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Thermoelectric power and conductivity of heterogeneous conducting polymers
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We discuss the interpretation of thermoelectric power in heterogeneous media, and using a com-
pilation of many sets of data, we analyze the thermopower of conducting polymers as a function of
conductivity and of temperature. For samples of very high conductivity, the thermopower (but not
the conductivity) shows typical metallic temperature dependence, which is consistent with a hetero-
geneous model of metallic fibrils separated by thin electrical barriers. Metallic thermopower is ex-
pected rather generally to show significant nonlinearities as a function of temperature, and we
demonstrate that the observed thermopower in some highly conducting polymers is very similar to
the diffusion thermopower of metals in which a knee is produced at low temperatures by the
electron-phonon interaction. The thermopower of moderately doped conducting polymers, like
their conductivity, is generally consistent with a significant contribution from variable-range hop-
ping.

I. INTRODUCTION

The development of polymers with high electrical con-
ductivities' has led to considerable interest in the
mechanism of conduction and the role played by hopping
between localized states, solitons, disorder, tunneling,
and inhomogeneities. A frequently observed feature of
the conductivity of lightly doped polymers is the similari-
ty of its temperature dependence to the Mott law for
variable-range hopping between localized states (the
states in the vicinity of the Fermi level may be soliton-
like ). For heavily doped polymers, the conductivity at-
tains values comparable to those in metals and can
remain finite in the zero temperature limit, but its tem-
perature dependence generally still has the opposite sign
to that typical of metals (i.e., conductivity increases with
temperature). The thermoelectric power, in contrast,
often shows metallic size and temperature dependence for
heavily doped samples.

In this paper, we have compiled thermopower data for
a large number of polymer samples. ' We find a well-
defined correlation between the magnitude of thermo-
power and conductivity for doped polyacetylene which is
consistent with a major contribution from variable-range
hopping for dopant concentrations up to a few percent.
We also analyze the temperature dependence of thermo-
power with particular emphasis on the most metallic
samples, for which we make a new suggestion that can
account for observed nonlinearities.

It is true that highly disordered metals show a reversed
temperature dependence of their conductivity (the Mooij
correlation) ascribed to incipient localization, ' ' while
thermopower temperature dependence is not greatly
affected. ' However, it is doubtful that this mechanism is
able to account for the observations on the very highly
conducting polymers. For example, an almost
temperature-independent conductivity has been seen at
helium temperatures, "' ' rather than the anomaly
characteristic of disordered materials. Further, the mean

free path in the most highly conducting samples is too
long for incipient localization to have such a large effect
(at least in a homogeneous model). As proposed by
several authors, "' ' heterogeneous models involving
good metallic conduction in fibrils separated by thin bar-
rier regions appear to be appropriate.

Previous treatments of the thermoelectric power of in-
homogeneous polymers ' have calculated the thermo-
power by substituting the total conductivity in the stan-
dard Mott formula

m. k T d lno(E)S
E

where k is Boltzmann's constant, T temperature, e elec-
tronic charge, o(E) a conductivitylike function of elec-
tron energy E, and EI; is the Fermi energy. We point out
here, however, that this procedure, which implies that
the regions dominating resistance also dominate thermo-
power, is correct only for the particular special case in
which thermal resistance is proportional to electrical
resistance. We give a more general treatment of therrno-
power in a heterogeneous material, and show how the
contribution made by different regions to the total ther-
mopower can be weighted differently from their corre-
sponding contributions to the total conductivity. In par-
ticular, we illustrate how thermopower can exhibit metal-
lic temperature dependence while the conductivity is still
limited by thermally assisted conduction.

Cxiven the apparent importance of metallic conduction
in some polymers, it is desirable to analyze data using the
correct temperature dependence of metallic thermo-
power. It is something of a misconception that metallic
thermopower is proportional to temperature in the ab-
sence of phonon drag —such behavior has almost never
been observed. The Mott formula is applicable for situ-
ations where conduction occurs in the vicinity of the Fer-
mi level, s and the conductivity function o(E) is slowly
varying in a region of width a few times kT about the
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Fermi level. It is therefore not able to account for the
temperature dependence. of the effect of the electron-
phonon interaction on diffusion thermopower, because
this interaction causes electronic properties to vary on
the scale of the Debye energy about the Fermi level. %'e
give a detailed analysis of some highly conducting poly-
mer thermopowers in terms of the metalhc model that
has been successful for glassy metals, in which a '

characteristic nonlinearity of thermopower with tempera-
ture arises from enhancement at low temperatures by the
electron-phonon interaction. This enhancement effect,
which is analogous to the electron-phonon enhancement
of specific heat, is a general effect in metallic diffusion
thermopower, but is masked by larger nonlinearities
due to phonon drag in good crystalline metals.

