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Magnetotransport of an electron-hole plasma in a GaAs quantum well
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Magnetotransport properties of a quasi-two-dimensional electron-hole plasma confined in a GaAs
quantum well are examined theoretically. In this, we consider a two-component plasma consisting
of minority electrons and majority holes, subjected to crossed electric and magnetic fields. Magne-
toconductivity and mobilities of both the minority electrons and majority holes are determined,
taking account of the various scattering mechanisms [electron-hole, electron(hole)-phonon,
electron(hole)-impurities] which are dynamically screened by the carriers. We also examine the
influence of the magnetic field on electron-hole drag and the associated phenomenon of negative
minority-electron mobility, obtaining numerical results for a weak magnetic field.

I. INTRODUCTION

Recent observations of negative minority-carrier
mobilities in GaAs quantum wells' have stimulated much
interest in the study of electron-hole plasma transport in
these quasi-two-dimensional semiconductor heterostruc-
tures. ' Strongly attractive electron-hole scattering, as
compared to majority-carrier —lattice scattering, can
cause the minority carriers to drift along with majority
carriers, resulting in a negative absolute mobility for the
minority carriers. Such a "carrier-drag" effect is relative-
ly weak in bulk semiconductors, due to the lower mobili-
ty and lower majority-carrier concentration, in contrast
to the situation in quasi-two-dimensional semiconductor
quantum wells where mobilities as high as 10 cm /Vs,
and carrier densities above 10' cm are not uncom-
mon. In these ultrapure, high —carrier-concentration
samples, scatterings between electrons and holes become
as important as those between carriers and the lattice.
Furthermore, charged-carrier screening can profoundly
affect the transport properties of such high-density two-
component plasmas.

In a previous study we examined the carrier-drag
problem in the context of an evaluation of the minority-
electron mobility in a GaAs quantum well, where we
showed that proper account of screening effects in
electron-hole scattering, as well as in carrier-lattice
scattering, is necessary to obtain reasonable results. In
this paper, we generalize our earlier formulation to in-
clude an ambient transverse magnetic field perpendicular
to the heterojunction surfaces (z direction). Simple physi-
cal considerations lead us to expect that the magnetic
field will significantly modify the carrier-drag effect: In-
stead of simply drifting parallel or antiparallel to the elec-
tric field direction in the plane, electrons and holes will
execute circular motions due to the magnetic Lorentz
force (with or without Landau quantization), in addition
to the drifting of the orbit centers. In this crossed-field
geometry the electron (hole) drift velocity divides into
two components, one parallel to the electric field and one
perpendicular to it. Only the former is directly related to
the negative electron mobility, if any. This parallel com-

ponent is invariably smaller in magnitude than its coun-
terpart in the field-free (I3=0) case for a given electric
field. Hence, considered alone, this would lead to a re-
duced electron mobility (positive or negative). This is
similar to the argument about the positive change of
magnetoresistivity [p(8 ) )p(0) ] for a two-component
bulk system, neglecting interactions between the two
components. This geometric tendency toward reduced
mobility is opposed by the enhancement of the
effectiveness of the electron-hole interaction due to the
circularity of magnetic field orbits, increasing the likeli-
hood of electrons and holes being in proximity of each
other. Without substantially altering the carrier-lattice
scattering, the magnetic field in this respect tends to
render the minority carriers more susceptible to being
dragged along by the majority carriers. In our analysis of
the competition of these opposing inAuences, we shall ex-
amine the role of the magnetic field in carrier screening,
and more importantly, its effect on the attractive interac-
tion between electrons and holes.

In the following we discuss the formulation of magne-
totransport of an electron-hole plasma confined in a
GaAs quantum well in Sec. II, where we derive expres-
sions for the minority-electron mobility and the
majority-hole mobility, as well as the magnetoconductivi-
ty tensor in the transverse configuration. These expres-
sions are evaluated numerically for weak magnetic field
conditions in Sec. III, along with discussions of results
obtained. Our calculated results confirm that the nega-
tive electron mobility is indeed strongly affected by the
applied magnetic field, especially at low temperatures
( T(60 K ). In this, we include low magnetic field
corrections to dynamic screening of the electron-hole in-
teraction and phonon scattering interaction, as well as
circularity of the carrier orbits in the magnetic field.

