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Envelope-function formalism for phonons in heterostructures

Hiroshi Akera and Tsuneya Ando
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato ku-, Tokyo 106, Japan

(Received 16 November 1988; revised manuscript received 17 April 1989)

An envelope-function formalism analogous to the effective-mass theory for electrons is developed
to treat long-wavelength phonons in semiconductor heterostructures. It consists of a set of
differential equations for phonon envelope functions and their boundary conditions at interfaces.
For acoustic phonons the present theory becomes equivalent to the elasticity theory. For optical
phonons there are two cases to which our formalism is applicable. In the first case, in which the
bulk optical bands of constituent materials overlap considerably, as in InAs/GaSb and GaAs/Ge,
the boundary conditions are written in the form of linear relations among envelopes and their
derivatives on both sides of the interface. The boundary conditions strongly depend not only on the
materials but also on the atomic configuration at interfaces. In the second case, where there is a
large gap between the bulk optical branches, as in GaAs/A1As, the boundary conditions that the en-

velopes should vanish at interfaces are generally appropriate.

I. INTRODUCTION

The nature of optical phonons is strongly modified in
semiconductor heterostructures such as quantum wells
and superlattices. ' Some phonons are confined in one of
the layers, and some are localized around the interface.
The purpose of this paper is to construct a continuum
formalism for optical phonons in heterostructures that
properly describes the boundary conditions at the inter-
face.

Our formalism is an extension of the effective-mass
theory for electrons to the phonon problem. The
effective-mass formalism is, although quite simple, a
well-established and powerful method for describing elec-
tron motions in the vicinity of band extrema. Although
there are many other methods for the calculation of band
structure, such as the first-principles calculation, the
empirical pseudopotential method, and the tight-binding
model, their complexity prevents wide application, in-
cluding calculations of effects of electron-phonon interac-
tions, leading to the present situation that the effective-
mass formalism still remains the most widely used
method. Our formalism for phonons aims at this kind of
usefulness, especially in the calculation of the electron-
phonon interaction.

Another feature of our formalism is to describe the be-
havior of phonon modes in the vicinity of an interface as
a compact boundary condition. In this respect it is useful
to refer to the studies on the connection rule of electron
envelope functions in the effective-mass theory. ' It
has been known that the so-called envelope-function ap-
proximation works surprisingly well in heterostructures
consisting of GaAs and A1As. In the envelope-function
approximation, the envelope itself is continuous, but its
derivative is discontinuous in such a way that the current
conservation is satisfied across the interface. However,
this approximation is not necessarily applicable to the
other heterostructures. To express the general connec-
tion rule, the interface matrix has been introduced.

Consider the interface at z =0 of two semiconductors A
(z (0) and B (z) 0). The connection rule for electrons
in a single-band minimum is generally expressed as the
following linear equations for envelopes g and their
derivatives:

Pa

Vg~ ~" Vgq

where Tts„=(t/ ) is a 2 X 2 interface matrix and
V = (a /4)(B/Bz ), with a the lattice constant
[V=a (B/Bz) in Ref. 3]. The envelope-function approxi-
mation corresponds to the interface matrix given by
ti& = 1 fi2=t2i =0 and tp2 =ply/mz, where mz and

m~ are the effective masses. The interface matrix
expresses an effect of the interface by specifying a condi-
tion for the behavior of wave functions sufficiently away
from the interface. Also, in the case of phonons the cal-
culation of such an interface matrix can serve for the un-
derstanding of the effect of the existence of an interface
on the behavior of phonon modes.

It is worthwhile to briefly review the existing methods
for the calculation of phonon eigenmodes to clarify the
standing of our formalism. The most standard method is
to solve the equations of motion for the displacements of
atoms by diagonalizing the dynamical matrix. Several
authors have calculated phonon modes in superlattices
within a linear-chain model. " ' This model can only
describe phonon modes of perpendicular propagation,
i.e., modes whose wave vectors are perpendicular to in-
terfaces. Recently, the calculation was extended to pho-
nons of nonperpendicular propagation, using the shel1
model' and the rigid-ion model. ' '

However, the results of such calculations are not useful
for investigation of the Frohlich-type electron-phonon in-
teraction, because phonon modes are expressed by dis-
placements of each atom. If we are to calculate the ma-
trix elements of the Frohlich Hamiltonian within the
effective-mass theory, we need the polarization P(r) due

40 2914 1989 The American Physical Society



ENVELOPE-FUNCTION FORMALISM FOR PHONONS IN. . . 2915

to optical phonons as a continuous function of spatial
coordinate r. Since long-wavelength optical phonons
make a main contribution to the Frohlich interaction, a
continuum model is highly required.

The dielectric continuum model has been widely used
in heterostructures' and slabs. The phonons in
this model are the Einstein modes coupled only by
dipole-dipole interactions. The model neglects the short-
range interactions between the modes, leading to the re-
sult that frequencies of all modes in heterostructures are
degenerate at bulk values of zero wave number, except
the Fuchs-Kliewer modes. The Fuchs-Kliewer modes,
for example, in superlattices exhibit a characteristic an-
gular dispersion at the I point, i.e., the dependence of
frequency on the direction of wave vector, due to the an-
isotropy of the macroscopic electric field produced by the
polarization.

There have been some attempts to generalize the
dielectric continuum model so as to take into account
effects of the dispersion and the boundary condition.
Mills investigated longitudinal-optical (LO) phonons of
perpendicular propagation in depletion layers on semi-
conductor surfaces, assuming that the envelope, i.e., the
relative displacement of a cation and an anion in a unit
cell, has a vanishing derivative at the surface. Babiker
proposed an isotropic model for LO phon ons in
GaAs/Al& „Ga As alloy heterostructures. In this mod-
el, he used hydrodynamic boundary conditions at inter-
faces, which neglect mixings of LO and TO (transverse
optical) modes completely. Quite recently, Chu, Ren,
and Chang combined a linear-chain model with the
dielectric continuum model in order to describe the angu-
lar dispersion of optical phonons at the I point in
GaAs/AIAs superlattices.

In the present paper we construct a more complete
continuum model for long-wavelength phonons in hetero-
structures, starting with lattice dynamics. Phonons are
described by envelopes that are a vector with three com-
ponents corresponding to x, y, and z displacements and
that satisfy a set of coupled differential equations. Effects
of an interface are taken into account in the form of
boundary conditions for these envelopes. The boundary
conditions are derived from the equations of motion near
the interface. For acoustic modes, the boundary condi-
tions turn out to be equivalent to those of the elasticity
theory, as might be expected, i.e., that the displacement
and the stress should be continuous across the interface.
In the case of optical modes, there is always a difference
in bulk frequencies at zero wave number of the constitu-
ent semiconductors, which produces a steplike "poten-
tial" corresponding to band offsets for electrons. The
present envelope-function formalism is applicable to the
following two cases: the case that this band offset is
much smaller than the bandwidth in the bulk, and the
case that it is sufficiently larger than the bandwidth. In
the former case, displacements in both sides of the inter-
face are well described by envelopes, and the boundary
conditions are expressed by a 6 X 6 interface matrix. Typ-
ical examples are InAs/GaSb and GaAs/Ge heterostruc-
tures. In the latter case, whose most typical example is
GaAs/A1As, phonons are well confined in each material,

and appropriate boundary conditions for envelopes are
sqch that they should vanish on a certain plane parallel
to the interface.

The organization of the present paper is as follows.
First, we consider the case that envelopes can be defined
at the same time in both sides of an interface. In Sec. II
the envelope-function formalism is derived, as an illustra-
tion, in a simple linear-chain model. The envelope
functions for acoustic and optical modes are defined, and
the differential equations and interface matrices are de-
rived. In Sec. III the formalism is generalized to optical
phonons with the wave vector in arbitrary directions. To
obtain explicit results, a simple valence-force-field model
is used, although the calculation using more refined mod-
els is straightforward. In spite of its simplicity, the
valence-force-field model reproduces the observed bulk
dispersion relation well. In Sec. IV the present formalism
is applied to InAs/GaSb and GaAs/Ge superlattices, and
the results are compared with those by the dielectric con-
tinuum model. Next, optical phonons in GaAs/A1As
systems are discussed, and the boundary conditions are
derived in Sec. V. The summary and conclusions are
given in Sec. VI.

The envelope-function formalism can be extended to
various other cases. The formalism for the modes near
the Brillouin-zone boundary along the [001] direction (X
point) is given in Appendix A, and the connection rules
for the GaAs heterostructure, in which one Ga atomic
plane is replaced by an Al or In plane, are given in Ap-
pendix B. In Appendix C the conditions for interface
matrices are obtained from the energy-conservation law.
In Appendix D some symmetry relations of interface ma-
trices are derived. In Appendix E the explicit results are
presented for zinc-blende structure with use of the
valence-force-field model. In Appendix F the procedure
is given for the calculation of interface matrices in the
presence of second-neighbor forces.

