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The anisotropic tight-binding model, which is defined by a disordered tight-binding Hamiltonian
with a transfer-energy-matrix element in the z direction, ¢, different than the one in the x-y plane is
studied using finite-size scaling methods. The dependence of the mobility edge on the strength of
anisotropy ¢ (0=t =< 1) is obtained for the center of the band, E =0. Even for very low-z values an
appreciable amount of disorder is needed to localize the E =0 state. These results are found to be
in satisfactory agreement with the predictions of the potential-well analogy, coupled with the

coherent-potential approximation.

I. INTRODUCTION

Much of the work on disordered systems has been con-
centrated on isotropic systems.!? Developments based
on the analogy of the localization problem with that of a
bound state in a potential well® allows us to calculate
transport or localization properties® such as the position
of the mobility edge, localization length, etc., from quan-
tities that can be obtained from mean-field theories such
as the Soven-Taylor coherent-potential approximation*
(CPA). These results, which are based on the approxi-
mate scheme of the CPA and the potential-well analogy
(PWA), were successfully checked with the most reliable
numerical technique based on the transfer-matrix or strip
method.*!® Impressive agreement has been found for
tight-binding disordered systems in two and three dimen-
sions for a rectangular,”® Gaussian,® and binary'® prob-
ability distribution of the site energy.

Recently, the effects of anisotropy in disordered sys-
tems have received considerable attention. This is due to
the fact that the newly discovered high-T, superconduc-
tors are highly anisotropic. There is a very strong cou-
pling between the atoms in the plane and very weak cou-
pling ¢ between planes. It is, therefore, appropriate to
study the localization behavior of disordered anisotropic
systems; in particular, how the mobility-edge trajectory
and how different transport or localization properties de-
pend on the strength of the anisotropy . It is also impor-
tant to determine whether the scaling theory of localiza-
tion'!"12 is valid for highly anisotropic systems.

The purpose of the present paper is to make a detailed
numerical study of the localization behavior of the disor-
dered anisotropic tight-binding model based on the
finite-size scaling methods using the very reliable
transfer-matrix finite-scaling technique. We calculate for
the center of the band, E =0, the mobility-edge trajecto-
ry in the W-t plane, where W is strength of disorder and ¢
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the anisotropy coupling. For t =0 and ¢ =1, we obtain
the two- and three-dimensional cases, respectively, in
agreement with previous results. This trajectory is in ex-
cellent agreement with the predictions of the newly
developed PWA based on the CPA of the anisotropic
tight-binding model.

In Secs. II and III we describe the formalism and the
methods of calculation, and in Sec. IV we present and
discuss the results. In the final section we summarize the
conclusions of this work.

II. MODEL AND POTENTIAL-WELL ANALOGY
FOR ANISOTROPIC SYSTEMS

We restrict our attention to a system which can be de-
scribed with a tight-binding Hamiltonian with only diag-
onal disorder

H=T |n)e,(nl+ 3 t,,|n){ml, 2.1)

where the sites {n} form a regular cubic lattice. The off-
diagonal matrix elements ¢,,70 only for nearest-
neighbor sites. We also choose t,, =t,=t,=1 when
both sites » and m lie in the same plane z, and
t,m =t,=t =1 when both sites n and m lie in the z direc-
tion. Thus our system consists of planes weakly coupled
in the z direction. Disorder is introduced by choosing
random site energies €, from a random rectangular prob-
ability distribution of width W.

The potential-well analogy® is based on the striking
analogy in the equations for obtaining localized states in
disordered systems and bound states in local potential
wells. The mathematical proof of a real mapping of the
one problem on the other is still lacking and would be an
extraordinary discovery. Based on this analogy, one can
immediately infer some of the basic results’® of localiza-
tion theory of disordered systems such as the fact that for
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d <2 all states are localized!! while for d >2 a mobility
edge which separates extended from localized states ex-
ists. The PWA coupled with the CPA has been prov-
en’ !0 to be very successful in obtaining the mobility-
edge trajectory and localization properties around.the
metal to insulator (M-I) transition for a number of cases.
In the following, we will develop the PWA for anisotrop-
ic tight-binding system and establish the criteria for ob-
taining localized states.

