
PHYSICAL REVIEW B VOLUME 40, NUMBER 5 15 AUGUST 1989-I

Generalized norm-conserving pseudopotentials
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A method is introduced for computing norm-conserving pseudopotentia1s from a11-electron atom
potentials at arbitrary energies, rather than at bound-state energies only, as in existing methods.
This is shown to introduce considerable additional flexibility and convenience in constructing these
potentials, and in dealing with certain "problem" atoms. As an example of such a case, pseudopo-
tential and all-electron calculations of the electronic structure and structural energy of bulk BaSe
are compared.

I. INTRODUCTION

Pseudopotentials simplify electronic-structure calcula-
tions by eliminating the need to include atomic core
states and the strong potentials responsible for binding
them. The wide1y used norm-conserving pseudopoten-
tials (NCPP's) have several desirable properties. ' They
are calculated from ab initio self-consistent atomic poten-
tials based on local-density-functional (LDF) theory.
They produce nodeless valence wave functions which
converge to become identical to normalized fu11-potential
wave functions beyond a chosen "core radius" r„and are
themselves properly normalized. This latter property is
essential for producing a correct description of bond-
ing in pseudopotential calculations, and correct self-
consistent electrostatic and exchange-correlation poten-
tials. Simultaneously, NCPP's reproduce the scattering
power of the full atom potential correctly at energies
away from the bound-valence-state energy to first order
in the energy difFerence. When constructed according to
a we11-designed procedure, they in fact reproduce it over
a much wider range than the rigorous "first-order" result
would indicate. '

As a result, NCPP's reproduce all-electron electronic-
structure calculations with a high degree of accuracy. '

They have been calculated and tabulated for every atom
in the Periodic Table. They have been shown to give re-
sults in excellent agreement with experiment for lattice
constants, elastic properties, vibrational frequencies, and
structural phase transitions. Despite the fact that the
published NCPP's (Ref. 2) are derived for use in LDF
calculations, they have recently been shown to accurately
reproduce valence energies in Hartree-Fock and many-
body-perturbation-theory calculations.

Why tamper with something that works so we11?
There are several reasons. NCPP's are local functions of
radius, but different functions for each angular momen-
tum l. In a molecule or solid, wave functions contain a11 l
components about each atom, and it is typically neces-
sary to have NCPP's up to 1,„=2or 3. (This potential
is usually taken as the "local" potential which applies to
all higher l's. ) States with /'s which are not among the
occupied valence orbitals in the atomic ground

configuration are at best weakly bound, and often un-
bound in the LDF atomic potential. As a result, it is
necessary to use additional ionized configurations to ob-
tain satisfactory NCPP's for these l's. The desired func-
tions for use in electronic-structure calculations are the
bare-ion NCPP's, which are obtained from the atomic
NCPP's by "unscreening, " that is, by subtracting the
electrostatic and exchange-correlation potentials of the
pseudocharge density. ' While the basic transferability
of NCPP's ensures a high degree of consistency among
bare-ion NCPP's derived from different configurations, '

the use of multiple configurations is an inconvenience and
a possible source of error. This possibility is greatest for
alkali atoms, where configurations containing only a frac-
tion of an electron must be used for l =1, 2, or 3, and
the nonlinearities of the exchange-correlation functional
have the greatest opportunity to introduce unscreening
inconsistencies.

Another class of problems is posed by Cs and Ba.
These atoms have a narrow resonance in the l =3 chan-
ne1 at positive energies. To obtain an / =3 NCPP, a
bound f state must be created by using an ionized
configuration, and it is highly localized. The resulting
potential is extremely strong ( ——100 hartrees for Ba),
which makes the use of plane-wave expansions essentially
impossible. For many applications, it would be perfectly
adequate to permit errors around the energy of the f res-
onance if the f scattering of the atoms at lower energies
could be represented properly by a weak potential. A
third kind of problem concerns rare gases. For some ap-
plications, such as rare-gas —surface interactions, we may
only be interested in their repulsive interactions with
electrons near the Fermi level, and not in their deeply
bound closed shells of valence electrons. Existing
methods' based on bound states offer no way of deriving
such NCPP's.

