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Mixing and displacement in binary two-dimensional condensed phases
on a foreign substrate: Mean-field approach and Monte Carlo simulation
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Isotherms of binary adsorption layers on an isomorphous substrate, as a function of the partial
pressures of both adsorption partners, are calculated using the mean-field approximation. Condi-
tions for the enhancement or inhibition of adsorption at low coverages, for the variation of the equi-
librium pressure between the two-dimensional (2D) gas and the 2D condensed phase, for successive
transitions from the 2D gas to the condensed mixed 2D layer to separated 2D phases, and for criti-
cal phenomena inside the 2D condensed phases have been deduced. A Monte Carlo simulation
confirms the general trends of the mean-field results.

I. INTRODUCTION

Although numerous experimental studies' have been
recently devoted to the coadsorption of gases on homo-
geneous solid substrates, relatively little attention has
been paid to the thermodynamics of the coadsorption.
The inAuence of the partial pressures of the adsorbing
partners on the two-dimensional phase diagram, in par-
ticular, has not been fully explored.

In the present paper we propose, first, a mean-field ap-
proach to the computation of two-component adsorption
isotherms. We discuss the main features of the coadsorp-
tion, namely, the transition from a two-dimensional (2D)
gas to a two-dimensional solid, mixing and dernixing, and
critical phenomena in condensed binary layers. The link
with the displacernent of unmixable layers, treated else-
where, will also be made. In the second part, we present
the results of Monte Carlo simulation performed under
the assumptions of the same physical model.

In view of the multitude and complexity of the phe-
nomena expected in the cases of multiple layer coadsorp-
tion, e.g. , establishment of concentration gradients or
demixing on different layer levels, we shall restrict our in-
terest in this paper to monomolecular layers of both
coadsorbing substances. Also, in order to exclude the
possibility of condensation on the top of a condensed lay-
er of the other adsorption partner, before the surface of
the substrate is fully occupied, one assumes that for both
partners the interaction with the substrate is much
stronger than the interaction between them. The latter is
true in most cases studied experimentally, e.g., rare gases
and light hydrocarbons on graphite. ' "

II. MEAN-FIELD APPROACH

A. The adsorption isotherms

We shaH apply the usual mean-field approximation for
localized adsorption on an isomorphic substrate' (this
simple model assumes one to one correspondence be-
tween maximum number of adsorbed molecules and num-
ber of available adsorption sites; moreover, a compact

monomolecular adsorbed layer is identical with an exist-
ing lattice plane in the three-dimensional lattice of the
adsorbing substance), thus replacing the partition func-
tion of X monatomic molecules adsorbed on X, adsorp-
tion sites,

Q&&&
—— A g g,. g U exp( —U;/k& T)
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Qttytt = A g g U exp( U/kit T)
1

(2a)

X gg;exp( —U/kii T) .
l

(2b)

We shall proceed as in the case of regular three-
dimensional (3D) solid solutions, ' assuming that the two

Here A is the de Broglie thermal wave length,
A =h /(2mmkn T)'; U,. is the potential energy of the lay-
er in the ith state, all molecules at rest, and g; is the de-
generacy of that state (number of configurations having
the same U;): UJ is the configurational integral of vibra-
tion of an adsorbed molecule, sometimes called "mean vi-
brational volume. " The mean-field approximation factor-
izes the second and third multipliers in the sum of Eq. (1),
by giving mean values to both the vibrational term (a fair-
ly acceptable assumption in view of the small differences
among the volumes u of molecules adsorbed in different
sites of the surface, and also compared to that of a mole-
cule in the three-dimensional lattice), and to the exponen-
tial energy term (the latter assumption is far more nrob-
lematic, since it postulates a dependence of U,. on the
number X of adsorbed molecules only and not on their
configuration).