II. LINEAR-CHAIN MODEL

A. Di8'erential equation in the bulk

Modes with wave vector parallel to the [001] crystal
axis of zinc-blende structure can be described by the
linear-chain model shown in Fig. 1. There are two atoms
in a unit cell: a cation (positive ion) and an anion (nega-
tive ion) whose masses are denoted M, and M„respec-
tively. The distance a0 between adjacent atomic planes is
a /4, where a is the lattice constant. We choose the z axis
along the chain direction and the other axes x, y, g, and g
along [100], [010], [110],and [110]crystal axes, respec-
tively, as defined in Fig. 2. We denote modes with dis-
placements along each of the g, g, and z directions by g,
g, and z modes, respectively. The z modes are longitudi-
nal, and the others are transverse. They are decoupled
from each other due to the reAection symmetry of the
zinc-blende structure. We restrict ourselves to nearest-
neighbor forces in this section, and the effects of long-
range Coulomb forces are discussed in the next section.
For z modes, the force constants f, and f2 in Fig. 1 are
the same, whereas they are diff'erent for g and g modes.
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FIG. 2. Definition of axes. Top view from [001].

These force constants are expressed in Appendix E by the
valence-force-field parameters introduced in Sec. IIIB.
%"e consider here modes near the I point and those near
the X point in Appendix A.

We start with the dynamical matrix for the bulk crys-
tal. Consider modes with displacements

u, (z„)=u, (k)e
(2.1)

u, (z )=u, (k)e

(M )' u, (k)

(M, )' u, (k),

'(M )'"u, (k)
2

(M. )'"u. (k) (2.2)

The dynamical matrix D„ is given by

for a cation at z„and an anion at z, where z„=nao.
The dynamical equation is

COTg
D„(k)=

r +r
rm

—[Fe '+(1 F)e ]—
—[Fe '+ ( 1 F)e '—]

—1
rm

(2.3)

with

fi+f2
roTo M ~ F f +f ~ "m

Ma
(2.4)

where M„ is the reduced mass given by
M, M, /(M, +M, ). Any eigenvector is expressed as a
linear combination of two eigenvectors at k =0:

(M )' u, (k)

(M. )'"u. (k)

1 r w (k)
—1 w (k)13

(2.5)

where X=(1+r )'~ . In the long-wavelength limit the
dynamical matrix for the expansion coefficients w (k)
and w&(k) is

where

r+ =r +r —I (2.7)

iI)„(k)

wp(k) ((i,p(k)

w (k)
(2.8)

where the requirement that the terms linear in kao vanish
in e D e gives

Here we have retained the terms up to the second order
of kao for diagonal elements and those up to the first or-
der for o5'-diagonal elements. The above matrix corre-
sponds to the k.p Hamiltonian in the electron problem.
The k.p terms disappear for z modes since f, =f2.

To diagonalize D„(k), we perform the following uni-
tary transformation:

D (k)=

I
(kac)

r+
(2F —1)ikao

CO

(2.6)
"+ —(2F —1)ikac r+ — (kac)

+

0

yikao

yikao

0 (2.9)

with y =(2F —1)/r+. The diagonalized Hamiltonian is

1
[1—(2F —1) ](kac)

~TO +r
D~(k)=

r+ r+ — [1—(2F —1) ](kac)
1 (2.10)
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In the real-space representation we obtain second-
order differential equations:

and

co U (z) = —aoV U (z) (2.11)

(co —coro)u (z)= —a, V u (z),

with V =ac(B/r)z), where
2

COTp 2
CXp= A) = [1—(2F —1) ] .

I'

(2.12)

(2.13)

U( )z= [M,(1+r )] '~ P„(z)

1+~m
P,p(z) .u (z)=

(2.14)

The above differential equations correspond to the
effective-mass equation for electrons. The "effective
mass" is the same for acoustic and optical modes, except
the sign, and it is larger for transverse modes (FA —,

'
) than

for longitudinal modes (F= —,
' ). The relation between the

envelope functions and the di.splacements is

u, (k) 1 Pm

u, (k) 1 —r ' yikap

yikap 1 0 U(k)
0 r+' u(k)

(2.15)

The envelope functions U(z) and u(z) are those for
acoustic and optical modes, respectively, and are defined

by

—co M, zu, „(n)=—fzz[u, „(n)—u, z(n —1)]

fir [u,g (-ii) —u.a(ii + 1)],
—ni'Mga uga(ri +1)= —fii [usa(~ +1)—u, g(ri)]

(2.17)

value of the envelope function shows a downward (up-
ward) cusp at the interface because of a repulsive (attrac-
tive) potential. A localized interface mode always exists
when t2i is negative. When ~t2i ~

))1, the magnitude of
the envelope function is vanishingly small, except the
above localized mode. Next we consider the case that
t»At2z and t2, =0 to examine the role of t,z. The con-
nection rule can be expressed by using the envelope func-
tions at the displaced position z =zap. The interface ma-
trix is now modified to r jp riz+( r22 tii)e, with the
other elements unchanged. By choosing an appropriate
value of e, we can make t', 2 vanish, showing that the
effect of t, 2 is to change the interface position. When t, 2

is extremely large, however, the connection rule is such
that the derivative of the envelope function vanishes.

We consider the connection rule at the interface con-
sisting of a cation in A and an anion in 8 as shown in
Fig. 3. The connection rule for another atomic
configuration can be obtained using the symmetry rela-
tion described in Appendix D. We present the interface
matrices for modes near the X point in Appendix A and
those for the GaAs heterostructure in which all the Ga
atoms in a plane are replaced by Al or In in Appendix B.

The equations of motion in the vicinity of the interface
are

which reduces to U =u, =u, and u =u, —u, when
k =O.

B. Connection rule

Consider heterostructures in which the difference be-
tween the bulk frequencies at zero wave number of the
constituent materials is small compared to the width of
the band considered. The envelopes in both sides of an
interface satisfy a secon¹order differential equation. The
connection rule for such envelopes is in general expressed
by an interface matrix:

4a

Vg a~ Vg„~ a~ t2i t22
(2.16)

where V=ao(r)/Bz). The envelope function g(z) is U(z)
for acoustic modes and u (z) for optical modes. The in-
terface matrix must satisfy the condition of the energy
conservation described in Appendix C. The roles of t&&

and t22 are obvious: they connect the envelope functions
and their derivatives, respectively. The off-diagonal ele-
ments t» and t, 2 also have a clear meanie. g. Let us con-
sider the case that t» =t»=1 and t»=0. The effect of
t2, corresponds to the presence of the 5-function poten-
tial a, acts, 5(z) (i =0, 1) in the differential equations
(2.11) and (2.12), where a, is the prefactor in the disper-
sion term. When tz, is positive (negative), the absolute

fpa [uQa(ri —+1)—u,a(ii +2)],

fiI
fia fir fia—u,a(n)

u,a(n +1)

fiI —fi~
fir

u, „(n)
( +1) . (2 18)

M~~lA y~~pA g~~]I g~~2B g~ 18

n-2 n-1 n ) n+1 n+2 n+3
l

FIG. 3. Linear-chain model for a single heterostructure with

only first-neighbor force constants f, and f, .

where M, „and M,z are the masses of a cation in A and
an anion in 8, u, z and u,z are corresponding displace-
ments, and f2~, f,I, and f2a are the first-neighbor force
constants shown in Fig. 3. Taking the difference between
the above equations and those for the bulk, we get a rela-
tion between displacements:
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u, (n)

u, (n+1) (2.19)—r- y+-,' VU

for acoustic modes, and

The displacements are expressed in terms of the envelope
functions according to Eq. (2.15):

1 r ~ 2

u, (n)

u, (n +1) —1
rm

2rm
(2.20)

for optical modes, where r = (2F —1 ) /r + and
r+ =r +r —1

For acoustic modes, the interface matrix is obtained as

=0, (2.21)

1 rmB
12 2(1 ~ )

rArB
rmA

+2rA(& A
—

& A) 2r—B(& B
—

& B)
rmB

+ —1 ( ,' &Br-B—)+2f1A(f 1I' f1B')(—1 +A»—
I B 1 +B

(2.22)

(M,„+M,A )U„
t22 =

(M,B +M,B )UB
(2.23)

where U is the sound velocity for the mode considered.
When r =0 (z modes) and f1A =f,B

=f,~, we have
t&2=0. And, as will be shown in Table II, t&2 is smaller
than unity in the case of InAs/GaSb and GaAs/Ge inter-
faces, giving the change of interface position less than the
lattice constant. Therefore our connection rule is
equivalent to that of the elasticity theory: the displace-
ment and the stress are continuous across the interface.