The first-order approximation of the zero-temperature
(T =0) configurationally averaged conductivity* o, is
given by

_ 2e 24
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where G,(E) is the imaginary part of the Green’s func-
tion G(E)=(E —H)™}, v;(k) is the ith component of the
velocity v(k)=dE(k)/#dk, and Q is the volume of the
specimen. The maximally crossed diagrams produce a
correction to o of the following form:

50;'__‘7:""7:‘0 e?
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wh (27) f k . 2 3 2
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i=1
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(2.3a)

where p is the density of states per unit cell per spin and
the limit ©—0 must be taken. Equation (2.3a) can also
be written as

) (2.3b)

T0=""o S v3(k){(G,(Ek))?, 2.2)
k
J
So .
001 T (29)3 Jax 3 : o
o " —imhoQp+ 3 ”ﬁzﬂ —2[1—cos(k;a;)]
i=1 € a;

where a; is the effective lattice constant in the i direction
and Q= [[}-,¢;. Since our tight-binding model was
taken cubic, it is reasonable to assume that our effective
lattice is cubic as well so that a; =a, i =x,y,z. The quan-
tity @ ! introduced through the effective lattice serves as
an upper cutoff in the integral of Eq. (2.3a). It was found?
that « is proportional to the mean free path /:

a=C|l=C(v)r, (2.4)

where 7 is the relaxation time, (v ) is the velocity aver-
aged over the surface E (k)=const (zero in the present
case), and C, is a constant equal to 6.70 for the 3D cubic
case and 7.07 for the 2D square case.

At the critical value of the disorder that localization
first occurs, one has that o;(w—0)=0. Therefore, from
Eq. (2.3b) we get that

|

This expression of the localization condition has exact-
ly the same structure as the equation which determines
the critical potential depth €, for the appearance of a
bound state in a potential well in a tight-binding model
defined in the effective lattice with hopping matrix ele-
ments tf=(1,1,¢,). For this potential-well problem,* we
have a bound state when the potential-well depth ¢,
satisfies the following equation:

1 (2.6)

e
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i

[1—cos(k;a;)]
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From Eqs.K (2.5) and (2.6), a correspondence can be for-
mally established,

THQOo; tf
=2 Jax 1 2.5) — =2 |=rfc,), 2.7
(2m) 3. mhQ Tio e‘q; c
S —5 — [1—cos(k;a;)]
i=1 € where
|
Ct,)= . (21)3 fdk[1—cos(k1a1)]+[l—cos(kzaz)]—i-te[l—-cos(k3a3)] ' 2.8

Taking into account that a;=a (i =x,y,z) and
tf=(1,1,t,), we obtain from (2.6)

—eﬁiz-aam:C(te) , (2.9)
o o,

,=—2="2 (2.10)
Oxo ayO

From Egs. (2.4), (2.9), and (2.10), one can obtain the
mobility edge assuming that one can calculate 7, 0, 0,0

III. CPA TREATMENT FOR THE CONDUCTIVITY o ;,

In the weak scattering limit, the static conductivity o,
is given®* by
o (E>=31LS<E)<£>T 3.1)
i0 % 477_3 v ’ .
where i =x, y, and z, S(E) is the area of the surface
E(k)=E, and the average is taken over this surface.
Normally S(E) is tedious to calculate, even for the iso-
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tropic case of ¢t =1. The limiting values of S(E) at the
band center E =0 are

92.64 fort=1,
S(E=00=1111.66 for 1=0.

However,

(3.2)

o2
suz)(——)
v

can be expressed in terms of the lattice Green’s functions.
In particular, choosing the lattice constant ¢ as the unit
of length, we have

v v
2
=Lzﬁﬂ—)—[ImG(E;O’O’O)_ImG(E;Z’O’O)] ’

(3.3a)

and

v2 2
S(Tz>=%EZ—tZ[ImG(E;O,O,O)—ImG(E;O,O,Z)] ,

(3.3b)

where G (E ;I —m) is Green’s function of the periodic an-
isotropic tight-binding system. From Egs. (3.1) and (3.3),
we have that

920 _ ,»[ImG (£;0,0,0)—ImG (E;0,0,2)]
0.0  [ImG(E;0,0,00—ImG(E;2,0,0)] ’

t =

e

(3.4)

J
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and
2 2 2 2
(v)E<v_")+<3”_>+<gi>=<v—x>(2+te) . (3.5
v v v v

By combining Egs. (2.4), (2.9), (3.1), (3.3), and (3.4), we
can rewrite the localization criterion in (2.9) in terms of a
critical relaxation time 7, i.e.,

__1 S
¢ 64m?* C,
C(z,)
% (2+1¢,)[ImG(E;0,0,0)—ImG (E;2,0,0)]*>

(3.6)

The relaxation time 7 can be calculated through the CPA
by utilizing the relation 7=0.5#%/(ImX), where = is the
CPA self-energy obtained by solving the following self-
consistent equation:

8'1
(=== G-
For E =0, the solution X of this equation has no real
part. Hence, no shift in energy is taking place. For sim-
plicity, we will concentrate on the band center E =0.