II. THERMOPOWER AND CONDUCTIVITY
IN HETEROGENEOUS MEDIA

In this section we give general expressions for the ther-
mopower and conductivity of media such as fibrillar poly-
mers composed of one type of material connected electri-
cally by sections of a second type of material. Our princi-
pal purpose here is to show how the thermopower arising
in each type of material must be combined to yield the to-
tal observed thermopower; specific models for each type
of material are considered in the following section.

We consider a sample composed of two different types
of material, with conductivities o.

&
and o 2, in series in the

conduction path, as in the particular example (Fig. I) of a
polymer with fibrils connected by barrier regions of
different conductivity, or of fibrils with regions of
different conductivity (multiple fibril connections should
not change our main conclusions). Summing fibrillar
paths j in parallel, the total conductivity of the sample is

o =LA 'g (L)/A, ~'o, '+L2J A.2J'o2 ')
J

where L," is the total length of material of type i in the
path j, 3; is the average inverse cross-sectional area of
the fibril in region i, L is the length of the sample, and A

its cross-sectional area. If the fibrillar conducting paths
through the length of the sample all have the same frac-
tion of their total resistance arising from regions of type
1, the total conductivity of the sample can be written in
terms of the conductivities cr; of the two different types of
material with temperature-independent geometrical
weighting factors f;:

o '=f, o, '+f2o2 '. (3)

For the case where all fibrillar paths have the same total
resistance

S =b V/b T = ( 5V, +b V2 ) /b T,
where AV; is the voltage drop across region i. If the
fibrillar paths all have the same ratio of temperature
drops AT, and b Tz across material of type 1 and 2, re-
spectively, the total thermopower of the sample, which is
the average of the individual path thermopowers weight-
ed by their contribution to conductivity, is also given
by (6). Since thermopower is an intrinsic quantity, the
geometric factors in the conductivity expression are ab-
sent. The general expression for the thermopower for
two types of material in series is then

S = (6T, /b, T)S, + ( 6T2/b, T)S2,

f; =L; A /(Lp A; ),
where p is the number of fibrils passing through the
cross-sectional area. Note that in general g; L; will
exceed L since the fibrils will not be aligned, and pA; will
be less than A, since the fibrils will not fill the entire
volume of the sample and will not all be perpendicular to
the sample cross-sectional area; both effects lower the
conductivity. If the fibrils have different ratios of L

& A,
and L222 ', and the conductivities o& and o.

z have
different temperature dependences, the coeScients f; will
in general show some temperature dependence since the
distribution of current between the fibrillar paths will
vary with temperature.

If o
&
))o 2, (3) and (4) give

o=(LpA2!L2A)cr2 .

Thus if the barriers are thin (Lz ((L) the total conduc-
tivity may be much larger than that in the barrier re-
gions, but still have the same nonmetallic temperature
dependence as the barrier conductivity cr2. (If conduc-
tion through the barrier regions is by tunneling, o.

2 will
not be their intrinsic conductivity, but similar reasoning
will apply. ) In a similar fashion, Greig and Sahota '

found that the thermal conductivity in some polymers
has a temperature dependence characteristic of the amor-
phous state but has a magnitude larger than that expect-
ed for an amorphous sample.

The thermoelectric power arising from the fibrillar
path in Fig. 1 is

V+ 6V
FIG. 1. Fibrillar conducting path through a polymer, con-

sisting of regions of two types of material (open and shaded) in
series. hV is the voltage between the ends of the sample pro-
duced by a temperature diC'erence of hT.

where S;=6 V, /6 T; is the characteristic thermopower
for each type of material. Thus the total thermopower is
weighted in favor of the regions where the largest tem-
perature gradient occurs, and the weighting of the
different regions can vary markedly for different cases.