The generalized approach to NCPP's introduced here
is based upon the recognition that calculations complete-
ly parallel to those using bound states can be introduced
for arbitrary energies. Atomic wave functions at arbi-
trary energies in the valence range which are regular at
r =0 diverge as r~~. They would seem to be poorly
defined objects, especially in terms of normalization.
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However, in a solid or molecule, such diverging wave
functions are "captured" by the potentials of neighboring
atoms. Stated in other terms, these wave functions
represent the tails of valence orbitals centered on other
atoms. The requirements that they be properly scattered
by the atom being discussed, and that they have the right
amount of charge in its vicinity, are in fact well defined in
this context. The theory for calculating such potentials is
discussed in Sec. II.

Car and Parrinello recently introduced methods for
greatly increasing the computational efficiency of plane-
wave pseudopotential calculations based upon treating
the action of the potential-energy operator on wave func-
tions in real space. The kinetic energy operates in
Fourier space, and the two representations are efhciently
related by fast Fourier transforms. The l nonlocality of
NCPP's makes the real-space operation essentially im-
possible. A separable approximation to the NCPP intro-
duced by Kleinman and Bylander retains the norm-
conserving property, and can be used in the Car-
Parrinello approach without sacrificing the efficiency of
real-space operation. Since the Kleinman-Bylander
form uses the pseudo-wave-function multiplicatively, it
would appear to be incompatible with the new general-
ized NCPP. We show in Sec. III, however, that under
rather weak restrictions a parallel separable form is well
defined.

In Sec. IV, we discuss sample results illustrating the
use of generalized NCPP's (GNCPP's), concentrating on
the rocksalt-structure compound BaSe. This example il-
lustrates both the solution of the "fproblem" for Ba, and
the Aexibility of GNCPP's in a situation where several
levels may optionally be treated as core or valence elec-
trons. Our observations are summarized in Sec. V. Fi-
nally, in the Appendix, we briefly describe the structure
of a Fortran program for computing GNCPP's which the
author will make available to interested readers.

II. CONSTRUCTION OF GNCPP's

The first step is to calculate the self-consistent LDF po-
tential V(r) for the atom of interest, typically using the
ground configuration. For the results reported here, we
used the scalar-relativistic version of the Schrodinger
equation, which contains the mass-velocity and Darwin
corrections, but is averaged over the spin-orbit term. '

The equation satisfied by u&(r), which is r times the radial
wave function, is

T

dy duI

2M dr dr

+ +2M( V —s) ui =0 (1)
l(l+1)

p
2

in hartree atomic units, where

M =1—
—,'a (V —E),

and a is the fine-structure constant. The relativistic
corrections are only important in the inner core region.
Following past practice, these will be incorporated into

the final pseudopotential, so that a solution of the non-
relativistic Schrodinger equation using that potential will
reproduce the relativistic effects along with other core-
region effects in the scattering. ""

For angular momenta l for which bound valence states
occur, it makes sense to follow the existing prescription
and derive the NCPP at the bound-state energy. ' This is
typically the energy at which valence or low-lying con-
duction bands will have that I as their dominant angular-
momentum character. For other I, we simply pick an en-
ergy c.&. The energy of the highest occupied valence state
is an obvious choice.

