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Dynamical conductivity of a quantum-wire superlattice
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The dynamical current response of a multiple-quantum-wire superlattice to a time-oscillatory
external electric field is examined using Kubo s linear-response theory. Couplings of the quasi-one-

dimensional electron gases with phonons (polar optic, and acoustic deformation potential) are dis-

cussed to lowest order in terms of a current-current correlation function which embodies both in-

trawire and interwire electron-electron Coulomb interactions. The associated dynamic screening of
the electron-phonon interaction is approximated by employing the random-phase-approximation
density-density correlation function for the interacting electrons of the quantum-wire superlattice.
The frequency-dependent conductivity of this system is evaluated numerically, exhibiting its varia-

tions with temperature and geometrical superlattice parameters.

I. MODEL II. WAVE FUNCTION AND HAMII. TONIAN

In a quasi-one-dimensional electronic system, the
motion of the conduction electrons is quantized in two
directions, say x and y, while they move freely in the z
direction. The quantum-wire superlattice which we con-
sider is composed of an infinite periodic two-dimensional
array of such quasi-one-dimensional (quasi-1D) electronic
conductors, with all the wires parallel to the z direction.
Recent studies of such systems have explored their elec-
tronic response, ' collective excitations, as well as
linear and hot-electron transport properties. In this pa-
per, our interest is focused on the high-frequency trans-
port of a multiple-quantum-wire superlattice. Our treat-
ment in terms of Kubo linear-response theory for dynam-
ic perturbations is equivalent to the memory-function ap-
proach and the balance-equation approach, all of which
have been employed recently in the analysis of high-
frequency conduction for quasi-2D heterostructures and
superlattices, and are readily extended to the quasi-1D
superlattice.

We consider an infinite 2D array of cylindrical wires
along the z direction, with complete confinement of elec-
tronic motion within the cylindrical quantum wells
(linear electron density no), neglecting tunneling of the
electrons between the wires. However, electrons on
different wires interact via their Coulomb potential, as do
electrons within a given wire. Transport of electrons un-
der an applied electric field E(t) =zEO exp( icot ) is lim-—
ited by electron-phonon scattering which is dynamically
screened by the ID electron-gas superlattice. We assume
that the electrons occupy the lowest subband only, which
is parabolic with effective mass m and charge e. Further-
more, we neglect the difference of the background dielec-
tric constant in the quantum wells from that of adjoining
regions, so that image potential contributions are ig-
nored.

(r, z) =L '~ e ' g(r —8 ),

where g(r ) =0 outside the wire r ) ro. Note that 2D vec-
tors are designated by overhead bars, r = (x,y) and
r=~rt while 3D vectors are decomposed as r=(r, z),
with ~r~ =(r +z )' . The energy eigenvalues corre-
sponding to the eigenstates of (1) are

ck =k~ /2%i + E,o .

co denotes the bottom of the lowest subband, which is set
to zero henceforth. The unperturbed Hamiltonian in the
present model may be written as

H =H, +H„),+H,

where the electronic part is given by

H, =g f d r pe(r)
R 2m yz~ R-(r)

+
2 g f d r fd r'gz(r)P"—,(r')

R,R'

X V(r —r')g~, (r')P~ (r) .

Expanding the electron field operator g~(r) in the eigen-
states of (1), e.g., gz(r)= g Pzz (r,z)c~~z, we obtain

k, o.

The quantum wires of radius ro, are centered at the 2D
lattice sites R =n, ax+n2by for a rectangular 2D lattice
(ni, n2 are integers). We take the electronic wave func-
tion to have the form (L is a normalization length; also
fi=ktt =1 here)

H= g e„c— c— +—1

e z Rk o Rk o
R, k, o. R, R

~XX (~. )craik +, -'tt kq —
q
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where czar (czk ) is the creation (destruction) operator for an electron with wave number k„spin o. , on the quantum

wire centered at lattice site R. The matrix element of the electron-electron Coulomb potential in (5) is given by

2e
Vg g (e, )= fd'r f d'r'&o(e, lr —«'l)IP» —&)I'IP»' —& ')I'. (6)

Here Ko(q, ~r r—'~) is the zeroth-order modified Bessel
function of the second kind, which is characteristic of the
one-dimensional Fourier transform of the electron-
electron Coulomb interaction potential. ~ is the back-
ground dielectric constant.

H h in (3) is the free-phonon Hamiltonian of the bulk
system, which we take in the 30 plane-wave representa-

tion, wave vector q, branch index A, , and frequency 0, &.

