenstates is taken into account.
Even though these two corrections are due to the same
physical reason, i.e., the interaction with other bands,
they are quite distinct, as will be shown later. Of course,
it is also possible to resort to a multiband approach in
which conduction and valence bands are treated on the
same footing. However, the latter theoretical framework
always requires a good deal of numerical calculations and
is often not very transparent. Therefore, as long as only
intraband transitions are of interest, a reduction to a
single-band scheme, which allows one to perform analyti-
cal calculations, is desirable.

Including terms up to fourth order in the wave vector
k [A'k =p+ (e/c) Ao], the 2 X 2 electron Hamiltonian is '

P(n, nb, k~, s)=P„„(2') ' exp(ik~g)y, ,

where P„„refers to the orbital motion in the plane per-
h

pendicular to Bo, (2rr) 'r exp(ik&g) to the orbital motion
I

H =Ho+H~+Hc

where Ho is given by Eq. (1) and

(4)

Hg =60CT K

Hc= &ok +ao(Ikx~ky I+sky k I+ Ikey, kx I )+13opaBo+g parr. Bok +g 'paIo"k, Bo kI

+yoic~(o Bo„k„+o Bo k +tr, Bo,k, );
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the curly brackets represent the quantum-mechanical an-
ticommutator. Here, the operators Kz Ky and v, are

with

H~+i [Ho, S„]=0, (10)
~„=k k k —k, k„k, ,

~ =kkk, —kkk„,
~, =k k, k —k k, k„,

(6)

II. ELECTRON-SPIN-RES&NANCE AMPLITUDE

and the parameters 5o, eo, ao, ~o, g', g", and yo are ma-
terial constants which can either be taken from experi-
ments or calculated within k.p perturbation models of
various degrees of sophistication. " We note that H~ is
odd under inversion, while H& is even; the latter has Oh
point-group symmetry, while the former only Td symme-
try, which is appropriate for binary compounds such as
InSb and GaAs. In first-order perturbation theory it is
easy to see how H~ and H~ bring about electric dipole
spin-Aip transition matrix elements because of the pres-
ence of the spin-orbit —coupling terms proportional to 5o,
g", and yo. %'hile the term in 60, which is odd, gives an
even, effective, electric-dipole operator that can induce
spin-Rip transitions between eigenstates of Ho with

k& =0, the terms in g" and yo give an odd electric dipole
operator that can induce spin-Qip transitions only be-
tween eigenstates with k&%0, which do not have a
definite parity. Furthermore, the terms in g', g", and po
modify the g tensor and thus both the spin-resonance en-
ergy Am, and the magnetic dipole transition matrix ele-
ment. The EDSR amplitude induced by Hz and H& and
the complete magnetic dipole amplitude are calculated in
Sec. II.

An additional contribution to the electric dipole spin
resonance, as we said, comes not from complications of
the conduction-band dispersion relation, but from the ad-
mixture of, say, hole wave functions into the conduction-
electron eigenstates. This effect, which can be important
in narrow-band-gap materials, is discussed in Sec. III on
the basis of a very simple three-band model for InSb. As
this model calculation neglects inversion symmetry-
breaking terms (they are, in this context, a second-order
efFect), the resulting transition amplitude is proportional
to k&, just as that caused by H&. Finally, in Sec. IV, we
give a few numerical estimates for InSb and GaAs.

Hc+l [Ho Sc]=0
where the square brackets denote commutators. Under
the action of a radiation field described as a plane wave of
frequency co, polarization s and wave vector
q =v'e(ro!c)n (e is the dielectric constant), the transition
amplitude is proportional to

M..= & @.I Vl@.& = & v'I V+i [ V, S]lv&,

with
4

V= —,'{a v, e' 'l+ v'e{(nXa) g o,e'q'l,
Smc

where the g tensor is defined by

BH = 2psg'a
0

(13)

(14)

and the velocity operator v=(1/i')[r, H] is the sum of
three terms vo, v„, and v& corresponding to each of the
three parts of the Hamiltonian Ho, Hz, and Hz. Disre-
garding the spatial dependence of the incoming radiation,
the first term in Eq. (13) gives the electric dipole ampli-
tude, awhile the second gives the magnetic dipole ampli-
tude.