The next step is to choose the "core radius" r,&. We re-
call that for bound states, this is typically chosen to be
0.4 to 0.6 times the radius at which u&(r) has its outer-
most maximum. ' This will force the pseudo-wave-
function to converge to the full-potential wave function
somewhat inside this maximum, which typically occurs
near the relevant radius for bonding. For the generalized
case, the wave function is typically diverging with in-
creasing I, and a different criterion is needed. If there is a
bound core state for l, r,I must be large enough that the
pseudo-wave-function converges to the full-potential
wave function outside the outermost maximum of the
highest lying such core state. Taking r,I to be 2 to 3
times the radius of that maximum is a rule which, when
applied to bound states, gives values which are similar to
those found from the usual guidelines. This provides a
lower bound for r,I for the unbound states. If this value
is smaller than the largest r,l among the l's for the bound
states of the atom, we can use this larger value. Conver-
gence of the full-potential wave functions and pseudo-
wave-functions for I's without a bound state at radii
smaller than those of the valence states tends to make the
pseudopotentials stronger, and serves no purpose. We
also must choose a functional form to enforce our r,I

cutoffs, and the choice

f (rlr„)=exp[ —(rlr, h) ],
with X=3.5, has proven effective. These choices now
enable us to pick an outer radius at which the pseudo-
wave-function can be accurately converged to the full-
potential wave function, R1-2.5r,&. We then integrate
Eq. (1) with c, =e& outward from the origin, starting with
an appropriate power series for uI which goes to zero at
the origin. We stop the integration at RI, and normalize
uI so that

R

4nf ui dr=1 . (4)
0

We save the normalized value u&(R&) and first derivative
u&'(RI ). Choosing Ri significantly larger than needed
causes the outermost part of the diverging wave function
to completely dominate the normalization integral, re-
sulting in a serious loss of numerical accuracy in a subse-
quent part of the calculation. Another problem can
occur with large RI for positive values of c,l. In this case,
the wave function will oscillate at large r, and if a node
occurs between r,&

and Rl, a later step in the GNCPP
construction (inverting Schrodinger's equation) will fail.
The joint requirements that r, I be greater than the radius
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of the outermost node in the core region and that
RI 2.5r,r e6'ectively limit the maximum energy at which
the GNCPP construction is possible.

Following the standard procedure, we introduce an in-
termediate pseudopotential

r) =[1 f (r/—r ()]V(")+c(f(«r, !)

which converges to the full potential V(r) for r ) r,!. Vi!
is now used in a nonrelativistic Schrodinger equation,
which is started with a power series going to zero at the
origin and integrated outward to R,I to find the inter-
mediate wave function w, ((r). For bound states, c! was
adjusted to make the energy eigenvalues of the full poten-
tial and pseudopotential agree. For the present general-
ized case, we adjust c& so that

The most stable way to perform this adjustment is to
treat the problem defined by Eq. (6) as a bound-state ei-
genvalue problem. Typically, one solves bound-state
problems by integrating the Schrodinger equation out-
ward from the origin to a radius near the classical turn-
ing point at a trial energy, and inward from a large radius
to this same point. The values are matched, the resulting
function normalized, and the slope discontinuity used to
improve the trial energy by first-order perturbation
theory. ' The same approach can be used substituting
Eq. (6) for the result of the inward integration, and nor-

I

malizing only inside RI. For a trial value cl'"' used in Eq.
(5), this procedure yields an "eigenvalue" eI"', and the
perturbational correction

~( )
I I(n+1) (n)+cr —cl R(f f (r/r! )[w', !'(r)] dr

iteratively converges to the desired cl. The more direct
procedure of keeping eI fixed for the outward integration
and iteratively improving c! to satisfy Eq. (6) has proven
to be unstable.

From here on, the procedure is completely standard.
A scale factor is found to make the fu11 potential and
pseudo-wave-functions identical at R I,

y(=u((&()/w „«(),
and the final pseudo-wave-function constructed by adding
a short-ranged norm-correcting term,

w 2(( r ) V![ 1((r ) +5(gl (

6& is the smaller solution of the quadratic equation result-
ing from the condition that w2& be normalized,

I

y( f [w, ((r)+5,g((r)] dr =1 .
0

It it usually adequate to choose gI to be

g, (r)=r' 'f (r/r, ) .