(i) Uniform temperature gradient. If the temperature
gradient is uniform down the sample, and conduction
through the "barrier" regions is perpendicular to the
temperature gradient, as for the first and last barrier re-
gions in Fig. 1, the total thermopower will be simply the
thermopower of region 1, since 6T2 =0:



2808 A. B. KAISER

S=S, . (8a)

In this case, the thermopower is determined entirely by
the fibrils, with no contribution from the barriers even if
they make the major contribution to resistance. Clearly
this situation provides a mechanism for thermopower to
show metallic behavior and for conductivity to be near
metallic magnitude but show nonmetallic temperature
dependence as in (5).

(ii) Heat currentPows through the samegbrillar paths
as electrical current. In this more realistic case, the tem-
perature drop across each region is proportional to its
thermal resistance 8;, so

2000-

1000=

I

hC
100=

&0=
g p

++ + «f««
fl+

S = ( 8', /8') S, + ( 8'2 / W)S2, (8b)
2 sss~ & snag t tory I Intq & tn&~ t &n~ t &&tq t tuel

10 10 10 10

where 8' is the total thermal resistance. We can still
have S=S, but o ceo.z as in (5), if W, ))8'2, i.e., the
thermal current carried by the phonons is less impeded
by thin barriers" than the electrical current carried by
electrons or holes (as deduced from compaction experi-
ments on polyacetylene by Schweizer, ' although Greig
and Sahota ' found thermal conductivity limited by thin
amorphous regions in their polyethylene samples). The
fact that S is a zero-current coefficient is not sufficient to
ensure that S is dominated by highly conducting
regions —the key point is that most of the temperature
change must occur across the highly conducting region
even if most of the electric potential change occurs across
the barriers.

(iii) Heat current carried by elastically scattered elec
trons. If, further, both heat and electrical currents are
carried by the electrons and the Wiedemann-Franz law
holds, the thermal resistance of each region is propor-
tional to its electrical resistance R;, so

S =(R i /R)Si+(R2/R)S2, (8c)

III. RELATION OF THERMOPOWER
TO CONDUCTIVITY

We show our compilation of thermopower data for po-
lymers plotted in Fig. 2 as a function of conductivity.
The data available (we plot values for 85 samples) are far
less extensive than that for conductivity, but the main
trends stand out clearly. The doped polyacetylene sam-
ples all show the same general behavior, the room-
temperature thermopower decreasing by about 2 orders
of magnitude as the conductivity is increased by about 8
orders of magnitude by doping. The correlation between

where R is the total resistance. This expression is analo-
gous to the Nordheim-Gorter rule for metallic diffusion
thermopower in the presence of different scattering mech-
anisms and is the relation obtained by substituting the
total conductivity or resistance in the Mott formula (1).
It is important to note, however, that the derivation of
the Mott formula is for a homogeneous medium, so this
expression [Eq. (8c)] is not generally true. The replace-
ment of (8b) by (8c) is sometimes valid for crystalline met-
als where electrons are the dominant carriers of the
heat current, but this is not generally the case in poly-
mers.

0 (0 cm )
FIG. 2. Compilation of thermopower vs conductivity (at

room temperature) for conducting polymers: polyacetylene (cir-
cles} doped with FeC14 (Refs. 7—9), AsF5 (Refs. 7 and 10—12), I3
(Refs. 6 and 7), C104 (Ref. 13), or MoC15 (Ref. 14), polypyrrole
(crosses, Refs. 15—17), and polyacene quinone radical polymers
(triangles, Ref. 18). The lines connect points for the most exten-
sive data sets.

thermopower and conductivity is similar for the different
types of dopant. The size of thermopower for both the
polypyrrole and polyacene quinone radical (PAQR) poly-
mers tends to lie below the values for the doped polyace-
tylene (one of the PAQR polymers has a negative thermo-
power, so it is not shown in Fig. 2).