II. FORMULATION

The balance equation analysis presented in Ref. 3 is
employed here, with the addition of a constant magnetic
field in the z direction. Such an approach has been
adopted to study a variety of magnetotransport problems,
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such as hot-electron magnetotransport in bulk semicon-
ductors, ' in quasi-2D quantum wells, and the linear
and nonlinear magnetophonon effects. ' In this paper,
we are concerned with steady-state magnetotransport in a
two-dimensional electron-hole plasma confined to the
GaAs region of a GaAs-Al Ga& As heterostructure,
subject to a weak electric field applied parallel to the
heterolayer, and a magnetic field perpendicular to the
heterolayer. The quantum well is taken to have width a,
in which there are N& electrons per unit area, with
effective mass m &, and charge —e, and X2 holes per unit
area, with effective mass m2 and charge e. Carrier tun-
neling out of the well is neglected, and the electrons are
assumed to populate only the lowest conduction subband,
and holes populate only the topmost valence subband.
The confinement of the electron (hole) in the quan-
tum well is described by the envelope function
g(z ) =(2/a )' cos(m.z/a ) for —12/2 &z & a/2, and it
vanishes everywhere else. The wave functions in the
plane of the quantum well are the usual Landau states in
a magnetic field. The analysis leading to the balance
equations closely follows that in Ref. 3 and will not be re-
peated here. The resulting force-momentum balance
equations are also similar in form to the field-free case of
Ref. 3 (B=0), except for an additional term representing
the Lorentz force:

to obtain the drift-velocity components in terms of the
external fields

u1„=(eE/D) [N1(NzeB) S1

+ [N 1 (Sz+S ) —N2S]

X [S(S1+Sz)+S1S2]I,
vly = (eE—/D )(eB)[(N1NzeB ) +N1(Sz+S)

+N2S(S1+S )—N1N2S(S2 +2S )],

and

uz =(eE/D)I Nz(N—leB) Sz

+ [N1S—Nz(S1+S)]

X [S(S1+Sz)+S1S2]I, (9)

with

uzy
= (eE/D —)(eB)[(N1NzeB ) +N 1S(S2+S)

+Nz(S, +S) —N, N2S(S, +2S)],
(10)

Nl e(E+—v
1
X8)+ f1(vl )+ f lz(vl —vz) =0,

Nze(E+ vz XB)+fz(vz) —f,z(vl —vz) =0, (2)

D = [N1Nz(eB ) +S(S1+Sz )+S1S2]
+ [Nl eB(Sz+S ) NzeB(S1—+S)]

f (v )=v,S, j=1,2 (3)

where v& and vz are the electron and hole drift velocities,
respectively, and f,(v, ) [ fz(vz)] is the frictional force ex-
erted on the electron (hole) by the lattice (impurities and
phonons}, and flz(vl —vz) is the Coulombic force be-
tween the electrons and the holes. In the weak-electric-
field limit the force functions may be linearized with
respect to the drift velocities as

pxx= vlx/E i

Pyx= "ly/E ~

h
I xx =V2x /E

h
pyx =uzy /E .

(12a)

(12b)

(12c)

(12d)

Under the present decomposition, we may define the
components of the electron and hole absolute mobilities
as

and

f12(vl v2) =(v1 —vz)S (4)

Following Ref. 3, we define the various relaxation times
through the relations

N, e(E+v, XB—)+vlS, +(v1 —vz)S=O,

Nze(E+ vz X B)+vzSz —(v, —vz)S =0 . (6)

Clearly S =f '(0) and S=f 1z (0). Substituting Eqs. (3)
and (4) into Eqs. (1) and (2), we obtain the linearized
force balance equations

7
&

= 1V]I &
/S

&

72 N2m2 l 2

712= —Nlm 1 /S

(13a)

(13b)

(13c)

In the remainder of this paper we take E=Ex, 8=Hz,
and v =u„x+v y. The vector equations [(5} and (6)]
can now be written in component form, which are solved

721= Nzmz/S . — (13d)

In terms of these relaxation times, the components of the
mobilities are

1M„'„=(1MO/D1)[(C0,272) +(1+Nl m, 72/Nzm27, 2 m172/m27—,2)(1+71/712+N, m172/Nzm2712)],

I y (PO/ 1)(~ 272)[(~ 171)(~ 272)+(m 1 lm2)(72712+7172/~12)