Hph =X Qqi.bqi, bqi. .
q, A,

b ~& and b & are phonon creation and annihilation opera-
tors, respectively. The electron-phonon interaction Ham-
iltonian H, h in the present case takes the form

H, ~h= g f d r gz (r)Pz (r)QM(q, A, )e 'q'(b i +b t
& )

q, A,

=g M(q, k)I(iq)(b i +b i ) g cg~ „+ c~ „e
q, A, R,k, , cr

where M(q, A, ) is the electron-phonon coupling matrix
element, and I(icI ) = f d r ~g(r ) ~

e ~ " is a form factor
associated with the confined motion of the electrons.

III. DYNAMIC CQNDUCTIVITY

The frequency-dependent conductivity of Kubo linear-
response theory is usually written in the form'

cr(co) =in oe /mco+i II(co)/co,

and the current-current correlation function II(co) is ex-
pressed in terms of the equilibrium thermodynamic
Green's function

II(ico,)= —f d7 e " (V',[j(r)j(0)]), (10)

where P= 1/T is the inverse temperature, and V', is the
imaginary time-ordering operator. Our analysis follows
standard procedures, ' save for the appearance of a form
factor associated with the electron confinement to the
wires, whence

2

II(ico )= — g ~M(q, A)~ ~I(iq)~ ci, gg(q, ico—)[D' '(ico ico ) D' '(—ico )—] . —
IM Q, A, V

The free-phonon propagator D' '(i co„) is given by

D ' '(i co„)= —2Q i /( co„+Qqi ), (12)

and y(q, ico„) is the electron density-density correlation function for the quantum-wire superlattice. ' The frequency
summation is performed with the usual contour integral, taking account of the poles of D' '(ico —z) at z =ico„Qqi„
poles of D' '( —z) at z =+Q i, and the branch cut of y(q, z) on the real z axis. Forming the analytic continuation of the
resulting expression (i co„~

co+i'�

), we obtain the retarded current-current correlation function as
2'» g IM(q, ~) I' II(iq }I' q.'{X(q,~+Qqi. }[n~(Qq, }—n~(~+ Qq, )]

nlCO q

II(co)=—

X I Imp(q Qqi, +co)[nz(Qqi, } nz(Qqi+co)]+Imp(q co
Qqi )[nii(Qqi ) nii(Qq& co)]]

+y(q, co Q i )[nii—(Qq&) nii(Qqi —co)]I, — (13)

where nii(x) = [ exp(x /T) 1] is the Bose-E—instein statistical factor. The real part of the conductivity is obtained us-
ing (9}and (13),

2

Reo (co)= g ~M(q, A, ) ~ )I(iq )
~ q,mco &~
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IV. DENSITY-DENSITY CORRELATION FUNCTION

The electron density-density correlation function y(q, co) for the quantum-wire superlattice under consideration may
be expressed in a form which takes advantage of the periodic translational invariance in the transverse plane

y(q, co)= g e'~' 'g(R, R ', q„co),
R, R'

where y(R, R ', q„co) is the Fourier transform of the retarded function,

g(R, R,q, r) = le(r) y. & [c,-'. . .(r)c,„.(r-), c,-',„, (0)c-,„, (0)])
k, , k,', o.

(15)

(16)

g(R, R ', q„co)=6& ~,g' '(q„co), (17)

where the 1D noninteracting density-density correlation
function is

(18)

The average ( ) here is that of the equilibrium ensemble
for the interacting electrons characterized by the Hamil-
tonian H„at temperature T. [6(t) is the Heaviside unit
step function. ] In the absence of Coulomb interaction
only those electrons on the same wire contribute to the
density-density correlation function in accordance with V(q, q, )=(4~e /aA, )g ~I(iq+iG )

~

G [(q+G) +q, j
(21)

This expression is more convenient for our present pur-
pose, since it involves the form factor I(iq+iG), and
bears some resemblance to the Fourier coefFicient of the
3D Coulomb potential.

=g~ V~o(q, ) exp( iq R—). As an alternative to this
direct lattice sum, V(q, q, ) can also be expressed as the
sum over reciprocal lattice vectors G in the form'2 ( A, is
the area of the unit cell)

V——„(q, )y(R ",R ', q„co) .
R"

(19)

Here, V——,(q, ) is the matrix element of the Coulomb po-
tential given in Eq. (6). Taking advantage of the periodic
translational invariance of the infinite two-dimensional
lattice 8, and noticing that quantities such as
g(R, R ', q„co) and V~ z,(q, ) must have the form

y(R —R 'q„co) and Vz z, (q, ) for positional arguments
on the wires, one may Fourier transform (19) in the trans-
verse plane R —R '~q to achieve an algebraic equation
which is readily solved as

where f (E)= [ exp[(e —p)/T]+ 1I ' is the Fermi-Dirac
distribution function, and p is the chemical potential,
which is determined at a given temperature by its relation
to the fixed electron line density no=pi, f(Ei, ).