To calculate transition matrix elements, the ex~res-
siolls of H„alld Hc with respect to the g, YJ, g axes (gllBo)
are needed, Ho being isotropic. To obtain these we use
the Euler angles of the triad (g', Q, g) with respect to the
cubic axes (x, y, z). The Euler angles are defined as fol-
lows.

For any vector u,

K lK (15)

(i) a is the angle between y and the line of nodes z X g.
(ii) P is the angle formed by z and g.
(iii) y is the angle between the (g, g) and (g, z) planes.

Clearly, 0&a &2m. , 0&P&rr, and 0&y &2m.

In the present section, ' we give the spin-Hip
transition-matrix elements for arbitrary experimental
configurations. H„and H& are treated as perturbations
to Ho; the perturbed eigenstates are expressed as

lltj. & =e'slv&,

here lv&=ln, k&, s& are the eigenstates of Ho and the
Hermitian operator S is such that e ' He ' is diagonal in
the unperturbed representation, i.e.,

e 'sHe'slv& =E(v)lv&,

where the symbols E(v) represent the perturbed energies.
To first order in H~ and H~, S is given by"

where i =x,y, z, a.= +, —,g, and

Q+ —0 g+IQ ~

The coefficients 8; are given by

R + =R * =
—,'e'r(cosa cosP+i sina),

R &=cosa sinP,

R + =R * =
—,'e'r(sina cosI3—i cosa),

R~&= sina sinP,

R, + =R,* = —
—,'e'~sinP,

7 I

R,&=cosP .

The form of H„ is

(16)
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H „=—,'50 g o, I kq, k„k I (~A, ;pv),

where the symbols (sA, ;pv) are given by

(~A, ;pv)= g e&;JR;+;&R.„R „
k, i,j

(18) Fz =
—,', e 'r[cos(2a)sin(2P)+i sin(2a)sinP (1+cos P)],

(23)

H~ = ,'50—(o~+io „)&+,'5O—(o'g ~ o„')Q +50o'gQg (24)

where

F =—
0

31

16
sin( 2a )sin( 2P )sinP, (20)

F
&

=
—,
' e'r[cos(2a)sin(2P)+i sin(2a)sinP (3cos P—1)],

and ck; is the Levi-Civita rank-3 completely antisym-
metric tensor density. H~ is conveniently expressed in
terms of the four functions

and

0= (k+k +k ki —8k k2~)FO

+2(3k+ k k~+3k k+ k~ 4k ~~—)F,

+2(k+ k k+ —4k+ k
~ )F2+2k+ k~F~

—10k k(F i
—2k F2 (25)

F2= —,', e 'r[2cos(2u)cos(2P)

(21) Q~=[(k +k k+ —k+k —k k+

+4k+k&)F, +4k+k&F2 k+F~—]+H.c. (26)

+i sin(2a)cosP(3cos P—1)], The terms proportional to eo, ao, po, and g' do not con-
tribute to the spin-Hip amplitude. The remaining terms
fHc

and

g "p,e I o k, Bo.kI =2g "peBok&,[o&k&+ ,'. (o &+io „—)k + ,'(o& io „—)k+]—

XcpB g Bo;o';k; ='VcpBBD g okpk g'R;gR;Q;~R;
7,P) V

(27)

(28)

The tensor g is given by

g =(go+2g'k )1+2g"Ik, kj+2yo(xxk +yyk +z zk, ),
which contains an anisotropic part proportional to yo, namely

2yog k, r, r, =2yo g k~k„r r gR, ~R, R,Q,

(29)

(30)

While in the magnetic dipole amplitude different combinations of the components of g might be involved, depending on
the experimental configuration, the spin-resonance frequency co„depending only on g&&,

is'

1
&~, =p&B, ((n, k&~g&&~~, k&) ( =peB, gp+2g (22+nI)+k~ +4g "k~

Ro

~'