+(mz71/m, 7z)(1+N, m17z/Nzmz7, z) —(7, /7, z+2N, m17112/NzmzT12)],

p„"„=(pO/Dz)[(O1„7,) +(1+Nzm 271/Nlm1721 m 271/m1721)(1+72/721+Nzm271/Nl m1721)]

(14)

(15)

(16)
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(p'0/Dz )(+ )r) [ + ) ) )(~ zrz)+(mz l ) )(r)rzl+r) 2/~21)

+(m) rz/mzr) )(1+Nzmz~) /N) m) rz) ) —(rz/rz)+2Nzmzr)rz/N) m )Hp))], (17)

where )Leo=ex)/m) and ))co=erz/mz are the electron and hole mobilities at A=0 and without e-h interactions;
co, )

=eB /m, and co,z =eB /mz are the cyclotron frequencies for the electrons and holes, respectively. Furthermore,

D) =[(co,)r))(co,zrz)+(1+r)/r)z+N, m, rz/Nzmzr)z)]

+ [(co,)r) )(1+N, m, rz/Nzmz'T)z) (co z'Tz)(1+ r) /r)z)]
and

Dz [(co&)r) )(co&zrz) + ( 1 +rzlrzi+Nzm zr) /N) m ) rz) )] + [(co,)'c) )( 1 +~z/rz) )—(co,zrz )( 1 +Nzmzr) /N) m ) rz) )]

(19)
Equations (14)—(19), along with the magnetoconductivity tensor elements

e ho. =X&ep +%2ep
and

o =X&ep„' +%2ep" (21)
describe quite generally magnetotransport in a two-component system under a transverse magnetic field of arbitrary
strength, in the presence of interactions between the two types of carriers. %'hereas the zero-Geld limits of the mobili-
ties given by Eqs. (14)—(17) are exactly those presented in Ref. 3, it is also readily shown that upon neglecting interac-
tions between the two components, Eqs. (20) and (21) give the known noninteracting two-component magnetoconduc-
tivity.

The derivatives of the frictional forces are, as in the zero-magnetic-field case, given by (j= 1,2)

fj(U& )
a

BUJ jv. =0
= g q„(2m.e /)cq) N(q) ftzj'(q, co)

q co—0

aIld

+(2/T) g ~~, (Q, A)~ ~I(iq, )~ q„'[—n'(Q&z/T)]ft'zj)(q, Q&z),
QA,

(22)

&
f»(U)

BU v=0

=(1/T) g q [V(q)] I (dco/rr)[ —n'(co/T)]fthm"(q, co)Az '( —q, —co) .
q

(23)

However, unlike the zero-Geld case, these quantities now
depend on the magnetic field through the imaginary part
of the density-density correlation functions fthm~ (q, co).

In Eqs. (22) and (23) the 3D wave vector Q is decom-
posed as Q=(q, q, ), with q=~q~. The first term in Eq.
(22) represents the contribution from carrier-impurity
scattering, with N(q ) being an effective impurity density.
%"e consider the case where there are ionized dopants
within a narrow space-charge layer with area density X;
at a distance s from the interface, in the barrier of the
Al Ga, As side. Hence

N(q)=N, Z exp( —2qs)[I(q)] (24)

ft' '(q, co) =II' '(q, co)/[1 —V(q)II' '(q, co)], (25)

where II'~'(q, co) are the 2D density-density correlation

with I(q)= Jdz exp( —qz)~g(z)~ being a form factor.
The imaginary parts of the density-density correlation

functions of the quantum-well system with only electrons
(j=1) or holes (j=2) present are, in the random-phase
approximation (RPA),

I

functions for noninteracting electrons (holes) in the pres-
ence of a magnetic field. V(q) is the electron-electron
(hole-hole) matrix element of the Coulomb potential

V(q)=(2me /)cq) J dz Jdz'exp( —q~z —z'~)

X fg(z)['/g(z')/', (26)

where ~ is the background dielectric constant. We have
neglected the difFerence between the dielectric constants
of the GaAs region and the Al Cxa) „As region (which is
small) and the accompanying image potential. The
second term in Eq. (22) comes from phonon scattering
where a 30 plane-wave representation is adopted to de-
scribe equilibrium phonons at temperature T (the hot-
phonon e6'ect is not considered here, since it does not
significantly change the results, see Ref. 2) with wave vec-
tor Q, frequency Q&&, in branch k, which couples to
the carriers through the matrix element MJ. (Q, A, ).
n(x)=[exp(x) —1] ', and n'(x)=dn(x)/dx. (Units in
which )))=k)) = 1 are used in all the expressions. )