Both intrawire and interwire electron-electron interac-
tions can be easily incorporated in the random-phase ap-
proximation (RPA). The RPA integral equation for
gf R,R ', q„co ) is given by

y(R, R ', q„co)=5g~,y' '(q„co)

+y"'(q„co)

V. CALCULATIONAL CONSIDERATIONS
AND DISCUSSION

I(iq)= exp( qro/4) . — (23)

This expression describes Eq. (22) quite well, particularly
for small values of qro. Both (22) and (23) give the value
1 for qro =0; however, for large values of qro, (23) falls off
to zero faster than (22). In our numerical calculations we
use the Gaussian approximation which leads to [Io(x) is
the modified Bessel function of the first kind]

In order to bring the formulation above to bear on
specific conductivity calculations, it is necessary to speci-
fy the transverse envelope wave function g(r ) and its as-
sociated form factor I(iq). For our model of a cylindri-
cal quantum well with infinite barrier wall, the solution
of the Schrodinger equation is a Bessel function:
g(r ) =(1.92/&acro)JO(2 4r/ro) wh. en r (ro, and g(r ) =0
otherwise. The corresponding form factor is

I(iq)=7. 37f dx x[Jo(2.4x)] Jo(qrox) . (22)

As an alternative, one may approximate the en-
velope wave function by a Gaussian: g(r )
=(~ro) '~ exp( —r /2ro), provided r/ro is small, and
then the form factor takes the simple form'

X(q, q. , ~)=X"'(q.,~)/[1 V(q, q. )X'"(q, ~)—l . (20)
V—0(q, )=(2e /icro) exp( —R /2ro)

The Fourier coefficients' in (20) are defined for an arbi-
trary function g(R ), asg(R)=(1/Iii)g g(q)e'~ ~, where'
% is the total number of lattice points, equal to the
total number of wires. Thus V(q, q, ) is given by the in-
verse Fourier transform of (6), V(q, q, )

X I dr r exp( —r /2ro )Ko(qr)IO(Rr /r 0 ) .
0

(24)

Using Eqs. (14), (20), (23), and (24), we evaluated the
real part of the high-frequency conductivity employing
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the temperature-dependent density-density correlation
function y' '(q„co) as given by Eq. (18) in Eq. (20) along
with the self-consistently determined chemical potential
p=p(T, no). For scattering mechanisms, the electrons
are taken to interact with longitudinal polar optic
phonons through Frohlich coupling ~M(q, l ) ~

=(2me /~q~ )(I/a —I/a)QO, and they interact with
acoustic phonons with longitudinal deformation potential
coupling ~M(q, l)( =0 ~q~/2du, &, with Qqi= ~q~u, &. Here
~„ is the optical dielectric constant, ~ the static dielectric
constant, 8 the deformation potential, d the mass density
of the lattice, and v, i the longitudinal sound velocity. For
polar optic phonons we consider Qq&=DO to be a con-
stant. Numerical values of the above quantities are taken
here to be those pertaining to a bulk GaAs semiconduc-
tor, x„=10.8, ~=12.9, 00=35.4 meV, 0=8.5 eV,
d =S.31 g/cm, U,&=5.29X103 m/s, electron efFective
mass I =0.07mo (mo is the free-electron mass), and the
electron density used is no=1X10 m ' per wire. For
simplicity we only consider a 20 square lattice with lat-
tice constant a. Our numerical calculations are focused
on the inverse relaxation time r '(ro) rather than
Reo(co). Within the framework of this high-frequency
analysis, they are related simply as I /~(co)
=(mcozlnoez)Rea(co). Within the Born approximation
for scattering interactions, contributions to the inverse
relaxation time by the various phonon branches are addi-
tive and we examine the polar optic phonons and acous-
tic phonons separately.

In Fig. 1 we plot v '(co) due to polar optic phonon
scattering as a function of frequency at temperatures
T=20, 77, 150, and 300 K, with ra=50 A and a = 150
0
A. Resonant excitations of polar optic phonons by the
frequency-dependent external field are evident. At low
temperatures the phonon frequency Qo serves as a thresh-
old, below which the inverse relaxation time approaches