Next, we discuss the connection rule for optical modes.
We present the formula of the interface matrix only for z
modes for which @=0:

f1 A —1 —1
TBA = TBAO+ 1 — TBA1+f1A (f 1B f 1r ) TBA2

1B

(2.24)

where

variety of lattice dynamics comes mainly from the
differences in the masses of ions. Neglecting the small
differences between force constants f, A, f,B, and f,I, we

get TBA
= TBA p. The key element t» in T» depends

strongly on the difference in the mass ratio M, /M, of the
two materials. As a matter of fact, we have t2&

—1 for
InAs( 2 )/GaSb(B) and t2, -0 for GaAs( 3 )/Ge(B).

Babiker proposed a connection rule for LO modes,
which corresponds to the interface matrix: t

& &

= 1,
t2( = t, 2 =0, and t22 =p„A UA /p„B UB, where p, is the2 2

reduce mass density and U is the sound velocity, and ap-
plied it to GaAs/Al& „Ga As alloy heterostructures.
This connection rule is analogous to that of the elasticity
theory and is the simplest one that satisfies the energy-
conservation law (Appendix C). However, our calcula-
tion shows that it is not in general valid, but may be appl-
icable to optical modes in GaAs/Ge heterostructures
(Sec. IV A) and some modes near the X point (Appendix
A).

"+B
TBAQ

r+A

—,'(R +R-') —,'(R

R —R '
—,'(R +R ') (2.25)

III. THREE-DIMENSIONAL LATTICE DYNAMICS

A. Differential equation and connection rule

+B
TBA1

r+A

r+B
TBA2

r+A

1

~r+ArmB

r+ A rmB

14r Ar
12"—A rmB

1~r —Ar+B

12r+Ar —B

r+ Ar+B

(2.26)
We now extend the formalism to optical phonons with

wave vector in arbitrary directions. As in the case of the
linear-chain model considered in the preceding section,
we derive the equation for the envelope function starting
from the dynamical matrix. The procedure is straightfor-
ward and the envelope, expressed by a vector
u=(u, u, u, ), now satisfies a matrix Schrodinger-type
equation, which in crystals with zinc-blende or cubic
symmetry takes the form

Here R =r B/r A, r+ =r +r ', and r =r —r
Most III-V compound semiconductors with zinc-blende
structure have almost same force constants, and the

(o1 —coro)u(k) =H (k)u(k),

with

(3.1)
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Ak +B(k +k, )

H(k) =coToao Ckyk„

Ck, k

Ck„k

Ak +B(k, +k )

Ck, k„

Ck k,

Ak, +B(k„+ky )

(3.2)

where A, B, and C are the parameters describing the
dispersion in the vicinity of the I point. There is a
correspondance with Eq. (2.12) in the linear-chain model
that a&= A for longitudinal modes and a, =B for trans-
verse modes.

The inclusion of long-range Coulomb forces causes a
complication because it gives rise to a term singular at
zero wave number in the dynamical matrix. This singu-
lar term corresponds to a macroscopic electric field due
to the polarization P(r) in the long-wavelength limit.
Apart from the singular term, other contributions from
the Coulomb forces (including the so-called local-field
correction} may be treated in a manner similar to the case
of short-range forces expressed in terms of force con-
stants, i.e., they just modify the parameters A, B, C, and

CANTO.

The inclusion of the macroscopic electric field intro-
duces two additional terms in the right-hand side of Eq.
(3.1) that cannot be expressed in the form of H(k). The
most important term is expressed as co~Su(k) with

k kk kk,
S= kk„k kk,=1 (3.3)

k
k,k„k,k k,

2 2 2 4mnZ e2 2

cop =cog o coTo t
IVf~E ~

(3.4)

where n is the density of ion pairs, Ze the effective charge
of a cation, and e the optical dielectric constant. This
term gives rise to the frequency splitting of LO and TO
phonons at the I point, which is the most important re-
sult of the long-range Coulomb interaction.

In addition to the splitting of LO and TO phonons, the
macroscopic electric field gives rise to a slight
modification of the dispersion, i.e., introduces the term
H'u(k) on the right-hand side of Eq. (3.1). We have

T

H'= —
—,'(I co»)' 1—,, (K'S+SK')a', ,

1

1+co~ /co To

with

(3.5)

0 k, k

K = k, 0 k.
k, k. 0

(3.6)

where I, corresponding to y in Eq. (2.9), is the parameter
which represents the mixing between acoustic and optical
modes, and is expressed by short-range force constants.
The corresponding singular term in acoustic branches

was discussed in connection with the piezoelectric
effect. ' Of course, H' does not contribute to transverse
modes. Further, contributions to longitudinal modes are
also not important. As a matter of fact, the valence-
force-field model introduced in Sec. III B shows that the
inclusion of H' increases the dispersion of longitudinal
modes with wave vector in the [111]direction by 10% for
InAs, 8% for GaAs, and 4% for GaSb. The increase is
somewhat smaller for modes with wave vector in the
[110]direction and completely absent for the [001] direc-
tion because KS =SK =0. In the following we neglect
H' since main effects of long-range Coulomb forces have
already been taken into account by the term copS.

In the real-space representation, we have

(co —co )u(r) =H i —u(r) — E(r),Ze
Br M„

(3 7)

where the macroscopic electric field E(r) is

E(r) = f dr', .P(r') /e„~ r —r' ~,
8
Br Br'

(3.8)

with the polarization vector P =nZeu.
It may help us understand the meaning of Eq. (3.7) to

consider, for example, a rigid-ion model in which interion
forces are described by a finite number of force constants
and fixed effective charges of cations and anions. In the
long-wavelength limit, optical vibration produces dipoles
at each lattice site with the same direction and magni-
tude. The conventional method to calculate forces acting
on an ion due to the dipoles is to consider an imaginary
sphere concentric with the reference ion whose radius is
much larger than the lattice constant but smaller than
the wavelength of phonons. Outside the sphere, the di-
poles are safely replaced by a polarization in continuum.
Since the macroscopic electric field E(r) expressed by Eq.
(3.8) is due to continuum polarization both outside and
inside the sphere, the total local electric field on the ion is
written as E&„=E+E„„,where the so-called local-field
correction E, „is the contribution from the discrete di-
poles inside the sphere subtracted by the field due to
homogeneously polarized sphere. As is well known, the
sum of fields of discrete dipoles inside a sphere vanishes
at a site with cubic symmetry and the sphere polarized
uniformly gives rise to the field —(4m/3}P, leading to the
Lorentz relation Ei„=E+(4m./3)P. Consequently, the
introduction of the effective charges gives rise to the shift
of the TO frequency at the I point, cu&z=mo —co /3, and
the LO frequency, coLo=coo+2co /3, where coo is the fre-
quency of TO and LO phonons in the case of vanishing
effective charge. In Eq. (3.7), the local-field correction
(4m/3)P has been included into coTo on the left-hand side.
The efFective charge also modifies the dispersion relation
in the rigid-ion model. The major part of such
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modification can be taken into account by an appropriate
change in parameters such as A, 8, and C in Eq. (3.2).
There remain some contributions which give rise to the
singular correction to the dispersion, i.e., the term H .
These extra contributions are small and not important in
usual III-V compound semiconductors.

Using the z-dependent part of the envelope function,

ka.

Vg~,

Pa,

~Ca,

ka,

~Pa.

(3.10)

with 6X6 interface matrix T~„. Here, g is U for acous-
tic modes and u for optical modes. Inclusion of the mac-
roscopic electric field does not change T~„because the
macroscopic-field term is canceled in subtracting the bulk
equation from the equation near the interface as we did in
Sec. II B.

In the coordinate system (g, g) rather than (x,y), the
interface matrix has the following form in the long-
wavelength limit:

Tg.

0 Tn

kgapT3 kr ap T4

k~ap

k„apT~

T.

(3.11)

where T 's are 2 X 2 matrices, and we have retained the
terms up to the order of k&ap and k„ap. We must neglect
comPonents t&z and tzz in T (j= 1, . . . , 4), which give
contributions of the order of k&apk ap OI k&apk, ap. The
component tz, is the most important in these matrices.
Since T& and T„are, in general, different, the fourfold
symmetry with respect to the z axis in the bulk lattice dy-
namics reduces to the twofold one in the presence of in-
terfaces.

In general cases the k-linear off-diagonal blocks may
have some inhuence on the connection rule. However,
there are many cases in which they can be neglected be-
cause the wave number k parallel to the interface is
su%ciently small. In the discussion of the electron-
phonon interaction, for example, it is sufhcient to consid-
er the phonon modes with k ~kF or k ~k&, where k~ is
the Fermi wave number and A kT /2m —kz T, with
efFective mass m, Boltzmann constant kz, and electron
temperature T, . Usually, kr —10 (2m /a) and
kT~ 10 '(27r/a), which makes the off-diagonal blocks
negligible unless T 's (j= 1, . . . , 4. ) are exceptionally
large. The off-diagonal blocks are neglected hereafter
and the connection rule in the linear-chain model
(k&=k„=0) is used.