The final pseudopotential, found from analytica11y invert-
ing the Schrodinger equation, is then'

1' 5 r'+'f( / „)
V2((r) = V, ((r)+

2w2( r r 2

r 2A, l +A, (A, +1) +2E( —2V,((r) (12)

The key identity which ensures the transferability of
norm-conserving pseudopotentials is' '

1 2 d d
Qh ln

2 'dcI dr r
(13)

For either u, or ~2I, at R =R, the right-hand sides of Eq.
(13) are the same by construction, as are d ln(u(lr)/dr
and d ln(w2(/r)/dr. This implies that the logarithmic
derivatives at energy c. are the same to first order in
(s —E!), so the scattering power of V2! for l partial waves
is the same as that of the full potential V(r) to a good ap-
proximation at energies away from the selected energy. '
Whether or not the energies and wave functions in Eq.
(13) correspond to bound states plays no role in this
transferability argument, and the identity is valid in ei-
ther case. This observation motivated the present exten-
sion to the general case. There is every reason to believe
that, for choices of r,I which give reasonable-looking,
smooth potentials, the transferability extends to energies
considerably beyond the energy range suggested by Eq.
(13), as found previously. ' Of course, when E! is deli-
berately set to avoid a sharp resonance, the pseudopoten-
tial cannot be expected to reproduce that resonance.

In contrast to the case of bound-state-only pseudopo-
tentials found for several different atomic configurations,
a single valence-electron electrostatic and exchange-
correlation potential can be subtracted from all V21 to
find the full set of ionic pseudopotentials,

4~ r
Vt "(r)= V2((r) p(r'—)r' dr'

where

5E,„,[p(r)]
4rr f —p(r')r' dr'—

r 5p(r)
(14)

p(r) =g n [w((r2()/r] (15)
1

In the above, nI is the occupancy of bound valence state
l. In the case of rare gases, when all the electrons in the
ground configuration are being treated as core, there is
no unscreening, and V! "(r)=V2((r).

III. SEPARABLE GNCPP's

In applying GNCPP's, they must operate on basis
functions which are not, in general, eigenfunctions of l
about the ion. Because VI'" is l dependent, matrix ele-
ments of the ionic potential must be calculated as
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&Pil V""1&2&=g f dr f dr'Pi (r)Y& (r)V,""(r)5(r—r')I'i* (r')&2(r'), (16)

where the ion is assumed to be at the origin. As discussed in the introduction, this form is computationally incon-
venient for some applications, and Kleinman and Bylander proposed a fully separable form which can have computa-
tional advantages. With their form, the matrix element between general basis functions becomes

&PilV'iciil&2& = f dr&i (r)VI',,"(r)&2(r)+& Ci fdr+(r)I'i (r)Qi'"(r) f dr' Y'&' (r')QI""(r')Pz(r') . (17)
l, m

In the above, we have introduced the radial function

Q,""(r)= [ V,""(r) VI—O,"(r)][w„(r)/r],
and the coeScient

Ci = 4m f Q(""(r)m2i(r)r dr
0

(18)

(19)

As introduced uzi(r) were bound pseudo-wave-
functions, and the choice of the "local" pseudopotential
Vi'„"(r) was essentially arbitrary. The exponential decay
of the pseudo-wave-functions made the integrals in Eqs.
(18) and (19) converge. Substituting Eq. (18) back into
the atomic problem (and adding the screening potential
from the occupied pseudo-wave-functions), it is easily
seen that the Schrodinger equation for each I is satisfied
by construction. It may also be shown that Eq. (13), and
hence first-order transferability in (e—c.i ), is preserved by
the separable form. ' Wide-energy-range tests of the log-
arithmic derivatives such as those given in Ref. 1 have
not been reported for the Kleinman-Bylander separable
form.