zero. Note that 1/r(co) does not peak at Qo, but rather
peaks at a frequency somewhat above Qo. This shift to-
ward higher frequency is more pronounced at lower tem-
perature. It seems likely that this indicates a possible
mixing of the phonon frequency with a collective electron
mode. The latter may be roughly estimated by using the
"bulk" plasma frequency for the quantum-wire superlat-
tice at co =(4mnoe /a. ma )' =0.73QO, leading to a cou-
pled mode frequency (coz+Qo)' =1.2QO. The actual
plasmon spectrum, however, is more complicated, with
plasma frequencies ranging continuously from the
above-mentioned 3D plasma frequency for wave vectors
parallel to the axes of the wires, to zero for wave vectors
perpendicular to the axes of the wires, neglecting higher
subband excitations. " In the absence of phonon scatter-
ings superlattice plasmons alone contribute a broad max-
imum, centered about co, in the optical-absorption spec-
trum. It is reasonable, therefore, to expect that any mix-
ing of the optical-phonon mode with plasma excitations
will primarily involve the bulk plasmon, which is prefer-
entially excited in the close-packing, high-density limit.
Similar circumstances in the case of closely packed 2D
planar superlattices have been discussed extensively in
connection with high-frequency transport. ' Such a
close-packed, high-density limit is elusive analytically in
the treatment of a multiple-quantum-wire superlattice,
due to the singular behavior of the 1D Fourier com-
ponent of the electron-electron Coulomb potential. '

However, following earlier work, ' we treat this matter
by maintaining a finite wire radius and finite (if small)
wire separation numerically.

To investigate the specific role played by the electron-
electron interaction, we have recalculated the inverse re-
laxation time in the absence of all Coulomb interactions
(both intrawire and interwire). This is shown in Fig. 2,

CA

R

1.0 1.5

0.0 0.5 N I.S 2.0 2.5

FIG. 1. Plot of 1/~(co) due to polar optic-phonon scattering
vs normalized frequency co/4EF at various temperatures. Curve
1, T=20 K; curve 2, T=77 K; curve 3, T=150 K; curve 4,
T=300 K. Also, ro=50 A, and a =150 A. The arrow indi-
cates the optic-phonon frequency Qo.

FIG. 2. 1/v. (co) due to polar optic-phonon scattering as a
function of normalized frequency co/4EF, at various tempera-
tures in the absence of Coulomb interactions. Curve 1, T =20
K; curve 2, T =77 K; curve 3, T =150 K; curve 4, T =300 K.

0 0
Also, ro =50 A and a = 150 A. The arrow indicates the position
of Qo.
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O

A. Transition from the near-bulk close-packed limit to
0

the single-wire limit is clearly shown. %"ith a —40 A and
r0=20 A, the superlattice resembles a bulk material,
whose optical conductivity is similar to its counterpart in
a bulk semiconductor. ' On the other hand, at ro =20 A

0
and a =200 A, we can safely say that the system is in the
single-wire limit, and 1/r(co) corresponds to the inverse
relaxation time for a single quantum wire, with intrawire
Coulomb interaction. It is also of interest to study the
dependence of the high-frequency conductivity upon the
radius of the wire. This is shown in Fig. 5, where I /r(co)
is plotted as a function of frequency, for a fixed tempera-
ture T=77 K. The set of parameters ro and a are

O

changed in about the same proportion: ro =20 A, a =50
A; ra=50 A, a= 150 A; ro= 100 A, a =250 A; ro=200
A, a =500 A. Two effects are in evidence as ro becomes
larger while keeping ro/a fixed: (1) the inverse relaxation
time decreases, and (2) the maximum value of 1/r(co)
moves toward lower frequency. The first effect is mainly
a consequence of the presence of the form factor ~I(iq )

~

in the expression of the conductivity, which becomes ex-
ponentially smaller as ro is increased. The shift of the
maximum value of 1/r(co) toward lower frequency is pri-
marily due to the increase of the lattice constant a, lead-
ing to a reduced plasma frequency co~ (increasing a is
equivalent to decreasing the bulk carrier density).

In conclusion, we have calculated the high-frequency
conductivity for a multiple-quantum-wire superlattice,
treating phonon scattering in the Born approximation.
The electron-electron interaction (both intrawire and in-

terwire) is fully incorporated within the random-phase
approximation, which serves to screen the electron-
phonon interaction dynamically. The results of our nu-
merical evaluation of the frequency-dependent inverse re-
laxation time exhibit threshold and resonance behavior,
which we have interpreted in terms of coupled optic-
phonon —plasmon excitations for the quantum-wire su-
perlattice. Our examination includes various tempera-
tures, and superlattice geometrical parameters, such as
the radius of the wire and the separation between wires.
The limits of nearly bulk behavior and single-wire behav-
ior are clearly exhibited upon varying the geometrical pa-
rameters. It is also shown that acoustic-phonon scatter-
ing is always less effective (by a factor of —10) than
optical-phonon scattering at all temperatures considered.
Finally, we should point out that, in the present treat-
ment, occupation of higher subbands and the associated
intersubband transitions' are neglected. Another simpli-
fication employed is the infinite barrier cylindrical
potential-mell model. As information about the
confinement and subband structure of quasi-one-
dimensional semiconductor quantum-wire superlattices is
further developed, the present study should be refined to
address these points.
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