We can show that the o8'-diagonal blocks are neglected
for any values of k& and k„ in the following two cases.

g (x,y, z)=g (k„,k~, z)e " ' (v=x, y, z), (3.9)

the connection rule can be expressed as

&x

ll+ I 0+2 0+3
/ t /

FIG. 4. Linear-chain model for a single heterostructure with
second-neighbor force constants f3 q, f3I, and f3s.

Case 1: where ~tz, ~
&)1 in T&, T„, and T, Sin.ce gz

and gz are quite small at the interface, the contributions
from t» and tz& in TJ 's (j =. 1, . . . , 4) are also negligible.
Although ~tz, ~

—1 in the connection of optical modes at
the InAs/GaSb interface discussed in Sec. IV A, and in
that of double heterostructures in Appendix 8, these
have a qualitative feature of case 1.

Case 2: where the bulk parameters for phonons in A
and 8 are close to each other, and therefore T.
(j=1, . . . , 4) are small. The connection rules for optical
modes at GaAs/Ge interfaces and acoustic modes corre-
spond to this case.

B. Valence-force-field model

We adopt the valence-force-field model to find the ex-
pression of parameters A, 8, C, and coTo in Eq. (3.2), and
take the simplest model in which only the restoring
forces against the bond stretching and bond bending are
taken into account. The corresponding force constants
F„and F& are defined by the energies

E„=—,'F„(5r) and E&= ,'Fs(r&58)— (3.12)

where 5r is the deviation of the bond length between ad-

400

0
0

300 ~
fQu

E
O

~~ 200

U

4
'l00

GaAs l001l
Raman
Neutron

V+~
u R u «ant

0
0.0 0.5 ).0

Wave Number (2m/a)

FIG. S. Dispersion relation of phonons in bulk CxaAs in the
[001] direction calculated in the present valence-force-field
model, together with the experimental results, Rama'n data (cir-
cles), and neutron data (squares) from footnotes d and e in Table
I, respectively.
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TABLE I. Bulk parameters for five semiconductors. The observed frequencies of LO and TO modes
at the I and X points are given in units of cm, together with the calculated TO frequencies at the X
point in the valence-force-field model with use of the observed value of coTo(I ) and the ratio of force
constants Fz/F„=0.025. Also given are the magnitude of the effective charge Ze, the value of optical
dielectric constant e„,and the mass ratio of cation and anion.

coLo(I ) (cm ')

~, (r)
~To(x)

(calc)
a)Lo{X)

z~ 1/2

1/2
a

InAs

243.3+2'
218 9+3'
218.5

(202)
203

0.76
12.3

0.808

Gasb

240.3+2'
230.5+3'
212'

{213)
212'

0.49
14.4

1.32

GaAs

291 9
268.6d

252'
{247)
241'

0.66
10.9

1.04

301'

273'
(277)
238'

0.0
15.8

1.0

AlAs

404. 1g

360.98

(336)

0.78
8.16

1.67

'T=4 K. Infrared reAection. M. Hass and B.W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).
T= 100 K. Second-order Raman scattering. R. Caries, N. Saint-Cricq, J. B. Renucci, M. A. Renucci,

and A. Zwick, Phys. Rev. B 22, 4804 {1980).
'T=300 K. Neutron scattering. M. K. Farr, J. G. Traylor, and S. K. Sinha, Phys. Rev. B 11, 1587
{1975).
T= 300 K. Raman scattering. A. Mooradian and G. B.Wright, Solid State Commun. 4, 431 (1966).

'T=296 K. Neutron scattering. G. Dolling and J. L. T. Waugh, in Lattice Dynamics, edited by R. F.
Wallis (Pergamon, Oxford, 1965), p. 19.
'T= 300 K. Neutron scattering. G Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972).
T=300 K. Raman scattering. A. Onton, in Proceedings of the 10th Internationa! Conference on the

Physics of Semiconductors, Cambridge, Mass. , 1970, edited by S. P. Keller, J. C. Hensel, and F. Stern
(U.S. AEC, Oak Ridge, Tenn. , 1970), p. 107.

4
coTo= (F„+8Fo), (3.13}

and Eq. (3.4}. The obtained effective charge Ze is shown
in Table I as Ze ' . We should use the curvatures at
the I point to fix the remaining degree of freedom. Un-

jacent atoms from the equilibrium value ro, and 50 is the
deviation of the angle between adjacent bonds with one
atom in common from the equilibrium. We make a
simplification that the value of Fz does not depend on
whether the angle is made up of cation-anion-cation or
anion-cation-anion.

The bulk dynamical matrix, the parameters 3, B, C,
and AT&, and the relation between envelope functions and
displacements are given in terms of F, and F in Appen-
dix E. The corresponding linear-chain model has first-
and second-neighbor forces as shown in Fig. 4. Force
constants f„f2, and f3 are related to F„and Fe in Ap-
pendix E. The second-neighbor forces (f3 ) introduce
evanescent waves near the interface and the interface ma-
trix is no longer given in an analytical form. The calcula-
tion procedure is shown in Appendix F. The force con-
stants at the interface are assumed to be the average of
those of the constituent materials, although the calcula-
tion is possible for any values.

Three parameters, F„,F&, and the e6'ective charge Ze,
are determined as follows. Since we mainly discuss opti-
cal modes in the present paper, we use the observed fre-
quencies of LO and TO modes at the I point (Table I).
The relations between them are given by

fortunately, there is no accurate information, except in
the case of Ge. Therefore, by taking as a reference the
observed frequencies of the TO mode at the X point given
in Table I, we determine the ratio Fe/F„ to be 0.025 for
all materials. The calculated TO frequencies at the X
point with this ratio are also shown in the table. The re-
sulting dispersion curves, for example, of GaAs are
shown in Fig. 5, together with experimental results. In
the calculation of the LO branch, the macroscopic elec-
tric field is taken into account as in Eq. (3.7). In spite of
its simplicity, the present model reproduces the experi-
mental frequencies of optical modes well, except near X,
where the calculated frequencies of LO modes deviate
downward from the observed ones because of the limita-
tion of the simple valence-force-field model.

IV. APPLICATIONS TO InAs/GaSb
AND GaAs/Ge SUPKRLATTICES

A. Interface matrices

In this section we discuss optical phonons in
InAs/GaSb and GaAs/Ge superlattices. The connection
rules can be written in the form of interface matrices be-
cause the bulk frequencies at I of optical phonons in
each material are close to each other, compared with the
bandwidth.

The interface matrices for acoustic and optical modes
are listed in Tables II and III, respectively. These are
calculated with the second-neighbor forces taken into ac-
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TABLE II. Interface matrices T&z for acoustic modes.
T(GaSb~InAs) represents the interface matrix for the interface
atomic configuration InAs/GaSb. Only the diagonal blocks T&,

T„,and T, are shown.

TABLE III. Interface matrices T» for optical modes.
T(oaSb~InAs) represents the interface matrix for the interface
atomic configuration InAs/GaSb. Only the diagonal blocks T~,
T„,and T, are shown.

B
T(GaSb ~In As)

B A

T(GaSb~In As)

8 A

T(GaSb~InAs)
B

T( GaSb~In As)

1.00 0. 17

0.00 0.92

1.00 —0.17
0.00 0.92

1.00 0. 17
0.00 0.92

1.00 —0.18

0.00 0.92

0.99 0. 15

0.43 1.02

l.38 0.26
3.03 1.26

1.30

0.97
—0.43

—0.26
1.32

—0. 14

1.03

1.00 0.00
0.00 0.92

T( Ge+—GaAs)

1.00 —0.03
0.00 0.79

1.00 0.03
0,00 0.79

1.00 —0.01
0.00 0.79

1.00
0.00

0.00
0.79

1.00 —0.01
0.00 0.79

1.00 —0.01
0.00 0.79

1.00 0.00
0.00 0.92

T( Ge~Ga As)

1.07 0.28
1.10 1.18

0.83
—0.05

—0.01
0.95

0.83
—0.37

—0.01
0.97

0.78
—0. 13

—0.02
1.02

T( Ge~GaAs)

l.08 —0.28
1.17

0.08

0.84

0.02

0.77
0.02

0.95

0.01
0.95

0.02
1.02

T( Ge~Cxa As)

0.&4 0.01

count. Neglect of the second-neighbor forces gives, at
most, 10% deviation, however. Two atomic
configurations, InAs/Gash and Inds/GaSb, are possible
at the interface of InAs in A (z &0) and GaSb in 8
(z )0). The latter corresponds to the case that the inter-
face consists of As and Ga, and the former to the case
that the interface consists of In and Sb. The same is appl-
icable to GaAs/Ge interfaces.

In the case of optical modes, the sign of t2, is different
between the two configurations at InAs/GaSb interfaces:
t2i )0 for InAs/GaSb and t2i &0 for In As/GaSb. Since
the reduced mass of the ion pair In-Sb (As-Ga) at the in-
terface is larger (smaller) than those in the constituent
semiconductors, the frequency of the corresponding vi-
bration mode is lower (higher). This gives a repulsive (at-
tractive) 5-function potential at the interface that corre-
sponds to a positive (negative) value of t2„as has been
discussed in Sec. IIB. Correspondingly, the magnitude
of the envelope function is reduced (enchanced) at the in-
terface, as will be shown in Figs. 6(b) and 8(b). In partic-
ular, localized modes appear at the interfaces when
t2& &0. A similar result is obtained in Appendix 8 for
double heterostructures.