The immediately apparent problem in generalizing this
separable form to arbitrary energies is the divergence of
m2i(r) at large r The othe. r factor which can converge
these integrals is ( Vi'""—Vi'„" ). If this factor goes to zero
faster than (w2i) goes to infinity, the integrals will be
finite. A simple and computationally expedient way to
satisfy this requirement is

pected. In fact, the band structures, lattice constants,
cohesive energies, and bulk moduli agreed among the
three calculations (LAPW, PWPP, and PWPP separable)
within essentially numerical accuracy.

For a test which would better illustrate the advantages
of the GNCPP, we wanted to use a simple semiconduct-
ing compound containing Ba. As discussed in the intro-
duction, Ba has a low-lying f resonance. This leads to an
extremely localized bound f state for the Ba+
configuration conventionally used for I =3 pseudopoten-
tial, which is hence extremely strong and short ranged.
Among several rocksalt-structure Ba chalcogenides we
chose BaSe, because Se is the first chalcogen with a d
core. We have no reason to believe that this compound
has any particularly interesting physical properties. The
highest occupied atomic levels (local-density eigenvalues,
actually) are 5p and 6s at —18.7 and —3.5 eV for Ba, and
4s and 4p at —17.4 and —6.7 eV for Se. It is clear from
these numbers that there are two ways to treat the com-
pound: either the bands arising from all these levels
should be included, or only those from the Ba 6s and Se
4p electrons should. This provides a further test of the
fiexibility of the GNCPP approach.

The wave functions entering into the generalized con-
struction method are illustrated in Fig. 1 for Ba and

0.6,

V;'„"(r)= V, (r), (20)
0,4

where I,„ is the largest l for which a GNCPP is comput-
ed. Since all V&'" converge to the same potential for
r ) r, i as f (r Ir,i ), and any practical f goes to zero much
more rapidly than an exponential, convergence of the in-
tegrals is assured. With this choice, the Im sum in Eq.
(19) terminates at I~,„—l. If one gives up this computa-
tional savings, any su%ciently short-ranged function
could be added to the right side of Eq. (20). While Klein-
man and Bylander suggested that adjusting V&„" could
improve transferability of the separable potential, they
did not give any systematic way of doing so, and we have
not explored this possibility further.

il( o
O

0.2

C4

O.O

IV. APPLICATION TO SOLIDS

Initial tests were carried out comparing plane-wave-
pseudopotential (PWPP) and linear-augmented-plane-
wave (LAPW) calculations for Si. Since only the 1=2
GNCPP difFered from the bound-state form (typically
found from a Si + configuration), no surprises were ex-

-0.4
0

I

4
r (units of a )

FICx. 1. Diverging Ba I =2 wave functions for the full poten-
tial (solid line) and pseudopotential (dashed line) at c2= —O. 128
hartrees.
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l =2. In this case, we chose r,&=2.2 atomic units (ao),
leading to Rz =5.26 a.u. The manner in which the full-
potential wave function (solid line) and pseudo-wave-
function (dashed line) merge is qualitatively similar to
their behavior for bound states (see Fig. 1 of Ref. 1 or
Fig. 6 of Ref. 2). While a substantial fraction of the "nor-
malization" integral of these wave functions is outside
their "merge point, " this choice of R z keeps that fraction
from overwhelming the weight in the inner region.

Two possible choices of pseudopotentials for Ba and Se
are shown in Figs. 2 and 3. Both are based on the ground
configuration for the atoms. In Fig. 2, only the Ba 6s and
Se 4p electrons are treated as valence, and the pseudo-
ions are Ba + and Se +. The potential in Fig. 3 is based
upon including the Ba 5p and Se 4s electrons in the
valence shell as well, and we have Ba + and Se
pseudo-ions. The r', I and c& used in these calculations are
given in Table I. A comparison between the Se 1=2 po-
tential in Fig. 3 and one calculated using the bound-state
method with an s 'p d ' ionic valence configuration
shows that these potentials are very similar. It is clear
that all the potentials are weak within the scale set by the
ionic charge. They have no "kinks" or "wiggles, " which
is an important heuristic criterion for wide transferabili-
ty. ' We give a direct comparison between the Ba +

l =3 potential from Fig. 2 and one calculated using the
bound-state method with the configuration and r, 3 from
Ref. 2 (s f 0.274 a.u. ) in Fig. 4. The convergence
diSculties in using the bound-state potential in a plane-
wave expansion are readily apparent.

