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The partial differential equation which describes the geometric kink chain oscillating in an atmo-
sphere of uniformly distributed paraelastic interstitials and, in addition, decorated by a dragging
point defect at the midpoint, is solved exactly with use of the Laplace-transformation technique.
The internal friction coefficient and the modulus defect are obtained in closed forms which indicate
the existence of two separate peaks. The Cole-Cole diagrams are also investigated which show irre-
vocably the splitting of the original cold-work peak into two subpeaks with an increase of the drag

strength of the decorating point defect.

I. INTRODUCTION

The foremost theoretical description of dislocation
damping was formulated by Koehler! and later developed
in more detail by Granato and Liicke.?3 In the standard
theory, dislocations are treated as the analog of strings
and the damping is determined by the viscosity of the lat-
tice and the length of such strings. In the Koehler-
Granato-Liicke (KGL) theory not only the nodal points
on the dislocation network, which are intrinsic pinners,
but also the point defects which lie on dislocations are
taken as firm pinning points. The work of Simpson,
Sosin, and Johnson*> on electron-irradiated copper and
the study of Seiffert, Simpson, and Sosin® and Seiffert” on
electron-irradiated high-purity polycrystalline aluminum
suggest that the standard KGL theory should be general-
ized to allow the point defects to be dragged with the os-
cillating dislocation line. For many years, experiments
on internal friction were interpreted in terms of the early
dragging-point-defect theory of Schoeck® or Simpson and
Sosin® where the inertial term, which is especially impor-
tant at high frequencies, was completely neglected in
their treatment.

In the view of certain inconsistencies as discussed by
Hirth!® in great detail, Seeger,!! for the general case of
interstitials (C,N,O,H) in body-centered-cubic metals
(bce), and Hirth, !? for the specific case of interstitial hy-
drogen in bcc iron, suggested that the cold-work peak
could be explained instead by a kink-pair model. Anoth-
er possible source for the cold-work peak formation is the
harmonic oscillations of the geometric kink chain in the
atmosphere of paraelastic interstitials as discussed exten-
sively by Ogurtani and Seeger!>!* in recent years.

We should mention here very clearly that the
geometric kink-chain model, which was utilized by
Seeger and Schiller, '* Suzuki and Elbaum, !¢ and later by
Ogurtani and Seeger,'>!* has an identical mathematical
macrostructure in comparison with the dislocation-string
model (in linear dissipative mode), which was advocated
by Koehler,! and extensively employed by Granato and
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Liicke, '”'® Schoeck,® Simpson and Sosin,®!° Brails-
ford,?° and later by Ogurtani?! in dislocation relaxation
phenomena in metals that were subjected to severe plastic
deformation, as long as one stays in the domain of the
linear Newtonian viscosity regime. 2223

In the present paper, in order to elucidate the impor-
tance of the decoration of the geometric kinks along the
nonscrew dislocations in bcc metals by heavy dragging
interstitials, in a highly localized fashion, the complete
mathematical analysis of a partial differential equation
will be given in terms of a Laplace-transformation tech-
nique. This partial differential equation contains not only
a linear and uniform drag-force term associated with the
atmosphere of paraelastic interstitials but also a localized
power dissipation contribution due to additional point
defects (may be the same type of interstitial species) at the
midpoint of the kink chain or dislocation string.!® Using
the compact or closed form of the exact solution, which
is for the first time obtained by the author, the internal
friction coefficient and the modulus defect are calculated
in Sec. III. The general behavior of the internal friction
coefficient as well as the Cole-Cole diagrams are simulat-
ed using the plotter facilities of an IBM-PC60 minicom-
puter by the newly introduced normalization technique of
Sec. IV.