+2yo (2n+1) gR;+R; R,(+k~ gR;~
Ro l E

(31)

where
~ n, k& ) represents the orbital part of the Landau eigenstate; the absolute value is needed for materials with a neg-

ative g factor (like InSb and GaAs).
We now proceed to evaluate the spin-resonance amplitude M ~ in both the Voigt and Faraday configurations for ar-

bitrary crystal orientations. In the Voigt configurations, taking n=g, we can neglect the spatial dependence of the in-
cident radiation field e'~" and consider as initial and final states

~ n, k&, —,
' ) and

~ n, k&, —
—,
' ), respectively. In the ordinary

Voigt (OV) configuration c.=g and

l %co
V =Uog+ vga+ vcr+ +eg 'g o'

4mc

we have

Rk~
(n, k&,

—
—,
'

IUD&In it&—,'
&
= (nt~. ——', ~, k&,,

—I

(32)

(33)
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1 1
&n, ku, —

—,'lu„uln, ku, —,
' &=(n, ku, ——— &o an' 24&o

n, k~, —= n, k~ n, k~ = (n+ ,' —k—~Ro)F*, (34)

and

1 1 ~Hc 1 XoPa+o
&n ku lluu4ln, ku, —,'&=(n, ku, ——— n, ku, —= 4ku+R, 4R, (35)

Then, as S is already of first order in H~ and Hz, we have

( n, k &,
—

—,
'

~

i [ V, S] ~
n, k &, —,

' ) = ( n, k &,
—

—,
'

~
i [uo&, S) ~ n, k &, —,

' )=, ( k
&

—k
&

) ( n, k &,
—

—,
'

~
S

~ n, k &, —,
' ) =0 .

iA
(36)

Finally, the magnetic dipole term is

(
1 l AN 1 l Ado

n, k, —— &egg c'r. n. , k, —= «(n, k ~gg('.g+~ g)~'n, k )
4mc — ' &'2 4mc

&e(n, kg~g +2g'k +2g "krak +2g "k kg4mc

+4y, y k„k, y (R, ,+R, )R, R,„R,,.ln, k, &

where

egov(n, kg),
i%co

4rnc
(37)

lt

gov(n, k&)= go+ (2n + I+k&Ro)+ (n + 2)+4yok& —g (R;++R; )R; R;~
Ro Ro

8zo+ (2n +1)g (R;++R; )R;+R;
Ro I

Hence, for the OV configuration, we obtain

m. ..=(n, k, , ——,'~(V+i[V, S])~n, k, , +-,')
125o R'k~yo, l Am

(2n +1 2k'

o�)F&
—+ g R, R,&

+ egQv(n, k(),
ARo 6m 5o,. ' ' 4mc

(38)

(39)

In the extraordinary Voigt (EV) configuration, with n = ri and e =g, we have

PAN
V =Dog+ U~g+ Ucg +eg'g

4mc
(40)

Ak(-
& n, ku, ,' l uuu l nkq, '

&
—=

—(n,ku, —
,

—
,
—'nkq— ——0, , , (41)

1
&n, ku, —

—,'lu„uln, ku, —,
' &=(n, ku, ——

2

1
n k

1
n, k(, —BH~

A Bk~

aH, aH,
+ak

1
n, k~, —

&o
k

()0 BQ
n, k~ + n, k(

46o
(Fo +F2 )(2n +1—2k&Ro),

ARo
(42)
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~Hc aac 1
&" kg —,'lnc4ln, k&, + —,'&=(nk&, ——

,
— + n, kC, —

k(+ k~ g R,~~R, (R;++R; ) . (43)

Then, we have

(n, k~, ,'~i [V, S]~n, kg, —, &= n, k~, ——i [k(,S] n, kg, —1 1

with

=i, g (&n, k(, —
—,'~k~~l, k(, —

—,
' &(i, k~, —

—,
' ~Sln, k~, —,

'
&

1 =n+1

,' ISl1—,k&, ,' & & i—k& —,
' Ikgln, k&, —,

'
& ), (44)