For a binary mixture of X~ and N~ rnolecules of the
substances A and 8, adsorbed on N, sites, Eq. (2a) trans-
forrns to

A. g Wg
A — B—3(@~+GAB) U q

Q(Ng +Ne )/N, ~ ) ~ (
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U= — NAit A+NBWB+ NABA—NAA2

+ NBBBP—BB+nNA BBPAB (3)

where the degrees of coverage, 6„=N „/N, and
BB=NB IN, are also the probabilities for a given mole-
cule to have as first nearest neighbor a molecule of 3 and
8, respectively. Using the same notations, the enthalpies
of sublimation at the absolute zero point (neglecting the
zero point vibrational energy) per molecule of the pure
large 3D phases of A and 8 yield

coadsorbing substances A and 8 are isomorphic, that the
intermolecular forces among adsorbed molecules are lim-
ited to first nearest neighbors only, and will set the bind-
ing energies between two molecules of the substance 2,
between two molecules of the substance 8, and between
one molecule of A and one of 8, equal, respectively, to
pAA, QBB, and JAB. As to the interaction of the adsorbed
molecules with the isomorphic substrate, no restriction
will be made for its range and nature, but that the bind-
ing energies, gA and ((JIB must be larger than the corre-
sponding energies, P„and PB, of an A molecule on a
substrate of A and of a 8 molecule on a substrate of 8. If
the maximum number of first n'earest neighbors of an ad-
sorbed molecule in the plane of the surface (two-
dimensional coordination number) is n, the average po-
tential energy U of the layer of %~+KB molecules ad-
sorbed on X, sites is

in equilibrium with the adsorbed layer, are in general
( )o ( )' ~

different from those, p(As' and p(I', in the saturated vapor
of the infinite 3D phases of 2 and B. The differences,

()0 () ()
6(MA =(M(Ai —p(Ai and 5(MB =@I(i—(((I(' are the general-
ized "supersaturations" of the respective species (al-
though condensed 2D phases are stable at undersatura-
tion only, Ap &0, to avoid ambiguity, we shall use the
term "supersaturation, " keeping in mind that it can take
negative and positive values as well). Since the chemical
potential of a species in the saturated vapor p' ' is equal
to its chemical potential p" in the infinite condensed 3D
phase, one can write for the chemical potential of the su-
persaturated vapor of either component

p(g'=p" +bp=po yo kB—T ln—u o+bp,
where U is the Incan vibrational volume of a molecule in
the infinite crystal. When equilibrium is established be-
tween the vapor and the adsorbed layer, p'Ag' and p'I', cal-
culated from Eq. (6), must be equal, respectively, to p(A

and (MB( from Eqs. (5a) and (5b). After substitution of p„
and QB from Eqs. (4a} and (4b}, one obtains the isotherrns
of coadsorption of 3 and 8 as a function of the partial
supersaturations hp~ and ApB from the solution of the
system

n
k T ln = ——p „(1—26A )+n(tiABB

1 —e~ —eB 2

—0
0 +PA

and
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2 0AA
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(4b)

e,
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0 U B
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After substitution of U from Eq. (3) into Eq. (2b), and
taking into account that g;g; is the number of ways to
distribute N, —X„—XB empty sites over a total number
X, of sites, one has, for the chemical potentials, per mole-
cule of the A and the 8 species,

It is worthwhile to point out that within the same model
and the approximations made above, the adsorption iso-
therm of a pure layer, e.g., of the substance 3, yields

kB T ln = ——pAA(1 —26A ) —(pA —g„)n 0

PA gN
kB T in~(N +N )/N,

(a)

POA ( PA+ BANAA+nBBNAB }

-0
kB T 1Il +keg

VA

(8)

and

e~
+kB T ln —kB T lnv~

B

(a)—
(MB

= —
~N

kBTlnQ(N +N )(/N

I OB (4B+ BB'PBB+ 6 WAAB )

+kBT ln —kBT lnUB,
1 —e —0B

(Sa)

(5b)

Equations (7) and (8) can be greatly simplified if one
chooses as reference state for the supersaturations Apz
and hpB the equilibrium between the 2D gas, the 2D
condensed phase, and the 3D vapor instead of the equilib-
rium between the 3D phase and its saturated vapor. For
a pure layer, this state is characterized by e=0.5, and
thus, e.g., for the coadsorbate A [cf. Eq. (8)], by the su-
persaturation

—0

b,(M*A =p„—gA+kBT ln
VA

where p0=kB T 1nA .
The chemical potentials p'&' and pBg' in the gas phase,

The scaled supersaturation of the two-dimensional phase
is, therefore,
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~P2D, A =~PA ~PA ~ (10)

n
ka T ln = ——P„„(1—26' )