When the anisotropy coupling ¢ equals zero, the system
is two dimensional and all the states are exponentially lo-
calized,!™* even for small amounts of disorder.!! Hence,
the critical strength of disorder W, in 2D is equal 0.
For ¢t =1, the numerical techniques as well as the CPA
give that W_=16.5 at the center of the band?, E =0. We.
are interested in finding the behavior of the W, versus ¢.

Green’s function G (Z,1 —m) is explicitly written* as

o cos[(Il;—m ), ]cos[ (I, —m,)d,]cos[ (I3 —m3)P;]
G(Z,l—m)= (27) fff Z —2cos¢; —2 cosd,—2t cosds

It can be easily shown that

__1
ImG(O;O,O,O)—;;{fO K (k) , (3.9a)

1 T
ImG (0;0,0,2)=—— fo cos(2¢:)K (k)d s , (3.9b)

_ 1 w/2
ImG(O;Z,O,O)—;Z—fO [—4E (k)

+(1+1t2cos’p;)K (k)1d ¢ ,
(3.9¢)

and

1 T, ,
c(t, ’Z?fo k'K(k')dés (3.9d)
where k?=1—t%cos’¢,/4 and k’=2/(2+1t,—t,cosds),
and K and E are the complete elliptic integrals of first
and second kind, respectively.
In the limit of small coupling ¢ —0, we obtain the fol-
lowing expressions:

dodd,do, . (3.8)
I
2 1
ImG (0;0,0,0)~—=In2— —In? , (3.10a)
T 27
ImG (0;0,0,2) =~ L , (3.10b)
41
2 1
ImG (0;2,0,0)~—=(In2—1)——1Int , (3.10c)
T 2w
Clt)~-+m32 (3.10d)
2T,
and
t,~=t*(In2+1—1ne) . (3.10e)

Hence in the t—0 limit, the localization criterion given
by Eq. (3.6) becomes

S,p(E =0)
p=2w =70, 32

(3.11)
¢ 219C, z,

This is a very interesting result. It shows that the critical
relaxation time 7, and therefore the critical disorder W,
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depend very weakly on the anisotropy coupling ¢. In oth-
er words, even for very small coupling ¢, i.e., for a quasi-
two-dimensional system, a considerable amount of disor-
der is needed to have all states localized.

IV. NUMERICAL RESULTS

In Fig. 1 we plot the density of states (DOS), of the or-
dered anisotropic tight-binding model. Notice that as the
anisotropy coupling ¢ decreases from its isotropic value of
t =1, the DOS approaches its 2D value. For ¢t =1 the 3D
DOS has two Van Hove singularities* at E =2 and E =6,
while for ¢ =0 the 2D DOS has a square-root singularity
at the band edge E =4, and a logarithmic singularity at
E =0. As t decreases from its isotropic value ¢ =1, the
band edge decreases from its E =6 value for t =1 to its
E =4 value for t =0, being equal to 4+2¢ for intermedi-
ate values. In addition, the Van Hove singularity at
E =2 for t =1 splits into two square-root singularities,
one below and one above the E =2 value. The singulari-
ty below the E =2 value eventually becomes, for ¢ =0,
the logarithmic singularity at E =0, while the singularity
above the E =2 value becomes the square-root singulari-
ty at E =4. In particular, the singularities are given by
E =2t,4—2t,and 4+2t.

In Fig. 2, we plot the behavior of the critical relaxation
time 7. as a function of ¢. 7, is calculated by using Eq.
(3.6). To obtain 7., we must know how S(E =0)/C,
changes for different values of ¢. This is not easy, due to
uncertainties in the value of C,;. However, since
S(E =0)/C, equals 13.83 for ¢t =1 and 15.79 for ¢ =0,
we can approximate it by its value for t =1 (3D). The

rrJrrrrjrrrrj
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FIG. 1. The density of states p(E) vs energy E for different
anisotropies . ¢t =1 is the case of a 3D simple-cubic lattice,
while £ =0 is the 2D square lattice case.
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FIG. 2. The critical relaxation time 7. vs the anisotropy ¢.

limiting behavior of 7., for small ¢, agrees very well with
the results obtained from Eq. (3.11).