+1 k~
—

—,'~S~ k~ —,&=+ + & +1 k~ —
—,'~(~ +I

'ft co +co

4i/2—&n + 1

(co, +co, )Ro

5p PgBpkg g"
(n +1—2kgRo)Fo + +yo X R,&R, +R, (45)

and

4&2i/n — 5o q 2 ~ Pa~okg
(n —l, k&,

—
—,'~S~n, k&, —,

' &= (n 2k&Ro)F—z + yo+R;~R;
co~ cog Ro fgR o

Therefore,
—4A 1

(n, k, , ,'~i [V, S))n, k, ,
m *R

p ~c+~s

Finally, the magnetic dipole amplitude is

&oFo z z Pa~okr„
(2n +1 2k~Ro)+ —

—,'g" +yoQ R;~R;+R;
ARp

PaBpkg

L

(47)

n(n, k&~g g (i'+ini)lnkc)= —i , vE4yn n, k& gk~k„+RnR;„Rgg; n, k4)4mc 4mc
A, gp

r

v 4 gR R R +k gR R.
0 l

k 'Aco
i/egEv(n, k~) .

4mc

Hence, in the EV configuration, we obtain

M ~ =(n, kr, —
—,'~(V+i [V, S])~n, k&, +—,

'
&

45p
(Fo +F2 )(2n +1 2k~Ro)+ — k~+ k~ g R;~R; (R; ~+R, )

2g P~Bp 4y~~8 p

ARp

&oFo, , S a&ok'—4 (2 +1—2k' )+ —,'g" +y gRgR; R;
I +oi, /~, A'R o2

Va&ok(, , in~+ (2n +1—2k&Ro)+ yo+R;&R; — egEV(nnkg) .
1 6) /6P fgR p fg, . ' ' 4me

(48)

(49)

In the Faraday configurations (F+ )n =g, we must keep the spatial dependence of the incident radiation field e ~~ and
consider as initial and final states

~
n, k &, —,

'
& and

~
n, k &+q, —

—,
'

&, respectively. In the F+ configurations
-E=(1/i/2)(/+i' ) and
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—Iu+, e'«J+ — i e[(f+'ig) g a,e'«I:—V+ .
2 2 8 2mc

We have to calculate

M —. -=& n, k
&
+q,

—
—,
'

I ( V+ +i [V, S]) I n, k &, —,
'

& .

Now,

& n, k &+q, —
—,
'

I V+ I n, k &, —,
'

&
= —& n, k

&
+q, —

—,
'

I
u + I n, k &+q, —,

'
& + —& n, k &,

—
—,
'

I u + I n, k ~, —,
'

&

122''''''22

(50)

(51)

+ — &n, kc+qI(gkig') g (g+. i'g)In, k&+q &
8 2mc

Aco+E+ — &n, k&I(/+i') g(g. +ig)In, k&& .
8 2mc

For the velocity matrix elements, we have

& n, k &,
—

—,
'

I u+ I n, k &, ,' &
=

& —n,k &,
—

—,
'

I uo+ + u „++uc+ I n, k

2
k

1 aHA+aHC
k

1

(52)

(53)

where

2 1 ~~~ 1 8&o—n, k, ——
2 ak ' ~'2n, k, —= (2n+1 —2k R )F*,0 2

0

2 1 ~Ha 1 8&o—n, k~, —— n, k~, —= (2n +1 2k(R o)F—o2 Bk+ 2

~~c 1 8@oP—??, k~, —— ??, k~, —= k~ g R; R;g,2 Bk 2

(54)

(55)

(5.6)

and

4Ã Pg&o 8VoPa&o—?? ~,
—— nk~, ——— k~+ k~+R+R; R~ .