A B

+&4'~aBa+~v2D, ~
(11)

B
kBT ln

A B

and so does Eq. (g):

n= ——yaa(1 —
26a )

2

+"4»6~+~P2D, a

it is negative when the stable phase is a 2D gas, positive
when the condensed phase is the only stable one, and zero
when those phases are coexisting. With the help of Eqs.
(10) and (9), the system of Eqs. (7) simplifies to

large. In this case the molecules of one of the coadsor-
bates act as active centers for the adsorption of the other.
Furthermore, since by increasing supersaturation of one
of the components, e.g. , A, the supersaturation of the
other (B) being kept constant, a 2D gas to 2D condensed
phase transition eventually occurs which increases con-
siderably the degree of coverage e„, it is clear that the
degree of coverage GB must pass through a maximum.

When the binding energy P „a is small (n P ~a /ka T
(1), the presence of the coadsorbate decreases the de-
gree of coverage of the other adsorption partner due to
the partial occupation of the area available for adsorp-
tion.

When the total coverage e is nearly equal to one, so
that one can set 6~ = 1 —Ba, the system (7) results in the
unique equation

n
ka T ln = — P„—q(1 —2B~ )+hp2D

1 —GA 2
(12) n

ka T ln = — b,g(1 —26„)—+bp2D „—hp2D a,

B. A qualitative overlook
where

(13)

n 0exp
2 4Ax+4a kBT

Xexp[(1 —iiP»/ka T)Ba]+(I nP»/ka T—) .

GB= .
0

PB
exp

2
Naa+ Pa 0a kBT

Xexp[(1 nPqa/k—a T)6& ]

+ ( 1 ncaa /—ka T)

One can interpret qualitatively some properties of the
adsorption isotherms, in the extreme cases of very small
and very high total surface coverages.

If both BA and eB are small compared to unity, the
development of Eq. (7) yields

0
PA

~4=4~~+4'aa 24~a . — (14)

Equation (13) reveals two general trends in the behav-
ior of condensed binary layers.

(a) When adsorption of either one of the components
takes place by displacement of molecules of the other
component (no holes), the parameter b,P of Eq. (14), re-
sponsible for the order of the 2D phase transition (i.e., for
the existence of a miscibility gap in the composition of
the 2D "alloy" ), and for the value of the critical tempera-
ture of demixing T„ is the same as that for a three-
dimensional binary alloy in the original treatment of
Bragg and Williams. '

(b) The transformation, at constant temperature, of a
8-rich 2D alloy into an A-rich alloy, takes place at a su-
persaturation Ap2D A higher by Ap2D B than the supersa-
turation Ap2D A

=0 at which a pure 2D gas of 3 trans-
forms into a pure 2D condensed layer on the empty sur-
face of the same adsorbent:

~I 2D, A ~I 2D, B (15)

n 0exp 4~~+ 4~ ——4~2
e, =.0 kBT

+(1 nfl~/kaT) —.

where the identity b,p=ka T ln(p/p ), valid for an ideal
gas, has been used and the usual approximation, v =v, is
made.

Compared to the same development in the case of ad-
sorption of a pure A layer, derived from Eq. (8),

0
PA

This result will be discussed in more detail with respect
to displacement in Sec. II D.

To summarize, the coadsorption of a second corn-
ponent 8 contributes to the enhancement of the adsorp-
tion of A at low coverages of both components. Howev-
er, when a condensed 8 layer is already occupying the
surface of the substrate, the condensation of an A-rich
layer is inhibited and the step in the isotherm 6~ (b,p„)
is translated to more positive values of A@A by roughly
~P2D, B.

one states that GA is larger than e„and increases by in-
creasing Ba if nP„a/kaT ) 1. Hence, at low coverages
of both components 3 and 8, the coadsorption results in
an increase of their degrees of coverage with respect to
the pure adsorption layers at the same supersaturation
when the energy of the mixed bond P„a is sufficiently

C. The isotherms
of a two-dimensional binary mixture

The exact numerical solutions of the system of Eqs.
(11) are represented by the isotherms of Figs. 1 —4, where
the degrees of coverage 8A and eB of both components
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hp, o s = —0.5 according to the mean field approximately [E .
(15)l. The ener]. e gy of the mixed bond P„s decreases from (a) 0.7

ma ey q.