II. KINK-CHAIN DYNAMICS UNDER THE ACTION
OF A LOCALIZED DRAGGING-POINT-DEFECT
DECORATION

According to our extensive analysis as well as comput-
er modeling experiments'>!* the mathematical model for
the equation of motion of a geometric kink chain which is
decorated by a mobile (dragging) point defect at the mid-
position may be given by the following partial differential
equation:

M, 3%u +[By+B,8(x —L /2)19,u —c, 3%, u=F;sin(wt),
(1)
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where ¢, =S¢ (a?/2d,) and F,=ba,o,. Here, S§ is the
logarithmic factor of the elastic part of the dislocation
line tension, d, is the equilibrium separation between the
kinks along the dislocation line, B, is the drag coefficient
associated with the uniformly distributed interstitial
cloud, and B, is the damping constant of the decorating
point defect. Similarly, M, is the effective mass of a kink,
a; the spacing between neighboring Peierls valleys, b is
the Burgers vector, and o, is the resolved shear stress.

As a typical application of the Laplace transform, the
following expression is obtained from Eq. (1) plus the
boundary conditions of the initial rest state:
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M, p%i+p[By+B;5x —L/2)]a ~ck5;—i2
X

=F/(p—iw); ((2)
similarly, the natural boundary conditions become
#(0)=u(L)=0. (3)

The overbar on any function denotes the Laplace
transform of that function. The above boundary-value
problem has the following exact solution in the Laplace
space:

sinh[B(L —x)/2]+(2pd, /Bwy)sinh(BL /4)sinh[B(L /2—x) /2]

#;(x)=2#,sinh(Bx /2)

cosh(BL /2)+ (pd, /Bw,)sinh(BL /2) ’

0<x<L/2 4)

where we have used the following substitutions: dy=B,/M,, d; =B, /M, w3=c, /M, (the natural frequency of the
system), and B*=p (p +d,)/w3. Here, u, represents the particular solution of the differential equation (3), and it is
given by i, =(F, /M, )/p(p +dy)(p —iw). The solution in the region of L /2 <x =L is the mirror image of #;(x) with
respect tox =L /2.

For the internal friction phenomena we are interested in the steady-state solution of the problem that can be immedi-

ately obtained from Eq. (4) by the inverse Laplace-transformation procedure, which yields
A sinh[ 4 (L —x)2wy]+(2id @ /wq)sinh( AL /4w )sinh[ A (L —2x) /4]

u;(x,t)=2sinh( Ax /2w,)

X(Fy /M, A%)expliot) ,

where 4 =[i(i +d,)]'/?, and the imaginary part of the
above expression is the one that corresponds to the solu-
tion (steady state) of Eq. (1). The correctness of this ex-
pression can be easily verified if one takes d;— o, then
one has, from Eq. (5),

sinh[ 4 (L —2x) /4]
cosh( AL /4w,)

X(Fy /M, A?)expliot) , 6

u;(x,t)— 2 sinh( Ax /2w,)

which shows that the loop length became L /2, and the
dragging!? point defect became the “firm pinning point.”

III. THE DECREMENT AND THE MODULUS DEFECT

To find the decrement and the apparent modulus
change we will follow the general procedures of
Nowick,?* with the exception of the internal friction
directly associated with the isolated dragging-point-
defect motion (singularity), where we will utilize the more
general concept of energy dissipation in the calculation of
the internal friction contribution directly related to the
dragging-point-defect motion itself. Actually, we have
done a thorough treatment of this problem by utilizing
three different procedures: the calculation of the energy
loss directly from the drag-force term, the calculation of
the total energy loss from the power-input term, and
finally the limited Nowick procedure, as described in this

A cosh( AL /2wy) +(id @ /wy)sinh( AL /2wg)

(5)

paper. All seemingly independent procedures resulted in
exactly the same answer.