+ 2 (57)

For the magnetic dipole contributions, we set

g„(n,k~):——,
'

&n, k~ (Ig +i 71).g (g'+ig)In, kg&=4&o
2(2n+1) ~R3 R +k gR R. (58)

and

gF ( n, k r):—,
'

& n, k
g ( g —i rJ ) g ( g—+i 7J ) I n, k

g &

+2, k2+ 2n +1 +2 „2n +1 +4=80 8 g 2 8 2 3'P
0 0

gR R +k gR R R (59)

For the terms involving S, we get, to first order,

1
&n, kc+q, —

—,'Ii [V+, S]In, k&, ,' &= n, k&+q—,——i
1 iqg

2 2
—}UD+, e'~~}, S n, k&,

—
)

& n, k~+q, —
—,
' I[e'~&k+, S]In, kc, —,

'
&

m 2

( &n, kcIk+Im, k&&&m, k&, —
—,
'

ISnI, ~k, —,
'

&

m=n+ ?

—&n, k&+q —,'ISlm kg+q —,
' &&m kg+qlk+In kg+q &) .

Finally, combining Eqs. (45), (46), and (50)—(60), for the F+ configuration, we obtain
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(n, k~+q, —
—,
'

~( V+ +i [V+, S])~n, k~, —,
' ) = «m

2n+1 —[(k(+q) +k(]Ro
0

[2n + 1 —2(n + 1 )(k&+q) R o+2nk &R o]
1 COz /CO~

4+2YoPa&o

S C

ACOV 6+ [gF (n, k&+q)+gz (n, k~)],
4 2mc + +

(61)

while the corresponding result for the F configuration is

(n, k&+q, —
—,'/( V +i [V, S])fn, k&, —,

' )

2n +1 (k&+—q) Ro k&Ro—— [2n +1—2(n +1)k&R o+2n (k&+q) R o]
0 S C

4+2pgBo+ —,'g" +yo g R;(R;+R, kc+
2

1 Aco+e
(k& —nq) — — [gF (n k&+q)+gF (n, k&)] .

1+co, /co, 4 2mc

(62)

III. MIXING OF CONDUCTION-
AND VALENCE-BAND WAVE FUNCTIONS

AND ELECTRON-SPIN RESONANCE

In the effective-mass formalism, we focus on a limited
number of states and, correspondingly, construct a pro-
jected Hamiltonian 8,s by means of Lowdin' perturba-
tion theory. Then, in order to calculate the velocity ma-
trix elements between states belonging to the chosen sub-
space, we just take the elements of (i/fi)[8, cc, r]. While
this scheme can give energy eigenvalues as accurate as we
want, it fails to give some of the corrections to the veloci-
ty matrix elements due to the admixture of the chosen
states with other bands. From a formal point of view,
this happens because the velocity associated with the pro-
jected Hamiltonian does not reproduce exactly the corre-
sponding projection of the velocity associated with the
total Hamiltonian. Physically, the problem arises be-

cause the eigenstates do have a "tail" outside the chosen
subspace. From a group-theoretical viewpoint, it is, of
course, possible to get a projected invariant expansion of
the velocity that would contain all possible contributions,
but this expansion does not coincide, in general, with the
velocity associated with the projected invariant expansion
of the Hamiltonian. In the following, a simple model for
InSb is worked out to elucidate this dif6culty. The con-
clusion will be that, due to the admixture of hole wave
functions into the "conduction-electron" eigenstates, an
additional contribution to the spin-resonance amplitude
is present; this term is inversely proportional to the band
gap and cannot be obtained using a 2 X 2 effective Hamil-
tonian to describe the electronic states.

We assume that the I"6, 1 7, and I 8 bands of InSb do
not at all mix with other bands and that their mutual in-
teraction is described by the following 8 X 8 Hamiltonian:

( —&, —~)12xz
1—k—v'2/3k,

0 C' conduction band (CB),
valence band (VB),

—Eg14x4 0
B= 0

(63)

(64)

=P
—&2/3k — —k

1
Z

1 1—k+ — —k,
(65)

where E is the energy gap, 5 the spin-orbit splitting be-
tween I 7 and I 8 bands, and P the Kane momentum ma-
trix element between conduction and valence states. '

The symbols 0 represent matrices all whose elements are
zero.