For reference, self-consistent linear-augmented-plane-
wave calculations of the band structure and of the

0

Ba8
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EP

b-6

c' /
P ~

'~

~j

~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ r
2

2

I—
hJ 0
O

-6
0

FIG. 3. Ba'+ and Se + ionic pseudopotentials. The curves
are labeled by I.

cohesive energy versus lattice parameter were carried
out. These calculations are based on all-electron poten-
tials, and make no shape approximations for the potential
or charge density. ' Bands arising from the As 4s, As 4p,
Ba 5p, and Ba 6s atomic levels were treated as valence
bands, and deeper bands were treated in the rigid-core
approximation. MuSn-tin radii are chosen as 3.39 a.u.
for Ba, and 2.44 a.u. for Se. The interstitial wave func-

0

Ba

3.
TABLE I. Parameters for the pseudopotentials in Figs. 2 and
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\
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Ion

B 2+

Ba +

Se4+

0
1

2
3

0
1

2
3

c, l (hartrees)

—0.138
—0.128
—0.128
—0.128

—0.128
—0.687
—0.128
—0.128

—0.050
—0.245
—0.050
—0.050

r, l /ao

2.41
3.17
2.41
2.41

2.41
1.20
2.20
2.41

2.84
1.20
1.60
1.60

0
r/a

FIG. 2. Ba + and Se + ionic pseudopotentials. The curves
are labeled by l.

Se + —0.640
—0.245
—0.245
—0.245

1.05
1.40
1.45
1.50



GENERALIZED NORM-CONSERVING PSEUDOPOTENTIALS 2985

-20—
Ba~+ X=5

-40—
4P
L

O

-60—

Ld -80—
O
CL

-'IOO

-120
0

ri&0

FIG. 4. Ba + I =3 pseudopotential from Fig. 2 (dashed line)
and constructed from a bound f state (solid line) following Ref.
2.

tions and potentials are expanded in plane waves with ki-
netic energies up to 9 and 70 Ry, respectively. The
muffin-tin wave functions and potentials are expanded in
spherical harmonics up to l =6. A six-special-point
Brillouin-zone sample is used. ' Experience has indicated
that these choices yield bands and cohesive energies con-
verged to -0.1 eV for such materials.

The LAPW band structure is shown in Fig. 5(a). The
shallow core bands from —8.5 to —12.5 eV are hybrids
of Ba 5p and Se 4s. The Se 4p "valence" band lies be-
tween —2.2 and 0 eV. The conduction bands from 1.7 to
8.5 eV have predominantly Ba 6s and 5d character. The

Ba 4f bands are clustered between 8.5 and 10 eV. We ex-
pect that the band gap is seriously underestimated com-
pared with experiment as in typical local-density-
functional calculations for semiconductors.

A pseudopotential band structure was calculated using
the Ba +,Se + potentials shown in Fig. 2 and a plane-
wave basis set with a maximum kinetic energy of 10 Ry.
This set of approximately 260 plane waves gave good
convergence, and a band structure in excellent agreement
with the LAPW result for the anticipated bands, as seen
in Fig. 5(b). Differences are in the O. l-eV range for the
valence and low-lying conduction bands, and grow to a
few tenths of an eV in the higher conduction bands. The
shallow core bands and the Ba 4f conduction bands are,
of course, absent.