For conduction by variable-range hopping, the expect-
ed thermopower (which is positive for hole conduction)
is'4

2

S„=k (T T)' 2dlnN
2e dE EF

To is the parameter appearing in the Mott variable-
range-hopping law for the conductivity:

o =ooexp[ —(To/T)r],

where o.
o is not strongly dependent on temperature, and

generally y =—,
' for three-dimensional conduction, al-

though higher values are possible. As the conductivity
increases, the parameter To is found to decrease, as ex-
pected since it is inversely related to the localization
length. Therefore, the hopping thermopower is also ex-
pected to decrease in size, but more slowly than To,
which is the behavior we find in Fig. 2. If the electrical
resistance is dominated by regions in which hopping
occurs, due to the presence of disorder or soliton states, it
is likely that these regions also make a substantial contri-
bution to thermal resistance and, therefore, thermopower
at moderate doping levels. Thus in the framework of the
variable-range-hopping expressions, we can qualitatively
relate the behavior of the size of S to the corresponding
universal behavior of the parameter To as a function of
conductivity found by Schafer-Siebert et al. The de-
crease in thermopower by a factor of about 50 as conduc-
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tivity increases from 10 to 10 Q 'cm ' is smaller
than might be expected from a To dependence, but this
could be due to variations in d 1nN/dE in (9) or the pres-
ence of other contributions to thermopower. Since hop-
ping thermopower becomes small as conductivity in-
creases, a change to metallic thermopower in the most
highly conducting samples would produce little discon-
tinuity in the correlation of S with o..

Comparing (9) to the usual Mott law (1) for a metal, we
see that S& will be larger than that for metals with a simi-
lar value of d InN/dE by a factor (To/T)' . Consider-
ing o —10 ' Q ' cm ' near the middle of the conduc-
tivity range, we have To-3X10 K, so the factor
(To/T)' is of order 30. From Fig. 2 we find S—80
pV/K for this value of conductivity (corresponding to a
value of ~d InN/dE~ of about 2 eV '), which since metal-
lic therrnopowers are typically a few pV/K is of the ex-
pected order of magnitude.

IV. TEMPERATURE DEPENDENCE
OF THERMOPOWER

The data available on the temperature dependence of
thermopower are rather sparse. In order to have a
reasonable temperature range for fitting, we consider only
data sets extending from room temperature to below 50
K. Since conductivity becomes very small at low temper-
atures for lightly doped samples, thermopower becomes
very difticult to measure. Consequently, the available
data with a wide temperature range are for those poly-
mers of higher conductivity in Fig. 2, so it is these poly-
mers (dopant concentration more than 0.5 mo1% and
thermopowers less than 100 pV K ') for which we per-
form fits. The data sets extending below 50 K for po-

lyacetylene doped with FeC14 and AsF5 are listed in Table
I. We also mention below limited data for [CH(13)z]
and polypyrrole polymers.

A. Moderately doped samples

The conductivity of moderately doped conducting po-
lymers often ' has a temperature dependence similar to
the Mott variable-range-hopping law (10) at low tempera-
tures. The corresponding temperature dependence of
thermopower, as indicated by (9), is a T'~ variation. In
general agreement with this prediction, the observed in-
crease of thermopower with temperature is typically sub-
linear. However, the data tend to be intermediate be-
tween T' and linear behavior, and as shown by the top
three curves in Fig. 3, can often be described reasonably
well by

S =XT+CT'i

This relation can be viewed as an example of the general
expression (Sb), combining a hopping term with a linear
term from another source (possibly, but not necessarily,
metallic conduction). (To compare this expression to the
data, we have taken X and C as constants, but effects of
their possible temperature dependence are discussed
below. We have not included the electron-phonon
enhancement term mentioned in Sec. IV B, since this gen-
erally produces only a relatively small curvature for real-
istic parameters and did not result in significant improve-
ments to the fit. )

Values of X and C for CH(FeC1&) and CH(AsF~)» po-
lymers (except those of highest conductivity which are
discussed in the next section) are listed in Table I. As

TABLE I. Fit parameters X and A,,& for the thermopower of polyacetylene doped with FeC14 and AsF5 fitted to the expression (12)
for metallic thermopower including the e6'ect of the electron-phonon interaction, or X and C for fits to (11) including a T' term as
from variable-range-hopping conduction (the better of the two fits is listed). Also given are the dopant concentration y, the reference
for the source of the data, the magnitude of conductivity o.(300 K) and thermopower S(300 K) near room temperature, and the root-
mean-square deviation d per degree of freedom for the fit.