There are large differences between interface matrices
Tt and T„ for displacements along the g [110] and g
[110]axes, particularly in the oF-diagonal element t2, in
the case of InAs/GaSb interfaces. The interplanar force
constant for transverse modes (g and 7)) takes two values,
different by an order of magnitude, depending on the
direction of the displacement relative to that of chemical
bonds. It takes the larger and smaller values alternating-

B. Numerical procedure

The differential equation for ui (I = 2 or 8) at a fixed
wave vector q=(k&, k„) is

(co coro, )ui(q, z) =—H, q, t ui(q, z)—
Bz

Z(8
E(q, z) . (4.1)

The macroscopic electric field is given by

ly along the z axis for each of the g and r) modes. The
force constant at InAs/GaSb interface, for example, is
larger for g modes than for g, giving rise to a larger value
of tzi (see Table III). The situation is opposite at the
GaSb/InAs interface between GaSb (z &0) and InAs
(z)0). The interface matrix for GaSb/InAs, which is
not shown in Table III, is obtained from that for
InAs/GaSb (Table III) by the simple transformation
given in Appendix D. Note that the interface matrix
T&(InAs+ GaSb) is rela—ted to T„(GaSb~InAs).

Tables II and III contain interface matrices of
GaAs/Ge heterostructures. Since Ga, As, and Ge have
almost the same mass, interface matrices for optical
modes are nearly the unit matrix, except t2, = —0.37 for
r) modes at GaAs/Ge interface. This deviation is presum-
ably due to a large difFerence in force constants between
heteropolar GaAs and homopolar Ge.

e E;(q,z)= 4vr6;, P, (q, z) f dz—'e ~' ' gE—K P(q, z') (i,j =x,y, z), .

J
(4.2)
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with K =(q, sgn(z —z )iq), where sgn(z)=l for z) 0,
and sgn(z) = —1 for z (0. The optical dielectric constant
e is assumed to be constant throughout the system be-
cause e does not change so much from material to ma-
terial, as shown in Table I.

The di8'erential equation is supplemented by the con-
nection rule, which is expressed in the form of energy:

E, = f, g—~u~(z, )
—Tii„,u„(z, )~', (4.3)

where u =(u„,V'u„, u~, V'u~, u„Vu, )' and subscript i dis-
tinguishes interfaces. We calculate eigenvalues and
eigenvectors of Eqs. (4.1) and (4.3) for a sufficiently large

C'

One way to solve this eigenvalue problem is to expand
the envelope function in terms of an appropriate ortho-
normal set,

LO modes a and b in the left-hand panel of Fig. 6(a)
have frequencies above the LO top of GaSb and are
confined in InAs "quantum wells" [Fig. 6(b)]. These
features have been already shown by Fasolino, Molinari,
and Maan. ' The central panel shows that the frequen-
cies of modes a-d and c-e have a considerable 0 depen-
dence. The mode b is antisymmetric with respect to the
center of both layers and has no 0 dependence.

For comparison, we show the results of the dielectric
continuum model by dotted lines in the same figure. In

(a) --GaSb/lnAs---Assn/SbGa--
'l.5

Present
---- Dielectric ContinUUrri

(M„, )'~'u, , (q, z) =g c;&„(q)Pi„(z), (4.4)

with

fG(z) when z is in l layers,
C

0 otherwise, (4.5)

where c;&„'s are expansion coeflicients and g&„'s are basis
functions. To describe all kinds of connection rules, we
consider the following functions:

~ O~

C)

I

& 0.5 »»» ~ g»» ~ -»»»»»»»» ~@SpaTo

c b a
InAs. LO

M J
~ »»»»+p ~ »$~»g»»

fG(z)=(E,d) '~ e (4.6)

(4.7)

where d is the period of superlattice, X, the number of
periods, —vr/d (q, (ir/d, and G =2mn ld (n an in-
teger). The functions f&z(z) are neither orthogonal to
each other nor normalized. An orthonormal set is ob-
tained as

0

A~M e%J

iT —q,d —0 0—kid —3
0-5-90

Uz

by using the eigenvalues o.„and the eigenvectors b„of
the overlap integrals SG.G = (lG'~lG ). We must exclude
the functions with quite small o.„,say less than 10

Uz

C. InAs/GaSb

We consider InAs/GaSb superlattices with 10.5 layers
of InAs and GaSb in one period, corresponding to d =64
A. In Fig. 6(a) we present dispersion curves for optical
phonons in the superlat tice with In As/GaSb and
GaSb /In As interfaces. Dispersion curves are given
along the q, and k„axes for values of k„ less than
1/14ao, for which the off-diagonal blocks of the interface
matrix [T„T2,T3, and T4 of Eq. (3.11)]may be neglect-
ed. We also show the dependence of frequencies on the
direction of wave vector from the z axis (8=0 ) to the g
axis (8=90') in the vicinity of the I point. No g modes
are shown in the figure because g modes are transverse
and decoupled from the others. The dispersion curves of
g modes are the same as those of g modes along the q,
axis, while they are flat when 0 is changed. In Fig. 6(b)
the envelope multiplied by the square root of the reduced
mass is shown for several modes.

InAs - - - AsIn/SbGa--GaSb InAs - - - AsIr)/SbGa —GaSb

FICx. 6. Optical phonons in an InAs/GaSb superlattice with
In As/GaSb and CxaSb /InAs interfaces. Each layer of superlat-
tice (period d=64 A) has 10.5 layers of InAs or CxaSb. (a)
Dispersion curves together with those of the dielectric continu-
um model (dotted lines). Plotted are the squared frequencies co

measured from mTQ of InAs and normalized by ~p cog Q co fQ
of InAs. In the central panel the frequencies at the zone center
are plotted as a function of 0, the direction of the wave vector.
In the left-hand panel longitudinal (solid lines) and transverse
modes (dashed lines} are decoupled from each other. (b) En-
velope function multiplied by the square root of the reduced
mass. Dotted lines in panels d and e represent the envelopes in
the dielectric continuum model of the Fuchs»Kliewer modes at
0=90 with frequency just above mode d.
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this model almost all modes are degenerate at the bulk
LO and TO frequencies at the I point of InAs and GaSb.
These degeneracies are resolved by the inclusion of
dispersion in the present formalism. There are four
modes with considerable 0 dependence in the dielectric
continuum model, which are called Fuchs-Kliewer modes
because they are essentially the same as the modes in the

23dielectric slab studied by Fuchs and Kliewer. The 0
dependence is due to the change of the macroscopic elec-
tric field. The corresponding modes in our calculation
(a-d and c-e), which are also called Fuchs-Kliewer modes
hereafter, have slightly lower frequencies due to the effect
of connection rules and dispersion.

The envelope function of mode e with displacement
along the g direction is almost the same as the corre-
sponding one in the dielectric continuum model, except
that it is modified by the connection rule near the inter-
faces, i.e., exhibits a downward cusp. The behavior of the
envelope function is different at two interfaces within one
period of superlattice because the force constants at those
interfaces are different for q modes. The thickness of the
modified region, which is only about the lattice constant,
is determined by the deviation of its frequency from the
bulk TO tops of InAs and GaSb and by the width of the
TO bands. In fact, as the layer thickness increases, only
the Aat region increases, as shown in Fig. 7. It is there-
fore concluded that if the layer thickness is much larger
than the lattice constant, the dielectric continuum model
describes mode e accurately. On the other hand, mode d,
with displacement along the z axis, is strongly modified
by the connection rule, even for large layer thickness be-
cause its frequency is quite close to the bulk LO tops.

Figure 8 shows the results for the InAs/GaSb superlat-
tice with InAs/GaSb and GaSb/InAs interfaces. The in-
terfaces consist of Ga and As atomic planes. Three local-
ized modes at the interfaces appear above the LO top of
InAs (modes p, q, and r at 8=0'). The highest one (mode
p) has displacement along the g axis and is localized
within Cia and As atomic planes at one of the two inter-
faces at which the force constant is larger. The localized
mode with displacement along g, which is not shown in
Fig. 8, has amplitude at the other interface at which the
force constant for g modes is larger. On the other hand,
the localized z modes (modes q and r) have amplitude at
both interfaces and are extended over several atomic

—.SbGa]AsIn---InAs/GaS&---
1.5

s
P /

~ 10
f~9

l

+ 0.5

q~~
~InAs:LO

-~GaSb: LO

-~GaSb:TO

OUU ~a ~a auaee~a~w~ ~ ~InAs: TG

v —q d —0 0—k&d —3
0'--90

planes. The frequency is 1.272 for mode p and 1.206 for
mode q in the same units as in the figure, whereas the
value is 0.937 and 1.196, respectively, when calculated by
the standard lattice dynamics with the same valence-

U& (lnAs), a, '(GaSb), o 5

(InAs)2O 5 (GaSb)2O 5

AsIn/SbGa - ---- GaSb

FICx. 7. Period dependence of the envelope of a Fuchs-
Kliewer mode at 8=90' (mode e in Fig. 6). The envelope func-
tion multiplied by the square root of the reduced mass is plot-
ted.