Another calculation was performed using the Ba + and
Se + potentials shown in Fig. 3. The shallow core bands
are, of course, considerably harder to converge, and a
basis of approximately 480 plane waves with maximum
energy of 15 Ry was necessary to bring these bands to
within -0.3 eV of the LAPW reference results. This set
of bands is shown in Fig. 5(c). The excellent quality of
agreement in the Se valence and Ba conduction bands is
maintained, and the Ba 4f bands remain absent as intend-
ed.

A band calculation using the separable forms of these
same potentials was also carried out. In contrast to our
result with Si, the results were less than satisfactory. Er-
rors in the range of 0.5 —1 eV were found, both within
and between groups of bands. We speculate that the
states in the solid are sufficiently modified from the atom
states used as projection operators that the transferability
suffers. The errors were comparable for bands with sym-
metries related to both bound-state and generalized-state
components of the pseudopotential. While it may have
been possible to improve the bands by adjusting the local
part of the potential to be something other than the l =3
component, we know of no systematic way to do so.
There is very little in the literature documenting the per-
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FIG. 5. Band structures for BaSe based on (a) full-potential LAPW calculations, {b) Fig. 2 pseudopotentials with plane-wave basis
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for the pseudopotential curves.

formance of the separable potentials, so it would be pru-
dent to test them for each new situation before undertak-
ing a major computational project.

A series of calculations of the total energy of BaSe as a
function of lattice parameter was carried out to test the
capabilities of the GNCPP's for structural predictions.
The reference LAPW results are shown as the solid curve
in Fig. 6. (All the cohesive energy curves are third-order
polynomials least-squares fitted to seven calculated
points. ) The lattice parameter, the only experimental
quantity available to us, is in very good agreement with
experiment, ' as seen in Table II. The "valence-only"
GNCPP from Fig. 2 did not give satisfactory results.
The dotted curve in Fig. 6 was calculated with this poten-
tial, and showed no sign of approaching a minimum
within the range investigated. The shallow core bands
clearly make an important contribution to interatomic
repulsion. The GNCPP's incorporating these bands,
however, give excellent structujal results even when these
bands are not well converged, as seen from the long-
dashed curves in Fig. 6. The excellent quantitative agree-
ment of the position and curvature of the minima is seen
in Table II. Of course the cohesive energy is not con-
verged at the 12.5-Ry cutoff used for the lower curve.
The single cohesive energy calculated with a 15-Ry cutoff
at the experimental lattice parameter is still 2 eV above
the reference LAPW result. Despite its poor perfor-
mance with the band energies, the separable version of
the Fig. 3 potential gave respectable structural results,

TABLE II. Structural energy results for BaSe.

Type

PW
PW
LAPW
Expt.

'Reference 18.

K „(Ry)
10.0
12.5

a /ao

12.59
12.54
12.51
12.47'

8 (Mbar)

0.415
0.436
0.450

shown as the short-dashed curve in Fig. 6. The basis
cutoff was 10 Ry for these calculations. The minimum
lattice parameter is 1.3% smaller than the LAPW refer-
ence, as seen in Table II, but the bulk modulus is close to
the other results. This level of performance would be
suitable for many applications to structural problems.

V. DISCUSSION

A generalized form of the norm-conserving pseudopo-
tential' offers the convenience of using a single atomic
reference configuration, generally the ground state.
Greater fIexibility is available in optimizing the proper-
ties of the pseudopotential, such as its range, strength,
number of bound states, and energy of maximum accura-
cy. A separable form can be constructed where desired
for computational efficiency. Purely repulsive potentials
from closed shells are possible.

Illustrative calculations of potentials for Ba and Se
atoms with two choices of ionic valence show that they
can be as similar to or as different from conventional
bound-state NCPP's (Refs. 1 and 2) as desired for a given
application. Plane-wave calculations of the band struc-
ture and energy of BaSe illustrate the performance of the
GNCPP's compared with full-potential reference calcula-
tions. The poor performance of those pseudopotentials
which included only the Se 4p and Ba 6s electrons outside
the core for structural energies, and of the separable form
for band structure, indicates the necessity of checking po-
tentials for desired applications. Additional Aexibility
creates additional opportunity to make errors.