to (c) 0.3 whereby the value of b, P increases from 0 (ideal solu-
tion) to 0.8 (first-order transition). The dashed line is the ad-
sorption isotherm of the pure substance A. Triangles and circles
represent, respectively, the values of e & and 8& resulting from
the simulation within the same set of parameters. All energies
and supersaturations are in units of k T I ( )n a are given also
the experimental points (solid squares) of the simulation of a
pure A layer.

are plotted as a function of the scaled supersaturatio 'on

p2D z of A at constant supersaturation hp of the
other

20,8
o er component. The interaction energies among the
adsorbed molecules are chosen in a way that both first-
and higher-order 2D phase transformations can be ob-
served. The two-dimensional coordination number being
n =6 in all calculations (as well as in the simulations con-
sidered in Sec. III), the order of the transformation 2D
gas to 2D solid in a pure one-component layer depends,
according to the mean-field approximation, on the ratio
nP/4k&T =3//2k&T. When this ratio is larger than
one, P/k~T & —', , the transformation is a first-order one;

2when Plk~ T (—,, the transformation is continuous, the
equality P/kz T, = —', defining the critical temperature T, .
In the case of two-dimensional binary alloy AB, the same
limits concern the value of b,P from Eq. (14) indicating
the existence of a miscibility gap (3b,g 2/zkT&1) and
defining the critical temperature of demixing.

In Figs. 1, 3, and 4, the forces among first nearest
neighbors of the coadsorbate A are so chosen that its
pure adsorption isotherm. displays a first-order phase
transition (P~„/k~T=0. 9; cf. the dotted curve in all
figures), while the pure component B undergoes a con-
tinuous one ((tzz/kz T =0.5). Each of the three series of
plots is characterized by a different, constant, value of the
scaled supersaturation Ap20 ~. In Fig. 1, Ap2D ~ &0. In
these conditions, if the coadsorbate B were alone to ad-
sorb, it would have built a diluted layer (2D ga ) I F'
3

gas . n ig.
p» ~ =0, i.e., the pure adsorbed layer of B would

have been at the equilibrium between the 2D gas d th
sohd. Finally, in Fig. 4, Ap» ~)0. The pure ad-

sorbed layer B is already a dense 2D phase which, when
hp2D „ is increased, is partially removed by or mixed
with A.

Inside each of those three series of isotherms, the
difference between the figures resides in the value of the
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mixed bond energy P„z/k&T, and hence, of b,P/k~T
which varies from zero to 0.8. In this b, (() range, the two-
dimensional condensed phases change from ideal solu-
tions to alloys with wide miscibility gap.

The remarkable feature of the isotherms of Fig. 1(a) is
the strong enhancement of both coverages 6~ and 6~
for values of the scaled supersaturation bpzo „/k&T as
low as —0.9. At slightly higher hpzD z values, the cov-
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erage of 8 decreases. By its presence, however, it still in-
hibits the condensation of A which becomes a typical
second-order transformation. The effect is reduced by
decreasing the energy of the mixed AB bond [Fig. 1(b)],
as expected from the qualitative considerations of the
preceding section, and is almost nonexistent in the iso-
therms of Fig. 1(c) (P~~/k~T=0. 3) where the increase
of e& in the supersaturation range —2 (b.p /k Tp2D, 3 8
& 0 is negligible, despite the fact that 6~ increases in the
same time by a factor of 20. In this case the transforma-
tion is first order, the degrees of coverage passing abrupt-
ly from 0.182 to 0.778 for 6& and from 0.217 to 0.096 for

g o

Figure 2 gives an example of two coadsorbents with
equally high interaction energies, P„z/k~ T =P~~ /k~ T
=0.9, and relatively large energy of the mixed b d

kPzz/ + T =0.7. In this case AP/k& T (—,', and the iso-
therms should display a continuous transition, which
seems to be true at higher supersaturations. However, as
one can see in the figure, the degrees of coverage of both
components increase suddenly at hp /k T= —0.26
This