Dopant (mol fraction) Ref.
cr(300 K)

(0 'cm ')
S(300 K)
(~V K-') jef (pVK ')

FeC14

AsFq

0.0612
0.0593
0.061
0.147
0.095
0.1 cis
0.1 trans
0.148

7
7
7

10
10
11
11
7

Fits
988
852
814

2450
1800
800
800
362

to metallic expression
10.5
10.8
15.5
9.5

11.0
9.2

10.3
9.0

(12)
35.1

35.6
51.0
31.6
38.5
32.8
34.2
29.6

0.54
0.66
0.39

—0.07
0.05
0.26

—0.18
—0.08

0.28
0.34
0.29
0.08
0.12
0.16
0.18
0.30

FeC14

AsF5

0.0378
0.0179
0.0106
0.0146
0.0069
0.002

7
7
8
8

12

Fits to expression
162
36.2

1.7

—1.4
0.5

(11) with hopping term
18.0 21.6
28.7 21.7
35.1 23.4
20.8 2.3
33.8 35.3
31.1 72.2

0.68
1 ~ 31
1.73
1.14
1 ~ 34
0.76

0.46
0.62
1.62
1.02
1.20
1.23
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35—

30—

25—
l
hC

20—

15—

term and a small hopping term. Aged samples' showed
a change in sign to negative thermopowers at low temper-
ature. A possible cause of this behavior could be cancel-
lation effects between electron and hole contributions to
thermopower of different signs, the total thermopower
depending on the balance of the contributions, which
may be temperature dependent. Such cancellation could
also account for the low magnitude of thermopower.

10- B. High-conductivity samples

100
I

200
I

300
T (K)

FIG. 3. Thermopower vs temperature for CH(FeC14)~ poly-
mers (Refs. 7 and 8), labeled by dopant concentration y, and for
CH(AsF5)0 OO2 (Ref. 12), compared to curves representing the fits
of Table I. The curve drawn for CH(FeC14)o «» represents me-
tallic behavior given by (12) with no hopping term; the other
curves represent (11) including a hopping T' term.

conductivity increases and the total size of thermopower
decreases, the coefficient of the hopping term decreases in
each of the two series of FeC14-doped samples, as expect-
ed for a trend to more metallic behavior.

In some samples, as in the AsF5-doped polyacetylene in
Fig. 3, there is a tendency for the data to fall below the
expression (11) at low temperatures. We can suggest two
possible causes of this trend.

(i) At low temperatures, paths with a greater fraction
of hopping conduction material will have their contribu-
tion to thermopower frozen out by the conductivity
weighting factor mentioned in generalizing (6) from the
fibrillar path to the whole sample. In this case of dissimi-
lar paths, the coefficients will be temperature dependent
with the hopping term weighted less heavily at low tem-
peratures.

(ii) Greig et al. found that the thermal conductivity
of their disordered polymers was much less than that of
semicrystalline polymers at room temperature, but there
was little difference at low temperatures. Thus the ther-
mopower from disordered regions, according to (Sb), is
weighted more heavily at high temperatures than at low
temperatures, leading to a reduction of thermopower at
low temperatures towards the value characteristic of the
crystalline material.

Park et al. have shown that their measured thermo-
power for a CH(I3)0073 sample was reasonably well de-
scribed by (11). However, other samples gave a thermo-
power showing closer to linear behavior even though they
were more lightly doped and the size of room-
temperature thermopower was, as expected, larger.

For their polypyrrole samples, Shen et al. ' and Mad-
dison et al. ' found that the conductivity followed the
Mott law (10), and found a thermopower very approxi-
mately linear in temperature (at least up to about 220 K)
but in some cases not extrapolating to S=O as T tends to
zero. This behavior is generally consistent with a linear

Sq =X[1+A.,trk.q(T)]T, (12)

where A,,z is the effective enhancement for thermopower
at zero temperature, and the decay of enhancement as
temperature increases is given by the function

f E 'a F(E)Gq dE

A,q(T)= f E 'a F(E)dE
0

Here a F(E) is the Eliashberg function and Gs(y) is a
universal function defined previously. In the absence of
a detailed knowledge of a F(E) in the conducting poly-
mers, but noting that the specific heat of heavily doped
samples at low temperatures has a T term, we use a
Debye model, i.e., a F(E) increasing with phonon energy
E as E up to a Debye cutoff corresponding to effective
Debye temperature TD. Fortunately, the shape of Xs(T)
is not very sensitive to the model assumed. The tem-
perature dependence of the thermopower enhancement is
then determined except for the scale factor TD. It is
difficult to estimate an effective Debye temperature from