In this model, 8 is the total exact Hamiltonian, but we
are only interested in the conduction-band subspace. To
obtain the 2X 2 projected Hamiltonian, we write the ex-
act eigenstates ~g) as ( ~

g') + ~g" ) ), where
~
P') and ~g')

have only components in the conduction and valence
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bands, respectively; then, HI/) =El/) gives

lq') =El''&

and

c 'Iq'&+B Iq'& =El''& .

Inverting the second equation, we have

lqv) Ptlyc)
E —B

(66)

(67)

(68)

Expanding m *(E)and g (E), we get

H, s.(E)=H, s.+H,'s,
where

H, s =H, tt(E =0),
and

H', &=@ok +g pro"Bok +PapaBO .

(73)

(74)

(75)

which, substituted into the first, gives

O'Iy'&=El''&
E —B

We define the operator

H„=C ' „C't;
E —B

(69)

H, s(E) = + —,'g (E)p~o Bo,
2m *(E)

with

(70)

H, s depends on its eigenvalue E and H,s(E)lg') =Elf')
must be solved self-consistently. The expression for
H, s(E) can be cast in the following form:

Comparing with Ogg's expansion, we have 5o=ao=g"
=go —=0. This is due to the very simple form of the origi-
nal Hamiltonian H. We note, in particular, that no
inversion-symmetry —breaking term is included in this
model that, thus, could also apply to a diamondlike ma-
terial. Using H,~+H, z, we can find good approxima-
tions to the eigenvalues corresponding to the conduction
band as well as good approximations to the eigenstates
projected into the conduction band (i.e., Ig') ).

We look now for an electric dipole contribution to the
spin-Aip —transition amplitude. In the 2X2 scheme, i.e.,
calculating matrix elements of (i /R)[(H, z+H,'z, r], we
do not get any contribution, even allowing for k&%0
terms. Using, instead, the velocity associated with the
full 8 X8 Hamiltonian H, we have

,PP 2 + 1

m*(E) ' E+E, E+E,+b, (7 l) v= —[H, r]=-
fi [(.', r]

[C, r)
0 (76)

g(E)=- m 4 2 1 1
,P and

& @IIvlg; & =( & gi I+ & gi I
)v( I&,'&+ I@;& )

=—'«e;I[c, ]V,"&+&V,"I[', ]le;&)

l~, rl -c' 0l)+(6 c' -Ic, rl 4)f

cr —rc c' g', + gr c' c —c c p;)E —Bf E —B
1

E —Bl E —Bf
The first term is simply

(77)

i.e., the velocity associated with the projected Hamiltonian; the other term [which vanishes if E;,E& «E, (E +b, )] is
an extra contribution which does not appear in the usual 2X2 approach. The latter term is responsible for a k&%0
electric dipole isotropic spin-Aip amplitude. In fact, a straightforward calculation gives

C t=
,'I' + —(krk +k rk +k, rk, )

l 1 1

E+E [o (k rk, —k, rk )+c.p. ], (7g)

and, setting r3 =g, r& =( l /&2)(/+i'), and rz =( 1 /&2)(g i'), we have ''—
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T

C Ct —C' Ct g; —=—I, kr, —— C Ct —C C't j,k(, +-
Ei ~ Ef 8 ' fl

'
2 Ei' 8 E~ 8 ' ' 2

1
kg5 i5)i i i J +15 35i '+i A

Ro
(79)

with

&2P 1

3 A E +E~
1 1 1

E +5+E~
1

(Es+5)
1

%co (80)

In view of the preceding discussion, in the case of a
narrow-band-gap material, the spin-resonance amplitude
calculated in the preceding section is modified in the fol-
lowing way. For the F configuration [Eq. (62)], the
additional term Ak& is present, and for the EV
configuration [Eq. (49)], the additional term is
(I /&2)Akt, ' Eqs. (61) and (39) remain unchanged. There
is, therefore, no additional contribution to the spin-
resonance amplitude in the OV configuration.