AsIn - - - InAs/GaSb --SbGa Assn - - - InAs/GaSb --- SbGa

FIG. 8. Optical phonons in an InAs/CxaSb superlattice with
In As/GaSb and GaSb/In As interfaces. Each layer of superlat-
tice (period d =64 A) has 10.5 layers of InAs or GaSb. (a)
Dispersion curves. (b) Envelope function multiplied by the
square root of the reduced mass. See the caption of Fig. 6 for
more explanations.
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force-field parameters and effective charges. The long-
wavelength approximation has started to break down for
TO mode p because the deviation of its frequency from
the tops of bulk TO bands is comparable to their band-
widths, whereas it applies well to LO mode q.

As shown in Fig. 8(a), the interface modes exhibit a
strong 0 dependence of frequency, which is due to the
macroscopic electric field just as in the case of the
Fuchs-Kliewer modes. The 0 dependence of frequency of
mode c-e (one of the Fuchs-Kliewer modes) is quite
different from that calculated in the dielectric continuum
model, which is understood by the strong level repulsion
between modes with g displacements, c-e and p-s. The
envelope function of mode e [Fig. 8(b)] has a sharp peak
at one of two interfaces due to the mixing of the interface
mode (mode p). The interface modes at 0=90' (panel s
and t) have displacement inside layers, which is induced
by the macroscopic electric field.

The interface modes were first found by Fasolino, Mol-
inari, and Maan using a linear-chain model for transverse
modes (g and g modes' ) and for longitudinal modes. '

The frequencies and displacement patterns in our calcula-
tion are in good agreement with those in their calcula-
tion, except the frequency position of transverse modes
(mode p). As shown in their calculation, there are also
interface modes in the InAs/GaSb superlattice with In-Sb
interfaces, which have frequencies below the optical
bands of InAs and GaSb. The present formalism treating
long-wavelength phonons is not applicable to these inter-
face modes.

A recent paper' of Fasolino, Molinari, and Maan
showed the presence of resonant LO modes, which exhib-
it a quasiconfined behavior in spite of their frequency po-
sitions in the overlapping region of bulk LO bands. In
our calculation, mode c in Fig. 6(b) (InSb interface) and in
Fig. 8(b) (GaAs interface) show a resonant behavior. In
the case of InSb interfaces, such behavior is understood
by the presence of a repulsive 6-function potential at two
interfaces (Sec. IV A), just like the behavior of the elec-
tron wave function in double-barrier structures. On the
other hand, the potential at GaAs interfaces is attractive,
but the amplitude of mode c is small at the interfaces in
order to be orthogonal to the interface modes (modes q
and r), leading to a well-defined resonant mode.

D. GaAs/Ge

Figure 9 presents the results for the GaAs/Ge super-
lattice with GaAs/Ge and Ge/GaAs interfaces. Each
period, d =59 A, contains 10.5 layers of GaAs and 21
layers of Ge, i.e., the GaAs and Ge layers have the same
thickness. The main difference with InAs/GaSb systems
is that Ge is homopolar, leading to no Fuchs-Kliewer
modes originating from Ge. The left-hand panel shows
the features similar to those of InAs/GaSb superlattices,
i.e., the existence of confined and extended modes due to
the difference of bulk frequencies. Since the interface ma-
trix is close to the unit matrix, the magnitude of gaps ap-
pearing at the zone center and boundary is smaller than
that of InAs/GaSb superlattices and the envelope func-
tions connect almost continuously at the interfaces.

---Ge/GaAs---AsGa/Ge---
1.5

Ge MO Lo

~ ~GaAs 1 O

~B3

I

0.5 0

AsGal Ge Ce

GNs:TO

V. GaAs/AlAs HKTEROSTRUCTURES

In the GaAs/A1As systems, where the bulk optical
bands have a large gap between them, all optical phonons
are nearly confined in one of the layers. Because of the
large frequency separation, we can safely replace the
A1As layer by a dielectric continuum when discussing
phonons in the GaAs layer, and vice versa. For modes in
the vicinity of the zone-center frequency of bulk GaAs,
displacements in the GaAs layer are described by en-
velopes which satisfy the integro-differential equation
(3.7) and should be connected to actual displacements of
Al and As ions in the A1As layer. This leads to a kind of
boundary conditions for the envelopes. The same is cer-
tainly applicable to modes in the vicinity of the frequency
of bulk A1As. In the following, we shall show that the
boundary conditions are approximately such that the en-
velopes should vanish at a boundary plane and determine
its position, starting with lattice dynamics.

First, we consider phonon modes mainly confined in
the GaAs layer. We use the linear-chain model with only
first-neighbor forces shown in Fig. 3. Consider an inter-
face of A =GaAs (z (0) and 8=A1As (z)0) and choose
the zero of the z axis at the middle point between the in-
terfacial As and Al atomic planes. The force constants in
the GaAs and A1As layers including the interface region
are assumed to be the same because the valence-force-
field parameters I', and I'& coincide in two materials
within 2%.' From the equations of motion for the inter-
facial As and Al ions, we obtain a relation similar to that
given in Eq. (2.18):

FIG. 9. Dispersion curves for optical phonons in a GaAs/Ge
superlattice with GcAs/Ge and Ge/GaAs interfaces. Each lay-
er of superlattice (period d =59 A) has 10.5 layers of GaAs or
21 layers of Ge. Plotted are the squared frequencies co mea-
sured from u&o of GaAs and normalized by co~ =~Lo—co&o of
GaAs. The right-hand panel presents the envelope function
multiplied by the square root of the reduced mass for the mode
marked by arrow. See the caption of Fig. 6 for details.



2926 HIROSHI AKERA AND TSUNEYA ANDO

u, ~(n +1)=u,ii(n +1) at z= —ao/2,

u, „(n +2)=u, ii(n +2) at z=ao/2 .
(5.1)

In case of longitudinal modes, the displacements in the
GaAs layer are

M~, ao
u, „(n+1)=— '

u
Ga As

MA, ao
u, „(n +2)= u

MG, +MA, 2

(5.2)

using the envelope function u. On the other hand, the
displacements in the A1As layer are given by a linear
combination of an evanescent gap mode y and a mode g
induced by a macroscopic electric field:

BQy BQx
u (z,„)+5z =0 and u (z,„)+5z =0,

Bz az
(5.6)

with z»=(z(+zP)/2 and 5z=(z] —zo)/2. Such mix-
ings are negligible when the wavelength is much larger
than 6z.

There are a few cases in which the field-induced dis-
placement g may not be negligible. Typical examples are
the Fuchs-Kliewer modes at t9=90', for which the mac-
roscopic electric field in the A1As layer is large. For such
modes, the electric field and, consequently, the amplitude
of displacements in the A1As layer are estimated to good
accuracy by using the dielectric continuum model. In the
dielectric continuum model the envelopes of displace-
ments are constant in each of the 3 and B layers, and the
ratio of them is given by

u B(n + I)=+A +PA and u B(n +2)=XA)+PA)

(5.3)

ZsEsM. ~ (~ ~To~ )

2ZAEAMvB(~ ~TOB )
(5.7)

u(zo)= f~,
with

1+Ma, /MA,fP= +M M
( PAI PAs)

Ga As

a —Mo, /MA,
zo = ' '

(ao/2)
Ga As

(5.4)

where a=yA, /g&& at the TO frequency of bulk GaAs is
shown to be 0.77 by the lattice dynamics in bulk A1As.
Usually, the displacement in the A1As layer, g, due to a
macroscopic electric field is quite small compared to that
in the GaAs layer. Therefore, Eqs. (5.4) lead to the
boundary condition that the envelope should vanish at
zo= —0.05ao, i.e., close to the midpoint between the in-
terfacial As and Al planes. In a hypothetical case in
which a is infinite, i.e., in the case of infinite frequency
separation, the node of the envelope is just at the Al
plane, as was pointed out by Jusserand and Paquet.