Mobility calculations in the present case are similar to
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those carried out previously for the 8 =0 case. The only
complication comes from the magnetic field dependence
of the density-density correlation function, whose nonin-
teracting limit is well known, ' ' and is commonly given
in terms of a series of associated Laguerre polynomials.
However, it is also a well-known fact that the 5-function
nature of the 2D density of states in a quantizing magnet-
ic field gives rise to serious divergences in the density-
density correlation function. To avoid this difficulty, a
Landau level linewidth has to be introduced, which ac-
counts for the level broadening due to lattice scatter-
ings. '" On the other hand, our main concern in the
present study is the inAuence of the magnetic field on the
electron-hole scattering through the change in the motion
of the carriers from straight-line orbits to circular orbits.
Such circular motion occurs even for relatively low mag-
netic fields where Landau quantization is unimportant.
We may take advantage of this to simplify our considera-
tions by expanding the full magnetic-field-dependent
density-density correlation function, and keep only terms
of lowest order in magnetic field strength (-8 ). Such
an expansion is valid, provided that the magnetic field is
weak in accordance with'

co, /co((1, (me@, /q )(1/T or 1/p) ((1,
(27)

co, (1/T or 1/p)((1,

(1/T or 1/p for nondegenerate or degenerate cases, re-
spectively). Here co, =eB/m is the cyclotron frequency
for a particle with mass m and charge e; p is the chemical
potential. Under the conditions of Eq. (27), it is readily
shown, following the procedure outlined in Ref. 15 for
the 3D case, that the 2D noninteracting density-density
correlation function in a weak magnetic field is given as

H( q, co ) = [1+h i T d /d p+ ( h z /4 )T d Idp

+(h3/24)T d Idp ]P(q, co), (28)

where

h, =me@, /8q T,

h =(co /T )( —' —m co /q )

(29)

(30)

h3=(co, /T )(q /16mT+m co /Tq mes /2—Tq ),
(31)

and P(q, co) is the field-free (8 =0) density-density corre-
lation function for noninteracting particles, ' which for
arbitrary temperature and particle concentration is given
by (P =P, +iP~ )

and

1

P, (q, ~)= —(m/2vrq) I dx(1 —x) ' [(q/2 mco/q)—fo(x(q/2 mcus/q)—~/2m)+(~~ —~)],
0

Pq(q, co)= —(m/2vrq) I dx x ' [fo(x/2m+(q/2 — emu/q)~/2m )+(co~ —m)],
0

(32)

(33)

with fo(s)= [exp[(c.—p)IT]+1] '. A short derivation
of Eq. (28) is outlined in the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

The formulation presented above is used to calculate
numerically the minority-electron mobility and majority-
hole mobility as functions of the lattice temperature, in
the presence of a weak magnetic field. The lattice scatter-
ing mechanisms considered here are polar-optic-phonon
Frohlich coupling and acoustic deformation potential
coupling with electrons. For holes, in addition to the
aforementioned couplings we also include the nonpolar-
optic-phonon coupling. The same material parameters of
Ref. 3 are used here. These are electron densityX]:3 X 10' cm, hole density X~ = 1.5 X 10" cm
quantum-well width 112 A, electron effective mass
m, =0.07mo (mo is the free-electron mass), hole eft'ective
mass m&=0. 4mo, GaAs static dielectric constant 12.9,
optical dielectric constant 10.8, longitudinal optical-
phonon frequency 35.4 meV, lattice mass density 5.31
g cm, longitudinal sound velocity 5.29 X 10 cm s
transverse sound velocity 2.48 X 10 cm s ', conduction-
band deformation potential 8.5 eV, and valence-band de-
formation potential 9.0 eV.

Screening of the electron-hole interaction and carrier-
phonon interaction is included making use of the RPA
density-density correlation function of Eq. (25), which is
calculated with the aid of Eqs. (28)—(33). To simplify the
numerical calculation we have used the zero-temperature
density-density correlation function in place of Eqs. (32)
and (33), and have taken the chemical potentials to be in-
dependent of the magnetic field.