The dislocation strain €; produced by a loop of length
L in a cube of unit dimensions is usually given by Lb{u ),
where (u ) is the average displacement of a dislocation of
length L. Thus, if A is the total length (the density of
dislocations) of the movable dislocation line,

ed=Ab(2/L)f0L/2u1(x,t)dx , (7)

due to the symmetry with respect to the midpoint at
which the isolated dragging-point defect is situated. The
relation between the total strain €, and the applied stress
can be written

e,=J(w)o expliot) , (8)

where €, =€, +¢€,. The elastic strain €, is given by the
elasticity theory, €,=o0,exp(iwt)/G. With these
definitions of stress and strain, the appropriate measure
of the internal friction is the logarithmic decrement

d=mJy(0) /] (0)=7GI}(w) , 9)

where J(0w)=J(w)+iJ,(w). Similarly, the modulus de-
fect (the apparent fractional decrease in elastic modulus
due to dislocation motion)
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us introduce the parameter a as

?=iolio+dy)/wf, (11)

AG /G =GJ(0)—1=GJ{(w) . (10)

In the calculation of the average displacement of a
dislocation loop of length L, we will intentionally use the
closed form which is given by Eq. (5). However, first let

which upon substitution in Eq. (5) yields, with the usage
in the integration as denoted by Eq. (7),

2Ab%c e'" L
e,=————— |a
d Cka3L

sinh(aL /2)+4i(u? /aL)sinh*(aL /4)
cosh(aL /2)+i(u3 /aL)sinh(aL /2)

) (12)

where u3 =wB,L /2C,. On the other hand, it is very useful to introduce the identity!* that can be obtained from Eqg.
(11),

a=(ueMy/L)exp(ify) , (13)
where

M3=2(1+w*M?/B3)'?, (14)

20,=tan" '(By /M) , (15)
and

ud=wByL*/2C; . (16)

Here, the latter parameter u, is a dimensionless parameter which was also introduced by Simpson and Sosin® and Ogur-
tani.!*> Now and then we are going to restrict our treatment of the problem for the relaxation mode, where the inertial
term M, is taken to be equal to zero, which results in M;=2!"2 and 6= /4 from Egs. (14) and (15). Upon substituting
these results into Egs. (13) and (12), one can obtain the following exact expressions for the logarithmic decrement and

the modulus defect, after very tedious mathematical manipulations (the observed spectrum):
87 =80ALX7* /16pu3)[ 10— ( (sinhug+singg) /2 + R pof coshug+cospg—2 cosh(pug /2 )cos(ug/2)]
+ R *(u3/2){sinhuy—sinuy+2[ cosh(py /2 )sin(uy/2) —sinh(uy/2)cos(uy/2)1}) /DY, (A7)

and

AG /G =8,AL* (7 /16u3)( (sinhuy—sinpy) /2 + R pol coshpy— cospg—4 sinh(py/2)sin(po/2)1/2
+ R %(u2/2){sinhuy+singy— 2[sinh(uy /2 )cos(pg /2) +cosh(py /2 )sin(ug/2)1} ) /D (18)

where

D = (coshuy+cospg) /2+ R pg(sinhpg—sinpg) /2

+ Rud(coshuy—cosiy) /4 . (19)

In the above expressions we utilized the following short
hand notations: R =(u,/py)? and 8,=8Gb*/m°C,,
where R is a very important system parameter which is
also equal to B; /LB,.

Up to now we have been dealing with the energy dissi-
pation, which is continuously distributed along the kink
chain taking into account the localized (singularity) dissi-
pation at the point-defect decoration. One can easily
show that the energy dissipation per cycle at the point-
defect decorator may be given by

AW oo =(mB 4 /0)3,u; (L /2,00d,uf(L /2,t) ,  (20)

and the total energy loss due to point-defect decorators
per unit volume of the sample may be written as

[

AWE  =(A/L)AW,.,. Hence the associated logarith-
mic decrement for the point-defect decorators can have
the following expression by utilizing Eq. (5) properly in
the relaxation mode (M; —0):

8 geco =oAL 2(m* /16u3)R o[ cosh(py/2)
—cos(uy/2)}/D , 1)

where we first made the calculation of the internal fric-
tion coefficient Q "'=AWZX_ /(m0?/G), then used the
approximate relationship between the logarithmic decre-
ment and the internal friction coefficient, § =7 Q -1

IV. DISCUSSION

In order to illustrate the general behavior of the decre-
ment which is usually measured at a given driving fre-
quency as a function of temperature, we have decided to
introduce a new universal plotting procedure in Fig. 1,
where the logarithmic decrements obtained from Egs.
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FIG. 1. Decrement plotted as a function of the renormalized frequency Bo=a)/ w%o for various values of the damping strength

ratio R. The observed peaks are obtained according to Eq. (17), and the decoration peaks are calculated using Eq. (21). The
difference between these two peaks yields the relaxation peak associated with the uniformly distributed paraelastic interstitials called

the parent peak.