Finally, we mention that including in H,z a term like

g "pii jo"k, Bii kJ would lead to an electric dipole spin-
Aip amplitude of a similar structure as that above, but
equating the A term to a g" term would be completely
wrong because the A term does not at all correspond to a
modification of th'e energy levels (in the present model,
g"=0). In the literature, the spin-fiip amplitude given by
Eq. (79) has been called nonparabolicity allowed; we
stress that it is related not to complications of the disper-
sion relation, but to the holelike "tail" of the electron
eigenstates.

i

f (k&), the probability that the eigenstate lo, k&, + —,
'

& is
occupied, is given by

f (k~)=
4~ Acno

with

Ak~
1+exp M +

2m *kz T
(83)

M = [—,'iri(co, —co, )
—p],1

B

M =0.9, (84)

which implies that the electrons are not degenerate. In
fact, Eq. (82) gives

where it is assumed that all electrons have n =0 and
s = + —,'; n o is the electron concentration and

@=p(nD, T,BD), the chemical potential. For Br,=40 kG,
T=4.2 K, and no=10'. cm, we obtain

IV. APPLICATIQNS TO InSb AND GaAs or

&k'&=1 l
A'

(85)

In order to illustrate the theoretical results described in
the preceding sections, we will now discuss several nu-
merical examples pertinent to InSb and GaAs. For these
materials exten~ ve experimental data are available, and
most of the parameters relevant to the electron-spin reso-
nance can be determined.

We consider first the g factor. ' ' ' This is given by
Eq. (31), which, for n =0 and k& =0, reduces to

R()(k~&=1.1 =1.2X10
%co

(86)

(k~~ &
= m*k~T

(87)

while, assuming a Boltzmann distribution, we have sim-

ply

2g' 4Xo
&O, OIg«lo, o&=g.+,+, yR„R, R,', .

R R
(81)

Now, the correction to the g factor due to the k&WO
effects is

From the magnetic field dependence, the values go = —51
and g'=6. 0X 10' cm are obtained. Fitting the observed
anisotropy, one gets yo=8. 2X10 ' cm . Neglecting
higher Landau levels is clearly justified, since
A'co, /k' T -=90 (irido, /k' T =30) at B~=40 kG and
T=4.2 K. Here, we consider the inffuence of k&%0
effects on the g factor. Their importance depends on the
equilibrium distribution of the electron momenta along
Bo. In particular, the relevant quantity is the average of
k(,

(k~ &
= f dk~ f (kc)k~ ',

&g = (o, k~lg«lo, k~ &
—(o,olg«lo, o &

=2g'kc+4g "k~+2@()k~g R,4~ . (88)

In view of Eq. (86), the terms proportional to g' and y~
are negligible compared to the corresponding ones in Eq.
(81). It is estimated' ' that g"= —2.0 X 10
a.u. = —5.7X10 ' cm; thus, also the term 4g"k& is a
very small correction. Furthermore, the peak of the ab-
sorption line is expected to be between the k&=0 position
and the k& =((k& &

)'~ position, as shown in Fig. 1, and
thus the determination of the g-factor parameters is even
less aff'ected than given by Eq. (86). We notice that if
Ogg's estimate for g" is used, i.e., g"= —3.5X10 a.u.
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f —2X 10 a.u. , ethe main contribution to hg in
2 'k hh o'ti a

ce the absorption line wou oo s'

ith th tri t il on thethat shown in Fig. 1, but wit t e asym
' '

e

instead of the lower.higher-field side in
spin-resonanceA a second example, w e consi er es

fi uration.fi ' ' Thein the ordinary Voigt configintensity tn e fi
transition matrix element q.