For the highest-conductivity polymers, there is a fun-
damental change in the behavior of the conductivity as
temperature tends to zero: o. remains finite' '" as for
metals, instead of tending to zero as in the variable-
range-hopping law. If conduction is largely metallic ex-
cept for tunneling across thin heat-conducting barriers,
thermopower should be dominated by metallic behavior,
as mentioned above. Park et al. found that the thermo-
power changed shape, becoming more linear, sometimes
with an increase of slope below about 50 K. This "knee"
at about 50 K is remarkably similar to the behavior seen
in many disordered metals, as illustrated in Fig. 4(b),
and ascribed to the electron-phonon enhancement of
diffusion thermopower at low temperatures. The
phonon-drag peak, which dominates the temperature
dependence of thermopower below room temperature in
most good crystals, is suppressed by disorder, leaving
the enhancement effect in diffusion thermopower visible
as a decrease in slope as temperature increases and the
enhancement decays on the scale of the Debye tempera-
ture.

The Mott formula for thermopower (1) applies only for
the energy-dependent conductivity function o (E) varying
slowly near the Fermi level. To take account of the effect
of the electron-phonon interaction on diffusion thermo-
power, it is necessary to go back to the more general ex-
pression, obtaining
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the specific heat of polymers, since a large contribution
comes from localized modes, which may not couple so
strongly to the conduction electrons. Moses et al.
found a transverse-mode eff'ective Debye temperature of
220 K in undoped polyacetylene, while Mermilliod and
Zuppiroli suggested a Debye temperature of about 500
K for acoustic modes in undoped and lightly doped sam-
ples. We have used the value TD =300 K in the calcula-
tions, although values from 200 to 500 K also give
reasonable fits to thermopower.

We show in Fig. 4 the fits of our metallic thermopower
expression (12) to two of the highly conducting polymers,
with a fit for a glassy metal shown for comparison. The
good agreement of the polymer data with the calculation
indicates that the electron-phonon interaction should be
considered as a possible source of the thermopower non-

15-

10—
I
hC

100 200
I

300

2.5-

I

1.5—

0.5—

0
0

I

100 200 300

FIG. 4. (a) Thermopower for two of the most highly con-
ducting polymers CH(FeC14)0 061 (crosses, Ref. 7) and cis
CH(AsF5)0 & (dots, Ref. 11) fitted to our expression (12) for me-
tallic diffusion thermopower (solid lines), with parameters listed
in Table I. The dotted lines show the bare linear thermopower
for each fit. (b) Similar fit showing the electron-phonon
enhancement effect for the thermopower of the amorphous met-
al CusoZr, o (Ref. 38), with parameters X=8.7 nV K, A,,&=0.6,
and TD =200 K.

linearity in these polymers. We list in Table I the fitting
parameters for all the polymers that follow the metallic
model (12) more closely than the expression (11) contain-
ing a hopping term. These polymers are found to be
those with conductivities in excess of 300 0 ' cm ' and
finite conductivity in the zero-temperature limit —this
fact supports the suggestion that the nonlinearities in Fig.
4(a) may be due to the metallic electron-phonon effect.
However, the predicted nonlinearities due to a hopping
contribution and to electron-phonon enhancement are
unfortunately rather similar, so further data are needed,
particularly at low temperatures where the predictions
are more different (T' for hopping and approximately
linear for the electron-phonon interaction).

The values of A,,s. for CH(FeC14) polymers are similar
to those in many metals, suggesting a similar coupling be-
tween delocalized conduction electrons and phonons in
our model. The interaction in CH(AsF~ )» polymers
would be very small, with the thermopower of the highly
doped samples being fairly close to linear. In some cases
the value of A,,& is negative. Such behavior is seen in
Ag-Sn films, in which thermopower is small. It can arise
when the enhancement effect is small enough (for exam-
ple, because the bare thermopower XT is very' small) to be
counteracted by velocity and relaxation time renormaliza-
tion, which have approximately the same temperature
dependence as the enhancement but may have opposite
sign.