Similarly, the boundary conditions for transverse
modes are given by u (zo ) =0 with

a —Mo, /MA,
zo = 0.5 a+Mo, /MA,

(a —1)(2F—1)
( I+MA, /Mo, )(a+Mo, /MA, )

where F is defined in Eq. (2.4). Explicitly, we have
a=0.28 and F=0.125 for g modes and a=7.4 and
F=0.875 for il modes, which give z(= —0.05ao and
zo =0.67ao. The difFerence in "boundary" position for g'

and g modes leads to mixings of x and y displacements at
the interface. The boundary conditions written in terms
of x and y displacements are

where P„,/P„, = —(M~, /M„, )(EA, /E„, ), with macro-
scopic electric field E~& and EA, at Al and As planes, re-
spectively. Using the above equations and the Taylor ex-
pansion u ( ra o ) = u (0)+eV'u, we have

where 3 =GaAs and B =A1As. Here, Ez = —E~ for
the Fuchs-Kliewer mode at 0=90' with z displacernent,
whereas Es =E„ for those with g and g displacement.
By estimating g by the above equation, we obtain f&

in

Eq. (5.4) to be f&lu„=0.06, —0. 13, and —0.23 for the
Fuchs-Kliewer modes with z, g, and g displacements, re-
spectively, which is small, but certainly not negligible.
Fortunately, however, this does not cause serious prob-
lems because these modes are mainly determined by the
macroscopic electric field and are insensitive to the
boundary conditions. Therefore, we conclude that the
above boundary conditions are also applicable when the
wave vector is not perpendicular to the interface. This
conclusion does not depend on the model of force con-
stants.

Similar boundary conditions can be obtained for
AlAs-like modes, i.e., for modes whose frequency is close
to that of optical phonons of A1As. We consider an inter-
face of A1As (z (0) and GaAs (z )0), and choose the
zero of the z axis at the midpoint of the interfacial As and
Ga atomic planes. Then, the boundary conditions read
that the envelopes should vanish at zo=0. 58ao, 0.34ao,
and 0.74ao for z, g, and g modes, respectively. Here, we
have used the values of yA, /yz„—4. 8, —2.8, and —18
for z, g, and 7) modes, respectively, at the TO frequency
of bulk AlAs. Contributions of Geld-induced displace-
ments P in Eq. (5.4) are f&/u„= —0. 12, 0.07, and 0.09
for the A1As-like Fuchs-Kliewer modes at 0=90' with z,
g, and il displacements, respectively, where u„ is the en-
velope in the AlAs layer estimated using the dielectric
continuum model.

When the present results are applied to a
(GaAs)„(AIAs) superlattice, the eff'ective thickness in
the case of GaAs-like optical phonons is
d(GaAs, LO) = ( n +0. 5 )a /2 for longitudinal and
d(GaAs, TO) =(n +0.8)a/2 for transverse modes. In the
case of A1As-like phonons, on the other hand, it is
d(AIAs, LO) =(m +1.1)a/2 for longitudinal and
d(A1As, TO)=(m +1.0)a/2 for transverse modes. These
values are in good agreement with the results previously
obtained in a rigid-ion valence-force-field model. '
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Many works have been devoted to determining the
effective thickness both theoretically' ' ' and experi-
mentally when the wave vector is perpendicular to
interfaces (8=0 ). There remain slight discrepancies
among theoretical values, which may be largely due to
differences in models for force constants. For example,
Richter and Strauch' obtained the effective thickness
d(GaAs) =(n +1)a/2 and d(A1As) =(m +1)a/2 for
both LO and TO modes. On the other hand, Ren, Chu,
and Chang' obtained d(GaAs) = ( n +0.5 )a /2 and
d(A1As)=(m +0.5)a/2. Our result is closer to that of
Richter and Strauch for d(GaAs, TO) and d(A1As),
whereas ours coincides with that of Ren et al. for
d(GaAs, LO). Ren et al. also obtained a similar value of
the effective thickness for 8=90', We have shown here
that the same effective thickness is approximately valid
for any value of 0.

It is quite easy to make explicit calculations of phonon
modes in (GaAs)„(AlAs) superlattices using the present
formalism. Examples for long-wavelength GaAs-like
modes in a superlattice with n =I=7 have been already
reported elsewhere. ' The "boundary" position has been
taken to be at the midpoint between the interfacial As
and Al planes for all of the g, g, and z modes. The results
have turned out to be almost identical to those of calcula-
tions made in the rigid-ion valence-force-field model, '

demonstrating its usefulness.

VI. SUMMARY AND CONCLUSIONS

The envelope-function formalism has been constructed
for long-wavelength phonons in semiconductor hetero-
structures. It consists of a set of difFerential equations for
envelope functions of atomic displacements and their
boundary conditions at interfaces. Our starting point is
the bulk dynamical matrix, and the procedure to derive
the formalism is quite similar to that for the effective-
mass theory in the electron problem. For acoustic modes
our formalism becomes equivalent with the theory of
elasticity.

The present formalism is applicable to optical modes in
the following two cases: the case that the band-offset is
much smaller than the bandwidth, and the case that it is
suSciently larger than the bandwidth. In the former
case, the connection rule of envelope functions on both
sides of the interface has been obtained in the form of the
interface matrix. In several important examples the in-
terface matrices are diagonal with respect to three com-
ponents g( =x —y), g( =x +y), and z, and they are in-
dependent of k& and k„, the wave-vector components
along the interface. We have obtained various types of
connection rules, depending not only on the constituent
materials, but also on the microscopic structure of the in-
terface.

As examples, dispersion curves and envelope functions
have been calculated for optical phonons in InAs/GaSb
and GaAs/Ge superlattices. We have found that in
InAs/GaSb superlattices the envelope function exhibits a
cusp at the interface, and the type of cusp depends on
whether the atomic configuration is In-Sb or As-Ga at
the interface. On the other hand, in the GaAs/Ge super-
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APPENDIX A: MODES NEAR THE ZONE BOUNDARY

We derive the envelop-function formalism for modes
near the Brillouin-zone boundary (X point, kb=2m/a)
using the linear-chain model of Fig. 3. For simplicity, we
consider only longitudinal modes (f, =f2) and neglect
the differences among the force constants f,„,f,s, and

f,I. The situation is quite analogous to the s-p tight-
binding model for electrons considered in Ref. 3. One
mode at the X point, in which only cations vibrate, corre-
sponds to the cation s orbital, and the other mode corre-
sponds to the anion p orbital. For wave vectors kiao (& 1

(k& =k —kb) the k p Hamiltonian has the same form as
that for the s-p tight-binding model around the I point:

&TO
2 ~m k 1 a0

k, a0
—1

"m
(Al)

The diagonalized dynamical matrix is

lattice the envelope functions connect almost continuous-
ly at the interfaces. This variety of the behaviors of pho-
non modes in the vicinity of the interfaces is mainly
determined by a single parameter, t21, the off-diagonal
element of the interface matrix: t2, &0 for the In-Sb in-
terface of InAs/GaSb superlattices, t2& (0 for the As-Ga
interface, and tz&-0 for the interfaces of GaAs/Ge su-
perlattices. The calculated results have been compared
with those obtained using the dielectric continuum mod-
el. Several important differences have been found; in par-
ticular, our formalism can describe the differences be-
tween the two interface configurations and the existence
of localized modes at the As-Ga interface of InAs/GaSb
superlattices in a unified way.

In GaAs/A1As heterostructures, where the bulk opti-
cal bands of the two materials have a large gap between
them, it has been shown that the boundary condition that
the envelopes should vanish at interfaces is applicable
even when the wave vector is not perpendicular to inter-
faces.

The most important application of our formalism is the
Frolich-type electron-phonon interaction. Several au-
thors discussed the problem using the dielectric continu-
um model. Lassnig calculated the form factors for the
Frohlich interaction in double heterostructures. De-
gani and Hipolito calculated the polaron-mass correction
in several heterostructures. Wendler and Pechstedt cal-
culated the dispersion curves of plasmon-phonon coupled
modes in double heterostructures, which can be ob-
served by use of Raman-scattering and attenuated-total-
reAection techniques. The intensity of resonant Raman
scattering is also determined by the Frohlich interaction,
and was discussed for simple, confined LO phonons.
Our formalism provides a refined basis with which to in-
vestigate these properties.
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2

rm+rm

1 2
, (k, ao)

r —r

1

, (k, ao)
rm rm

(A2)

—hk, a()

g, (k, )

The corresponding envelope functions g, and g, are
defined by

u, (k, +kb) 1 g, (k, )

u, (k, +kb) gk, ao 1

1 0
2 —M,IcoLof ' —1u,~(n +1)

consists of only one atomic plane. Using the relation be-
tween the displacements in A and B,

u,~(n)

where u, and u, are the displacements of cation and
'

anion, respectively, g= 1/(r —1), and h =1/(1 r). —
Hereafter the modes corresponding to g, and g, are
called cation and anion modes, respectively.