RECIPROCAL TEMPERATURE
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FIG. 2. The observed peaks are given as a function of the renormalized relaxation frequency on a double-logarithmic plot for vari-

ous values of the damping strength ratio. The decomposition of the observed peak into two Debye-type relaxation peaks, the decora-
tion peak and the parent peak, for large values of R is clearly illustrated in these plots.
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(17) and (21) are shown with respect to the renormalized
relaxation time () B, =w/ w%o for the various values of the

damping strength ratio R. Here, by definition, we have
po=(m?/2)Qp , which was also utilized by the author in

his previous work. !* a)%o is really the fundamental relax-

ation frequency of a vibrating kink chain without inertia,
and it is given by a)(};oz(‘n'/L)ZCk /B,. In this plot the
peak which is denoted as the parent peak is associated
with the uniformly distributed interstitials along the kink
chain, and it is obtained by the following relationship:
8p=087—84.c.- Figure 1 reveals that, when R =0, which
corresponds to the case without the decorating point de-
fect, the increment 8, indicates a well-defined single max-
imum with respect to the viscous drag coefficient B, or
the temperature, at By~ 1. Similarly, for the large

values of the damping strength ratio, namely, R > 10, the
complete separation of the observed internal friction
coefficient 8, takes place, where at the low-temperature
side (the large values of QBO) the parent peak due to
paraelastic interstitials is situated, and at the high-
temperature side (the low values of QBo) a new peak

which is directly related to the localized point-defect
decoration is placed. As can be seen from Fig. 2, both
peaks, the decoration peak and the parent peak, are ex-
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actly Debye type in shape. For this terminal regime, the
parent peak has a relaxation strength which is a factor of
4 smaller than the original peak without the decorator.
Also, there is a proper peak shift in the parent relaxation
peak according to the new loop length of L /2. There-
fore, as one might expect, intuitively, the sticky heavy
decorator becomes a firm pinning point as far as the re-
laxation behavior of the kink chain is concerned.

The true nature of the decoration peak which is calcu-
lated according to Eq. (21) can be easily understood if one
investigates the limiting behavior, analytically. Namely,
one can obtain the following expression for large values
of R and small values of pu, by keeping u2 =R u3 constant
during the limit procedure:

8 geco— O AL X m* /128) (% 72) /(1 +pb /4) , (22)

or equally well one has the following form:

8 geco— OoAL (w* /128)(7?Q, /4) /[ 1+(7?Q, /4)?]
(23)

where Q,=wB,L/m*C, is the normalized relaxation
time of the decorator. The expression (23) represents the
logarithmic decrement of the kink chain which is
dragged by an isolated point defect at the middle, and in
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FIG. 3. The Cole-Cole diagrams for various values of the damping strength ratio are obtained from Eq. (17) and Eq. (18) using the
parametric plotting technique. The decomposition of the original peak into the decoration peak and the parent peak (loop length
L /2) is clearly seen in these diagrams.
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the absence of the uniformly distributed dragging inter-
stitials. The decoration peak maximum occurs at
Q,=4/7* and the relaxation strength is about 76% of
the standard Snoek-Koster relaxation peak. We should
mention here that the standard Snoek-Koster peak is al-
ways assumed to be due to uniformly distributed intersti-
tial atmospheres.

In Fig. 3 the Cole-Cole diagrams, which are obtained
by plotting J, as a function of J; for the various values of
the damping strength ratio R according to Egs. (17) and
(18), are presented. This figure clearly shows that the
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original relaxation spectrum associated with the uniform-
ly distributed interstitials splits into two subpeaks upon
decoration with heavy dragging-point defects. The relax-
ation strength of one peak is | of the original peak, and
the other subpeak has a relaxation strength of 3.
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