2D, A B
is apparently contradictory behavior can be explained

by the succession of two phase transitions. The first is

I t

0 1
h P'ao, b

SUP ERSATURATION h p gp A

FIG. 4.~ Same as Figs. 1(a) and 1(c) but at a supersaturation of
8, ApzD z =0.5.
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the condensation of a mixed 2D vapor to mixed 2D crys-
tal. The energy parameter determining the order of the
transition has presumably a value not very different from

P~z and Ps+. In the present case they are both large and,
thus, the transformation is of first order. The degree of
coverage of vacant adsorption sites, 1 —6~ —6~, having
dropped during the 2D condensation from 0.827 to 0.165,
the approximation 6& -1—6~, made in the preceding
section, is fulfilled and Eq. (13) becomes fairly valid. The
further transformation during which the layer becomes
richer in A is now governed by the energy parameter hP,
and hence has a second-order character.

Among all isotherms presented in Figs. 1 —4, those of
Fig. 2 are also the only ones showing a scaled supersa-
turation EP2& ~ at which a first-order transformation
occurs (supersaturation of the step), lower than that,
AP2& z =0, of the pure A layer.

The next series of isotherrns, Fig. 3, are calculated for
the case when the scaled supersaturation of the com-
ponent B is nil, i.e., when the continuous type isotherm of
its pure adsorbed layer has an inAection point at
Bs =0.5. In Figs. 3(a) and 3(b), the effect of the coad-
sorption of A on the isotherm of B is a small increase of
6& above 0.5, followed by a maximum. The isotherm of
A displays in the entire EP2~ ~ range a normal overcriti-
cal behavior, as should be expected from the values of
b,P/kz T (—', , and so does the isotherm of B for

bpzn „/k&T) 0. In Fig. 3(c) (b,P/k~T )—', ) the trans-
formation is abrupt and the related supersaturation
APE& z is sensibly larger than zero.

The isotherrns of Fig. 4 are calculated in the case when
b pzn z/ks T =0.5, i.e., when the pure B layer is already
a dense 2D phase. Therefore the adsorption of A can
take place through partial or full displacement of B from
the substrate, depending on the concentration of empty
adsorption sites and on the value of the energy of the
mixed bond P~&. The degree of coverage of vacant sites
varies in the case of Fig. 4(a) (ideal 2D solution) from
0.04 to 0.16 in the entire hp2o „/ksT range, while it
changes during the first-order transformation of Fig. 4(b)
from 0.18 to 0.07. This result shows that the approxima-
tion 6& -1—6& made in the preceding section is fairly
valid when b,@2' s/k~T )0, even if one of the com-
ponents is in an overcritical state. As regards the transla-
tion to more positive values of the supersaturation at
which the transformation takes place, some statements is-
suing from the simplified treatment in the preceding sec-
tion should be made more precise.

D. Displacement

Strictly speaking, displacernent from the substrate of a
component B by the component A takes place in all cases
described in Figs. 1 —4, when by increasing supersatura-
tion AP2& z, 6& decreases. It is mostly admitted, ' '
however, that displacement means lack of miscibility of
the adsorbing partners. If this is the case, the pure 2D
layers of B before displacement, and of A after displace-
ment, must also be compact. If they are not, the other
adsorption partner can profit from the presence of holes
to adsorb and, thus, form a mixed layer.

Nonmiscibility and compactness justified the assump-
tion made in a previous paper, that the degree of cover-
age to be considered, of each component, is either zero or
unity. The above approximation led to the simple result,
identical to that obtained in Sec. II B, namely, a compact
monomolecular layer, e.g. , of B, condensed at the scaled
supersaturation EP2~ ~, cannot be removed by a compact
monomolecular layer of A until the supersaturation
b,P2~ ~ becomes higher than EP2~ ~. In other words,
the "supersaturation of the step" of the isotherm of A,
EPz~ ~, when B is previously condensed on the substrate,
is translated by b,p2o s with respect to the value (zero}
which characterizes the condensation of A on the naked
substrate [cf. Eq. (15)].