Results of our numerical computation are presented in
the figures. Minority-electron mobility element p„ is
plotted as a function of temperature in Fig. 1 for several
values of the magnetic field strength. A similar set of cal-
culation for the majority-hole mobility element p is
shown in Fig. 2. The corresponding tensor elements p'
and p" are presented in Fig. 3 and Fig. 4, respectively.

The conditions for the occurrence of negative
minority-electron mobility (corresponding to p here)
have been discussed extensively in the literature. ' The
most crucial requirement is that the electron-hole scatter-
ing dominate over hole-phonon scattering, which in the
case of 8=0 is given in terms of the electron-hole
scattering time ~&z and the hole-phonon scattering time ~z
as r, z/mi (rz/mz. In the present case this condition is
modified by the introduction of the magnetic field. The
modified condition is easily obtained from Eq. (14), which
gives the criterion for negative minority-electron mobili-
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FIG. 1. p„' vs temperature for various magnetic field
strengths. (a) 8=0.0, (b) 8=0.1, (c) 8=0.5, (d) 8=1.0, (e)
8 =5.0 T.

T(K)

FIG. 3. p~„vs temperature for various magnetic field
strengths. (a) 8=0.1, (b) 8=0.5, (c) 8=1.0, (d) 8=5.0T.

ty, in the usual situation (N, m, r2/Xzm, r» «1,
r, /r» «1), as

(r,z/m, )[I+(co 2')'] &12/mg (34)

It is easy to identify the two competing effects of the
magnetic field in the above inequality if we ignore for the
moment the change of T2 due to the field. The left-hand
side of Eq. (34) contains two factors, r&2 and I+(co,2r2) .
The former, ~,2, decreases with increasing magnetic fieM
because of the enhancement of electron-hole scattering
associated with their greater proximity due to the bend-
ing of the carrier orbits by the magnetic field, while the
latter obviously increases in connection with the general
geometrical increase of magnetoresistance. The com-
bined result is such that the negative minority-electron
mobility is reduced by the magnetic field as shown in Fig.
1, which indicates that the general geometrical increase
of magnetoresistance dominates the determination of the
electron mobility. Figure 1 clearly shows that the magni-
tude of the electron mobility is reduced as the magnetic

field is increased. The majority-hole mobility is similarly
affected by the magnetic field, and Fig. 2 shows its reduc-
tion by the magnetic field.

As in the zero-field case, electron-hole drag depends
strongly on the lattice temperature. Since the electron-
hole scattering is more effective at low temperatures,
while the phonon scattering is weak at such tempera-
tures, one expects to observe negative minority-electron
mobility at low temperatures. Our calculated p'„„(Fig. 1)
for all magnetic field strengths becomes positive at tem-
peratures 60—70 K. The lower temperature (60 K) corre-
sponds to 8=5 T, while the higher temperature is for
8 =0. Beyond 70 K, optical-phonon scattering becomes
so strong that the magnetic field has very little effect on
the carrier mobilities. This is seen in all the figures
presented, and is expected from simple physical reason-
ing. For the nonquantizing fields considered here, the
most important of the magnetic field effects can be mea-
sured by the parameter ~,~, where ~ is a typical scatter-
ing time. If r is small (which is the case for optic-phonon
scattering above -50 K), such that co,r «1, the carrier
travels through a very small part of the circular orbit be-
fore being scattered again. These small arcs deviate only

R

~e 2

-1- c

~~
~ ~

0
0 20

T(K)

60 $0 100

0 20 40 60 $0 100

FIG. 2. p"„vs temperature for various magnetic field
strengths. (a) 8=0.0, (b) 8=0.1, (c) 8=0.5, (d) 8=1.0, (e)
8 =5.0 T.

T(K)

FIG. 4. p~ vs temperature for various magnetic field
strengths. (a) 8 =0.1, (b) 8=0.5, (c) 8 = 1.0, (d) 8=5.0 T.
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slightly from straight-line paths, rendering the magnetic
field ineffective in changing the carrier transport.