2
l ACOsA' yp R. + i egov(0ykg )M — (1 2k R )F*+ kg+R; R~V V

0

I

due to the admixture of hole states van-
' [llo] E 1is confi uration. Taking n

bt o od
the angle between Bz and the

60 %CO,
1) +—' i v egovM = —' i sinP (3 cos P—

V V 4
0

haik~—slilPcosP cos P 1'o .
2 I 0

(94)

P 0
4 7 sinP (3 cos P—1),

16
(90) elow the last term is negligib

' ible' the first two
terms interfere with each other an a very
data is obtained with

, 0 = —
—,
' sinP cosP (3 cos P—1), (91)gR; R~ =6.0,

RRo2 'Ital, +eIgov~
(95)

and

2g
gov(0 kg) =go + 2g

0 0

and, as explained above, w ppe a roximate

(92)

=66 a.u. =2.6X10 eVcm if gov isg' o=
usin 0 's estimates or gg

We note that the ast erm5o=56 a.u. ).
d thus its contribution toquadrature w'with the others, an t us i

the 5 contribution is of thethe intensity with respect to t e 0 con
order of

2k' p =2 2

We obtain

(93)
T 2
Ak( ypI 50

k Tyo B 0 029
mRp &0

(96)

~ ~

which is negligible.
t -resonance-inactive

Faraday configuration (I' ). Here, we a

Bo II [IIO] [I I2]
I.O

I

[iio] [ I I 2 ] [ I IO]

I

h, n = 2, 6s =o, oy
n II [t&i]

a

O

Ch.
a

C/l

JD

0.6—

04—

0.2—

40.5 40.7 .4I. I

Bo (kG)
4f.9

e absor tion line, the asymmetry is due
to k&%0 eff'ects [the circle corresponds to &=, w

square to k&=((k2& &)'~i].

O.O 90 ISO

8 (deg )

270 360

endence of the intensity of hs =0,FKJ. 2. Angular dep
n — ' '

h OV configuration with n 1~hn~ =2 transitions in t e
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4&250
Fo 1—

AR

1

1+co, /co,

f?cubi e 2g 2g
2&2???c Ro Ro

(97)

from Eqs. (79) and (80), we get the additional amplitude

comparing the contribution due to the admixture of hole
states as given by Eqs. (79) and (80) with all the others
given by Eq. (62). In Eq. (62), we can neglect q in com-
parison with k&, for incident wavelength A, =120 pm, for
instance, we have q ={2?r/A. )&e=2X10 cm ', while
((k~ ) )' =(1/A)(m*k?? T)' =8X 10 cm ', at T =4.2
K. Then, with the same approximations described above,
Eq. (62) reduces to

2
M' =Ak 1 1

Am, k
(E,+a/ E,'

L

The dominant term in M ~ is (4&25o/AR o)FO, which is
purely imaginary and cannot interfere with M'; at
T =4.2 K the ratio ~M',

~ /~M. ..~
is of the order of

(98)

A2( k 2 ) (?)?R 2 )2

$2

k~ T AARO =0.11,
%co, 5o

(99)

M' is therefore not completely negligible compared to
M ~ .

The term 0„ in the Hamiltonian can also induce com-
bined resonance transitions and overtones of the cyclo-
tron resonance. ' We take this opportunity to correct
Fig. 8 of Ref. 19, which refers to parity-conserving transi-
tions with As =0 and ~hn~ =2 in the OV configuration
with n~~[111]. The intensity for this transition is

2

I IM„,,I'= (v' — "
v)

5, an,
m+2, k( v, k~)

2
6O„(n+2,k, ~(4k+x, +4k' r," ) ~n, k, ) ~ ~F,(a, f3, ) ) ~'; {100)

this angular dependence is shown in Fig. 2.
Finally, we brieAy consider GaAs. Experimental

data ' and theoretical estimates give 50=20 eV A .
Experimental data are also available for the g-factor
parameters g'=10 ' cm and yo=10 ' cm; we men-
tion that from a comparison between free- and donor-
bound-electron data, ' it should be possible also to esti-
mate g". We assume, as above, no = 10' cm
T =4' 2 K and Bo

=40 kG; then, the electrons are not
degenerate and

fi 'Vo

mRO 60

k~T =4X 10
Ado

while Eq. (99) yields

ka T AARo =10
Ace, 5o

which is completely negligible.

(102)

(103)

k~T
(k ) = =5X10

AQ)

Equation (96) for GaAs gives
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