The supersaturations of the step of the isotherrns in
Figs. 1 —4, noted by an asterisk, show that the result
enunciated above is far from being verified in most cases.
As regards the isotherms of Fig. 2, the strong attraction
between the molecules of the two adsorption partners in
the 2D gas is at the origin of the translation of EPzz „ to
negative values. In all other cases, however, the transla-
tion of EPzz, „ is to even more positive values than those
expected from Eq. (15) and the deviation is larger, the
stronger the first-order character of the transformation,
i.e., the greater the miscibility gap. The latter statement
is illustrated by comparison of the isotherms of Figs. 4(a)
and 4(b). The (constant} supersaturation of B in both
figures is b.@2' s =0.5 and, according to Eq. (15), the step
of the isotherm of A should have been translated from
zero (pure A layer) to b,pro „=0.5. This is fairly true
for the isotherm of Fig. 4(a) which is that of an ideal solu-
tion, while in the case of Fig. 4(b), representative for an
almost "full displace~e~t, "

AP2~ ~ =0.613.
In Fig. 5 are plotted the supersaturations of the step of

the isotherms of A as a function of the supersaturation of
B, for the same set of binding energies P~„, /sr', and P „s,
as that used in the computation of the isotherms of Figs.
1, 3, and 4. The crosses and accompanying numbers
designate couples (b,@2' s, bpzo ~) already represented
in the respective figures. The dashed line gives the solu-
tion in the ideal case:

~P2D, g 0 for ~P2D, 8 —0

~P2z), 3 ~P2D, B for ~P2D, B + 0

[cf. Eq. (15)].
Figure 5(a) depicts the case of a first-order displace-

ment of B by A. The deviation of APz~ ~ from the ideal
value is always positive, probably due to the lack of com-
pactness, and tends to it asymptotically at large EP2~ ~.

Figures 5(b) and 5(c) are representative of a second-
order phase transition. The increasing energy P„~ of the
mixed bond enhances the adsorption of A when AP2~ ~ is
large and negative. However, when the condensation of
B is approached, its presence on the substrate inhibits the
condensation of A in a similar way as in the case of first-
order transitions. The deviation of EP2~ ~ from the ideal
value decreases with decreasing AP (or increasing tem-
perature).
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FIG. 5. Solid line: supersaturation of the step Ap&D & (or
inAection point in the case of second-order transition), of the
coadsorption isotherms, vs supersaturation of B, Ap2D &.
Dashed line: ideal case {see text). The crosses designate couples
of variables {hp» &, b p,*D „)already represented in the preced-
ing figures, the numbers of which are visible.

III. COMPUTER SIMULATIQN

The model used in the mean-field approach to coad-
sorption, and discussed in the preceding sections, that of
localized adsorption and first-nearest-neighbor interac-

tion, served also for the simulation of equilibrium in the
same systems. We used the simplified Monte Carlo pro-
cedure proposed long ago by Abraham and White, ' and
since successfully applied to many problems of surface
structure, ' nucleation, ' and growth' of a crystal. By its
very principle, this procedure results in the determination
of equilibrium coverages or surface roughness, at
different temperatures and super saturations, close to
those issued from the exact solutions (when available) of
the Ising model. Just as in the Ising model, the simula-
tion generally moderates some of the exaggerated tenden-
cy of the mean-field approximation to find first-order
phase transitions in too numerous cases.

The experimental points of Figs. 1 —4 result from the
simulation of the coadsorption of A and B in the same
conditions, with respect to binding energies, temperature,
and supersaturation, as the theoretical curves. To give an
idea on the statistical reliability of these results, one must
stress, first, that each point is the result of 5 X 10 success-
ful Monte Carlo events (a total of 2 X 10 to 5 X 10 events
per point). Furthermore, it has been established that the
model of 200 adsorption sites is the smallest substrate for
which finite-size effects can be neglected.