The interface matrices are as follows. When cation
modes are connected,

1 —,'(gw /ga —1)

u, „(n)
X

u, „(n —1)

the interface matrix is

M,l
r» =t» ——1, t»=0, t» ——2(1+r' )

cA

(Bl)

0 gw /ga
(A4) (B2)

corresponding to the connection of the conduction bands
of GaAs and A1As. This is essentially the same connec-
tion as proposed by Babiker for LO modes near the I
point. When a cation mode in 3 and an anion mode in
B are connected,

—1/2h~ 1/4hii+g„
—1/2h~1/hei

(A5)

APPENDIX B: INTERFACE MATRICES
FOR DOUBLE HETEROSTRUCTURES

corresponding to the connection between the conduction
band of InAs and the valence band of GaSb. When
r z =1 (r ii =1), the determinant of Tzz becomes
infinity (zero) due to the vamshing of the X-point ex-
tremum. (GaAs)9(AlAs)&

Uz

In the case of 2 =B=GaAs, t2, = —2. 54 for I =Al and
t2& =2.69 for I =In. Figure 11 shows the modes with the
longest wavelength in superlattices (GaAs)9(A1As), and
(GaAs)9(InAs), , which exhibit two types of cusps at the
interface, respectively. A localized interface mode ap-
pears in the (GaAs)9(AIAs), superlattice, although it is
not shown in the figure.

Similarly, the interface matrix for the heterostructure
with an anion sandwiched layer is
t2, =2(l+r )(M,l/M, ~

—1), with the other elements
unchanged.

Consider the double heterostructure shown in Fig. 10,
with a sandwiched layer (I) consisting of a single cation
atomic plane. We investigate the connection rule be-
tween long-wavelength LO modes in A and B layers.
Here we restrict ourselves to the case that A and B are
occupied by the same semiconductor. An example is
GaAs crystal, in which one Ga atomic plane is replaced
by an Al or In plane. Although there is considerable lat-
tice mismatch between 3 (8) and I in the case of I=In,
the structure can be free from defects because the I layer

Ga---GaAs- AsAiAs--. GaAs. -- Ga

(GaAs)9 (InAs)&

Uz

l I

A i I i 8

f.)
M~ Map Mcl MaB McB

n+') n+2

FICx. 10. Linear-chain model for a double heterostructure
with a single force constant f. The masses of the cation and
anion are denoted by M, and M„respectively.

Ga--- GaAs--AslnAs-. GaAs --- Ga

FICx. 11. Envelopes of long-wavelength LO modes in super-
lattices (GaAs)9(A1As)

&
and (GaAs)9(InAs), .
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~A ~B (Cl)

for the z components of the Aux. The energy Aux is writ-
ten as

APPENDIX C: ENERGY-CONSERVATION LAW

The divergence of energy Aux must be zero throughout
the system in the stationary state. In the case of the
linear-chain model (Fig. 3), we have at the interface

APPENDIX E: RESULTS
IN THK VALENCE-FORCE-FIELD MODEL

D„(k)=

With use of the valence-force-field model introduced in
Sec. IIIB, the three-dimensional extension of the bulk
dynamical matrix D„(k) in Eq. (2.3) is written as

r P(k) —Q(k)
—Q ( —k) r 'P(k) (El)

P =En' , a a
2I'. Bz Bz

(C2)

where g* is the complex conjugate of g, and n is the den-
sity of ion pairs. The coeKcient E is

E=(M, +M, )v and —M„v (C3)

for acoustic and optical modes around the I point, re-
spectively, with the sound velocity v. Equation (C1) leads
to the conditions for the interface matrix. First, the in-
terface matrix can be chosen as real, except for an unim-
portant common phase factor. Second, its determinant is

Here, the 3 X 3 matrices P(k) and Q(k) are

fx gxy gxz

P(k) =I+ t2 g f g,
g'zx gzy fz

b(111) t, b(1 1 1) tib(1 1 1)

Q(k) = t, b (1 1 1) b (111) t, b(1 1 1)

t, b(1 1 1) t, b(1 1 1) b (111)

where I is a 3 X 3 unit matrix, and

(E2)

(E3)

det(T~„) =E~ /E~ . (C4) 4
a@To= (F„+8Fg), (E4)

APPENDIX D: SYMMETRY
OF INTERFACE MATRICES

Two configurations in Fig. 12 are transformed into one
another by reAection with respect to the interface. This
symmetry leads to the relation of the corresponding in-
terface matrices:

F„—4Fg Fg
F„+8FO ' F„+8Fg

f = —I+2cos2k&aocos2k ao

—
—,
' cos2k ao(cos2k&ao+cos2krao),

g &= —,
' sin2k aosin2kiaao

(E5)

(E6)

8 A B
T&(In As+ GaSb) =o, —T„'(GaSb~In As)o, , (Dl)

T (In As~GaSb ) =cr, T& '(GaSb~In As)o, , (D2)

T, (In As~GaSb ) =o, T, '(GaSb+ In As)o, , (—D3)

where

1 0
z 0 1

(D4)

and T(InAs~GaSb) represents the interface matrix for
the interface atomic configuration GaSb /In As. The
same relation holds between T(InAs~GaSb) and
T(GaSb~lnAs ).

—i(cos2k ao cos2k&ao)s—in2k ao,
b(LMN) =

—,'[e(111)+Le(11 1)

+Me(1 1 I )+Ne(1 1 1)],

(Ej)

(E8)

A = —v(1+4t ),
B=—v(1 —t~i+6t ),
C = —v(2t, —t', 4t ), —

(E9)

and the corresponding parameters for acoustic modes are

with e(lmn )=exp[i(lk„+mk +nk, )ao]. Subscripts
(a,P, y) are (x,y, z), (y, z, x), or (z, x,y). The symbol 1

means —1.
The parameters appearing in Eq. (3.2) are

In As

Sb Ga

In ) Sb
I

j I
Sb ~ In

Ga Sb
~ ~

~ ~ ~ ~

~t ~ ~ ~

As In

A =v(1+4t2),
B=v(1 —t', —6t, ),
C =v(2t, t f +4t&), —

where

t =
—,'(r +r )t2 .

r +r

(E10)

(El 1)

FIG. 12. Symmetry of atomic configurations around the in-
terface of InAs and CxaSb.

The relation between envelope functions and displace-
ments is given by
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u, (k)

u, (k)

r I J
—y. 'g F'i%a 0

I iKao I 0 U(k)
I 0 (r +r ') 'I u(k) (E12)

where K is defined by Eq. (3.6), and

I =t, /(r +r ') . (E13)

amplitude of evanescent wave g. For acoustic modes we
have

1

f1+f2

—,'(1—t, ) for g modes,

= . —,'(1+t, ) for r) modes,

for z modes,

(E14)

The force constants of the linear-chain model (Fig. 4) are u, (n —1)
'

u, (n)

u, (n +1)
u, (n +2)

—r 'y+-,'

r y+ —',

U

VU

p
1

S

p

(F4)

——', t2 for g modes,
2f3

Jp3 2 t2 for g modes,f1+f3
tz for z modes.

(E15)

APPENDIX F: CALCULATION
OF INTERFACE MATRICES IN THE PRESENCE

OF SECOND-NEIGHBOR FORCES

The quantities p and s are given by the following equa-
tion,

F3(2+ t /2)+1
p+p '+t+2=0, s =

F+(1—F)p
where t = —4[F(1 F)+F3—]/F3 —4. We choose a solu-
tion of p with ~p~ ) 1 for A and that with ~p~ (1 for B.
For optical modes we have

We show the procedure for calculating interface ma-
trices when we take into account the second-neighbor
forces in Fig. 4. From the equations of motion in the vi-

cinity of the interface, we have

'u, ~ (n —1) u, B(n —1)

'u, (n —1) )

u, (n)

u, (n+1)
u, (n+2)

"m y+-', r

'Y
2 "m

y+ —', r

V'u

u, „(n)
u, ~(n+1)
u, „(n +2)

u,B(n)

u,B(n +1)
u,B(n +2) p

1

where the 6X6 matrices GA and GB are
+ X

p

(F6)

f3r f3~—
f3r

0

00 f3~
f1r f1&+f3r f3' f1~ f3'

f1r 0 0

f3r 0 0

(F2)

F3(2+ t /2) r-
F+(1—F)p

(F7)

where t = —2[2F( 1 F) (r + r 2 )F3 ]/F—33
—4—. Com-

bining the equations, we obtain the following connection
rule:

0

0

0 f3r
0 f1r

GB=
f3B f1B f11 f1B+f3I f3B

0 f3B 0

0

f3r
0

f3r f3B—
(F3)

TBA
(F&)

We assume that the force constants f, r and f3r are the
average of those for 3 and 8. In the presence of the
second-neighbor forces, we have two additional solutions
with complex wave numbers. We add only a solution
with a decreasing amplitude as it moves away from the
interface, called the evanescent wave. The displacements
are expressed in terms of the envelope function and the

where the 2 X2 matrices TBA and T+A cannot be given in
an analytical form. The numerical values of TBA are
given for InAs/CxaSb and GaAs/Ge interfaces in Tables
II and III. It is found that the contribution of evanescent
waves to the displacements of interface atoms is less than
1%, and the decay length of evanescent waves is about
0.1a. This indicates that the evanescent waves do not
play an important role in the connection rule.
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