Possible alternative explanations of nonlinearity in me-
tallic thermopower are phonon drag and scattering by
magnetic impurities (the Kondo effect). Phonon drag is
suppressed in glassy metals with conductivities less than
200 0 'cm ' and electronic mean free paths less than
about 15 A. Although considerable disorder is present in
many polymers, one might expect phonon-drag thermo-
power to become significant in crystalline polymers with
relatively large thermal conductivity and electronic mean
free paths. The expected temperature dependence fol-
lows that of the lattice heat capacity at low temperatures,
i.e., as T in highly doped polymers, in contrast to the
linear dependence arising from electron-phonon enhance-
ment. Thus accurate low-temperature measurements
should help to investigate this possibility, as well as that
of a remaining hopping contribution. The Kondo or
spin-fluctuation peak in thermopower, which of course
occurs only in systems containing Fe or other magnetic
impurities, is typically seen at very low temperatures,
below the temperature of the phonon-drag peak, and is
also washed out by disorder. ' Clear observation of the
nonlinearity in polymers without magnetic impurities
would eliminate this possibility.

The thermopower due to elastic tunneling across a po-
tential barrier between metals is small, since conduction
occurs in the vicinity of the Fermi level and the thermo-
power should generally follow an approximately linear
trend with a size determined by the energy dependence of
the density of states on either side of the barrier and the
tunneling matrix elements. The thermopower contribu-
tion from fluctuation-induced tunneling across potential
barriers between metallic regions is not given, but could
be less simple.
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V. CONCLUSION

Our analysis of transport in heterogeneous media and
in metallic systems contributes to a framework for the in-
terpretation of the thermopower of highly conducting po-
lymers. In particular, limitations on the validity of previ-
ous treatments of thermopower in heterogeneous media
have been pointed out.

We find that the behavior of the magnitude of the ther-
mopower and its temperature dependence for samples
with up to a few percent doping is generally consistent
with a major contribution from variable-range-hopping
conduction or a similar mechanism, as has been found for
the conductivity. The magnitude of thermopower as a
function of conductivity for doped polyacetylene follows
a well-defined trend that is consistent with the analogous
trend of the Mott variable-range-hopping parameter To
found from conductivity by Schafer-Siebert et al. As
the doping increases, the thermopower tends to become
more linear in temperature as the size of the fitted T'
term decreases, as expected for a trend towards metallic
behavior.

Once the conductivity has changed (as doping level in-
creases) so that it remains finite as T~O (rather than
diverging as for hopping conduction), there is also evi-
dence of some change in thermopower shape in that no
hopping term is required. We find that the thermopower
in this case can be fitted rather well by the expression (12)
for metallic thermopower alone (including the effect of
the electron-phonon interaction). Metallic thermopower,
even in the absence of phonon drag, is generally not
linear in the presence of the electron-phonon interaction,
instead showing just the kind of nonlinearity seen in the
FeC1~ and AsF5 doped polyacetylene in Fig. 4(a). Such

behavior is widely seen in disordered metals, but is
camouAaged in crystalline metals by larger nonlinearities
due to phonon drag. The observation of the thermo-
power "knee" at about 50 K (where it is expected for typ-
ical Debye temperatures) for four of the most highly con-
ducting polymer samples, and the good quantitative fit of
the data to the calculated thermopower shape, are argu-
ments in favor of a significant nonlinearity due to the
electron-phonon interaction in these cases. However, so
far the data are very limited and further measurements,
especially accurate low-temperature measurements on
very high conductivity samples, are of great interest.

If the thermopower nonlinearities in metallic" poly-
mers are identified as due to electron-phonon enhance-
ment of thermopower, they could be used to derive infor-
mation about the strength and temperature dependence
of the conduction electron-phonon interaction. If ther-
mopower is proportional to temperature, on the other
hand, this is a noteworthy result indicating a very small
electron-phonon interaction (or possibly a cancellation
effect if thermopower is very small). Thermopower can
therefore help show whether the electron-phonon interac-
tion is similar to that in metals, or whether it is partially
suppressed due to preferential conduction along chains;
such suppression could imply very high values of intrin-
sic conductivity, since metallic resistivity at room tem-
perature is proportional to the size of the electron-
phonon interaction.
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