Using the CPA, Eq. (3.7), we numerically calculated
the imaginary part 2, of the self-energy at E =0 for
different values of disorder W. Then the mean lifetime 7
is given by 0.5%%, 1. The critical 7, and thus the critical
disorder W, is obtained by using Eq. (3.6). In Fig. 3, we
plot W, as a function of anisotropy f. Notice that the
predictions of our anisotropic CPA together with the
PWA, shown as solid triangles, are in excellent agree-
ment with the reliable numerical results, shown as open
triangles, of the transfer-matrix finite-scaling method.>~’

To treat the anisotropic tight-binding model, using our
transfer-matrix method we choose the direction of the
longest length N to be along the y direction, while the z
axis, with off-diagonal coupling ¢, is along one of the
short directions. Thus, for a given ¢t and for E =0, we
calculate the largest localization length A,, of a wire of

L0 [ — — - .
r & Transter Matrix ]
I A PWA \

15F — Asymptotic

T BT BRI B l' g
10° 1074 103 102 107 |
t

o)

FIG. 3. The critical disorder W, for obtaining localized
states at E =0 vs the anisotropy ¢. Open and solid triangles are
the numerical and PWA with the CPA results, respectively.
Thick solid line shows the predictions of our asymptotic theory
[Egs. (3.10) and (3.11)]. In the inset, W, vs ¢ is plotted on a
linear scale.
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square. cross section M? and length N as N— . Then
from a plot of A, versus M, one can determine the locali-
zation properties of the system.’> 1 In particular, by
studying A,, /M versus M, one obtains a reasonable esti-
mate of the mobility-edge trajectory shown in Fig. 3. At
exactly the mobility edge for ¢t =1, A,, /M =0.6, while
for extended and localized states, we have A,, /M versus
M increases or decreases, respectively. This criterion has
been checked by us® !0 for disordered tight-binding mod-
els in isotropic 3D disordered tight-binding models with a
rectangular, Gaussian, and binary probability distribu-
tion for the site energies. In our study here, we have used
M =2-9 and N =6000.

Plotted also in Fig. 3, as a solid line, is an expression of
W, derived from Eq. (3.6) by further approxi-
mations. We have noticed that the expression
(2+te)[ImG(O;O,O,O)—ImG(O,Z,O,O)]2 varies less than
2% in the range of 0=t < 1. We, therefore, can take it as
a constant equal to 8/7% This approximation has been
used in deriving Eq. (3.11). Therefore, using Eq. (3.11)
we derive the imaginary part of the critical self-energy,
2,.. On the other hand, for small ¢, we expect small W,
and in this case the CPA equation is given by its weak
scattering limit

2
c

/%4
12, =—75Go(—iZy),

5 4.1

where G is the unperturbed Green’s function for the
two-dimensional square lattice. By this choice, we can fit
the numerical data, as well as the more complete form of
the anisotropies CPA with PWA. As t—0, W_ behaves
as |Inz| ~1/4/|1n|1nz|'/2|. '

In Fig. 4, we plot the conductivity o, versus the
strength of the disorder W for three values of z. The con-
ductivity in the other direction is given by o,=t,0,.
The conductivity o, can be calculated!® from

Jio
a;

= 4,
= Fg) 4.2)

Py
— 120001
--1=05
---121.0

log,(%;)

-2 . NS
15 20

FIG. 4. Conductivity o, (in units of 107 %2 /%a, where a is
the lattice spacing) vs strength of disorder W for the center of
the band E =0 for different amount of anisotropies ¢.
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FIG. 5. Dependence of the mobility edge of the strength of
the diagonal disorder W, for two values of the anisotropy ¢.

for i=x, y, and z, where ¢=7>/72 and f($)=1
+6/¢(¢—1). Of course, o, =0, and o,=t,0,. From
Fig. 4, notice that o, =0 if W= W_(¢). The results for
t =1 agree reasonably well with those presented in Fig. 4
of Ref. 13.

Finally, we used the transfer-matrix and finite-scaling
method to obtain the mobility-edge trajectory for ¢+ =0.1
and for all values of E. This is shown in Fig. 5, where the
strength of the critical disorder W, versus E is shown for
t =0.1. Notice that the shape of the mobility-edge tra-
jectory is similar to that for # =1 shown in Fig. 4 of Ref.
8, which has been redrawn in Fig. 5. The ¢t =0.1 trajecto-
ry is shifted to lower W and E values. For E =0,
W,=11.5, while for W =1, E,.~4.2.

V. CONCLUSIONS

This paper demonstrates that the anisotropic PWA
developed here, coupled with the CPA, is capable of pro-
ducing results for quantities such as the conductivity and
the mobility-edge trajectory not only in qualitative but in
quantitative agreement with independent numerical data.
The most striking result of the present study is summa-
rized in Fig. 3, where the dependence of W, on t is
presented. Notice that even for very small anisotropic
coupling, t =~0.001, the critical disorder W, needed to lo-
calize the E =0 state is close to W=7. This is simply
due to the fact that the two-dimensional character is very
unstable, being approached (as t—0) very slowly as
|Inz| ~!/4. In other words, even a very small off-the-plane
coupling is enough to destroy the two-dimensional char-
acter of the localization.
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