At extremely low temperatures (T 510 K), carrier-
lattice scatterings become negligibly weak (we do not
consider impurity scattering here), and this creates a
qualitatively different physical situation. In this case the
carriers circle the magnetic field direction B=8x
indefinitely, and a static electric field E=Ex results in
the same drift velocities (E—/8 )y for both electrons and
holes [this is also obtained upon setting S, =Sz=0 in
Eqs. (7)—(10)]. Consequently, the frictional Coulomb
force between electrons and holes fiz(v, —vz) =(v, —vz)S
also vanishes because of the zero relative velocity, for any
nonzero applied magnetic field, just as Dreicer found for
a gas plasma. ' In terms of the mobility elements, this
leads to the results p'„=p"„,=0, and p„'„=—p~„=1/8,
for any nonvanishing magnetic field. These results are
clearly demonstrated in our calculations: In Figs. 1 and 2
the diagonal elements of the mobilities for 8%0 tend to
zero as the temperature approaches zero, whereas in
Figs. 3 and 4 the off-diagonal elements of the mobilities
tend to 1/8 or —1/8 in the same limit.

To summarize, we have presented a general formula-
tion for the problem of magnetotransport in a quasi-2D
system with two types of carriers for arbitrary magnetic
field strength, taking into account carrier-lattice interac-
tions, as well as interactions between different types of
carriers, both dynamically screened by interactions
among like carriers. Our formulation has been applied to
calculate electron and hole mobilities in a weak magnetic
field. The calculated results presented here clarify the
roles played by the magnetic field, the lattice tempera-
ture, and the scattering mechanisms, in determining the
magnetotransport properties of such a two-component
system. Special attention has been focused on the
inhuence of the magnetic field on electron-hole drag, and
the associated phenomenon of negative minority-carrier

mobility. We have found that the general geometrical
magnetoresistance increase dominates over magnetic
enhancement of electron-hole scattering except at very
low temperature, where phonon scattering becomes
ineffective. In the latter case, we find that even a small
magnetic field can reduce the velocity of electrons rela-
tive to holes to zero, and thus drastically reduce the
effectiveness of electron-hole scattering. As such magnet-
ic fields are readily available, it will be of interest to ex-
amine this breakdown of carrier drag in favor of Hall
drift experimentally.

ACKNO%'LEDGMENTS

Some of the computations were performed at the John
von Neumann National Supercomputer Center. We are
grateful to the Staff at JvNC for their assistance.

APPENDIX

f11(q,co)= ,' f ——fo(co')R(co',co, q), (A2)

where

In the following we outline how one may expand the
magnetic-field-dependent 2D density-density correlation
function when co, is small [in the sense of Eq. (27)]. Such
a procedure is easier to carry out starting from the in-
tegral representation of Horing and Yildiz, ' than from
the conventional infinite-series representation. ' '" From
Ref. 12 one can write (P denotes principal value)

I II

IIi(q, co)=Pf f fo(co')R(co', co",q),2' 2& Q) Q)

(Al)

and

i ~+& ds, sinh(co's/2) cos(co,y /2) —cosh(co, s /2)R(,co', q)=mco, dy e '"~~ e ' exp—oo —ico+h 277l tanh(co~s/2) 2m co~ sinh(co, s /2)
(A3)

For small co„R(co, co', q ) can be expanded in a power series of co„which to order co, has the form

2 2 2 2co,s q co, 2 2R ( co, co', q ) =2m dy e e'" i 'sinh(co's /2) —1+ + (y1+s~)~ e ~ ~ ~am~

Qo —i co+6 27Tl s 12 384ms

(A4)

The y integration can be evaluated as the Fourier transform of a Gaussian along with derivatives, resulting in

R ( co, co', q ) =2m
8am

q
s ' i hs(cno' /2s)( 1+H, s+Hq +sH3s )e(—i oo+6 27Tl

(A5)

mt'
H2=

8q

5'
48

m co (co') q co m co (co')
H3 +

4q ~ ' 384m 24q 6

mco~(co )

48q
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8mm
R(co, to', q)=m (A6)

dto dto2 dco ~ (to —
q /Sm —m co' /2q +to'/2)'

where e(x) is the Heaviside unit-step function. Upon substituting this into (Al) and (A2), one recognizes that the to
derivatives can be turned into p, derivatives through integration by parts, and that the to" integral in (Al) is a tabulated
Hilbert transform. ' After redefining the constants H„H2, and H3, one obtains the expressions given by Eqs.
(28)-(33).

Using the identity s exp(cos ) =(d /de)exp(tos ), the powers of s can all be expressed in terms of to derivatives, and the s
integral is now of standard form'
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