A few remarks can be made regarding the fit between
mean-field approach and simulation: (a) the simulation
confirms qualitatively the general trends of the isotherms
obtained from the solutions of Eqs. (11); (b) an almost
perfect fit is observed for ideal two-dimensional mixtures
[when 6/=0, cf. Fig. 4(a)]; (c) both discontinuities and
drastic changes in the degrees of coverage 6~ and 6~, so
common in the mean-field approach, are attenuated by
simulation; so are the maxima of 6& preceding condensa-
tion [Figs. 1(a), 1(b), and 2], and the totality of the first-
order transitions [Figs. 1(c), 2, 3(c), and 4(b)], as well as
the condensation of a pure A layer represented, for com-
parison, in Fig. 1(a); (d) the latter statement does not
mean that first-order two-dimensional condensation, or
demixing of two-dimensional alloys, cannot be observed
by simulation; the main point is that if one wishes to
simulate adsorption at higher values of the energies P„„
or Pii~, i.e., at temperatures far below the two-
dimensional critical temperature T„ the efficiency of the
Monte Carlo events drops dramatically and computer
times become prohibitive; (e) as a consequence of the
"smoothing" of the phase transitions, the simulation re-
sults in higher 6~ values before, and lower 6~ values
after the transformatio~ takes place, compared to the
mean-field isotherms; conversely, when the component B
is dominant before the transition [Figs. 3(a)—4(b)], the 6&
values are overestimated by the mean-field approach be-
fore the transition, and underestimated after it, with
respect to the simulation data; and (f) when the com-
ponent 8 is in the state of undersaturation (bp2D ii (0)
and forms, before the transition takes place, a two-.
dimensional gas only, and when the interaction energy of
the mixed bond P„ii is high, the degrees of coverage 6„
and 6& obtained by simulation are both initially higher
than those expected by the mean-field approach, as seen
in Fig. 1, and especially in Fig. 2, where the strong in-
teraction between the two-dimensional gases A and B
doubles their respective .coverages.
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IV. CONCLUSION

The realm of the two-dimensional binary phases, from
extremely diluted gases to fully compact crystals, corn-
mensurable or not with the substrate, exhibits a great
variety of phase transitions and continuous changes in
the partial and total degrees of coverage of its surface.
The physics of these systems is, therefore, richer than
that of three-dimensional binary alloys or of their two-
dimensional extension, the compact thin films.

From a thermodynamic point of view, the fact that the
very existence of two-dimensional phases is due to the
presence of a substrate is reAected by the introduction of
more variables of state, such as surface area or spreading
pressure. Thus the number of phases in equilibrium in-
creases according to the Gibbs phase rule. Furthermore,
relatively small variations of the absolute values of the
pressure in the three-dimensional gas phase can result in
large changes of the spreading pressure of the two-
dimensional layer. In the case of adsorption of krypton
on graphite at 77 K, for example, the equilibrium vapor
pressure varies, between the formation of the first and of
the second condensed layers, from 5X10 to 5.5X10
Torr, i.e., by some 733 dyn/cm . In the same time the
spreading pressure of the first layer changes from zero to
47.3 dyn/cm. If one takes into account that the spread-
ing pressure is exerted parallel to the substrate on a film
of 4 A thickness, the latter value is equivalent to a three-
dimensional pressure of some 1.2 X 10 dyn/cm, or 1167
atm. It is, therefore, comprehensible that two-
dimensional phase transitions, such as commensurate to
incommensurate crystal, or melting, can be easily studied
at constant temperature and by small external pressure
variations, whereas the same studies on three-
dimensional phases require high-pressure equipment.

Another important distinction of the physisorbed two-
dimensional phases resides in their high rate of molecular
exchange with the surrounding three-dimensional medi-
um. Three-dimensional phases exchange molecules with
the medium only through their surfaces. Since, by in-
creasing dimensions, the number of molecules on the sur-
face, compared to that in the volume, becomes rapidly
negligible, and also volume diffusion in the solid state is
extremely slow, the thermodynamic state of the medium
(e.g. , the partial vapor pressures of the components) is of
no importance for the equilibrium and the possible phase
transitions of an alloy; they are a function of the tempera-
ture only.

The situation is radically different when reversible
(physisorbed) two-dimensional phases are concerned. A
condensed layer exchanges molecules simultaneously
through its "surface" (i.e. , the ledges of the two-
dimensional "islands" ) toward the two-dimensional gas,
and directly from its "volume" (i.e., the interior of the
same "islands" ) toward the three-dimensional medium.
For this reason, the response of a two-dimensional phase
to any variation in the state of its three-dimensional envi-
ronment is quasi-immediate.

The above considerations indicate that, as far as two-
dimensional phases are concerned, neither wetting and
displacement, nor phase transformations in multicom-
ponent systems, can be studied in detail without the exact
knowledge of the equilibrium pressures of all adsorption
partners.
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