A final point which should be noted is the importance
of examining plots of the pseudopotentials to make sure
they "look right. " The most common problem is a
significant oscillation around r,&, which indicates a poor
choice of this parameter or placing cI too close to an
unwanted bound state. While the effects of visible
smoothness have not been systematically explored, ex-
perience has indicated that it contributes both to
transferability (in the sense of performing well over a
wide energy range) and convergence with basis size. Fig-
ures 2 and 3 here, as well as various figures in Refs. 1, 2,
and 8, give reasonable guidance as to what the potentials
should look like.

Note added in proof. Preliminary versions of this pro-
gram, dated prior to June 7, 1989, contained errors and
should be corrected or replaced. The factor y& in Eq. (12)
was omitted, and the Hedin-Lundqvist exchange-
correlation potential section was incorrect.
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APPENDIX

A Fortran program has been written and tested which
carries out all the steps necessary to construct GNCPP's.
Copies of this program, along with input data files for all
atoms (excepting lanthanides and actinides) and a sample
output file, are available from the author on request (on a
5.25 in fioppy disk). The structure of the program is
brieAy outlined below.

Basic input data consist of atomic number, number of
core and valence states, and principal quantum number l
and occupation of each. The Wigner, ' Hedin-
Lundqvist, or Ceperly-Alder ' form of the exchange-
correlation energy may be specified. An appropriate log-
arithmic radial mesh and an approximate Thomas-Fermi
potential are set up. The scalar-relativistic Schrodinger
equation' is then solved for the core and valence states,
and the charge density is accumulated. The output po-
tential is calculated, and these calculations are iterated to
self-consistency using the Anderson method. Integra-
tions for the Schrodinger equation, potential, etc. are car-
ried out using the fourth-order Adams predictor-
corrector formulas. All the energy levels are included
in the output for reference.

During the full-potential calculation, the position of
the outermost maximum of the wave function with
highest principal quantum number for each I is saved.
These are used to calculate a set of r, &

following the
guidelines of Ref. 2 and the discussion in Sec. III. Ener-

gies corresponding to occupied bound states are selected
to construct the pseudopotentials for the corresponding
l's, and that of the highest unoccupied state is selected for
the others. At this point, additional optional input is
sought to print wave functions, or to change the output
mesh, r,l's, or unoccupied cI's. The screened pseudopo-
tential is then calculated for each l in turn, following the
steps in Sec. III. To test the consistency of our numerical
integration of Schrodinger s equation and its analytic in-
version in Eq. (12), it is solved numerically again using
the final potential, either for a bound or generalized
pseudo-wave-function, and the bound-state energy, and
value and slope at the matching point are compared to
reference values from the full-potential calculation.
Discrepancies in these tests indicate a poor choice of r, l
or cI. The pseudocharge density is accumulated for the
occupied states. After all the V2t(r) are calculated, a nu-
merical implementation of Eq. (14) is used to unscreen '

them and produce Vt""(r).
All quantities to be output are interpolated onto a

linear radial mesh using cubic splines. Two sets of out-
put are given, each including the radial mesh and the
atomic pseudocharge density. The first set also includes
the standard Vt""(r), while the second includes rgt""(r)
from Eq. (18) and, as a final row, Ct from Eq. (19) for the
separable form.

The total energy of the valence electrons is computed
to serve as a reference for cohesive energy calculations.
For open-shell atoms, a local-spin-density calculation
should be used to obtain a better estimate of the atomic
energy. The spin-polarization correction to the atom
valence energy should be obtained from a full-potential
calculation because of the nonlinearity of the exchange-
correlation energy. This can then be added to the pseu-
doatom energy calculated in this program.
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