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and use of absolute boundary x-ray structure factors
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An x-ray-diffraction method for measuring absolute grain-boundary structure factors is de-
scribed. The method is based on ratioing appropriate integrated scattered intensities from the
grain-boundary region and from the adjoining perfect-crystal region in a bicrystal specimen contain-
ing a flat grain boundary. Common unknown factors then cancel out, and an expression for the ab-
solute structure factor is obtained in which all quantities are either known, can be measured, or can
be calculated with acceptable accuracy. A practical experimental technique for making the neces-
sary measurements, which employs a four-circle diffractometer, is described. The technique is ap-
plied to an x-ray diffraction study of the atomistic structures of a series of [001] twist boundaries in
gold in the following paper of our work. The results obtained there clearly demonstrate that the
measurement of absolute structure factors, rather than relative structure factors, provides important
information in diffraction studies of the structures of grain boundaries, particularly in cases where a

limited number of structure factors is measured.

I. INTRODUCTION

X-ray diffraction has recently emerged as a technique
with which to study the atomistic structure of grain
boundaries.! ~® Thin-film bicrystal specimens in the lay-
ered configuration shown in Fig. 1 have been employed.
The atoms in the relatively thin boundary region are gen-
erally displaced with respect to the positions they would
occupy in ideally perfect crystals 1 and 2 and, hence, pro-
duce an extra scattering that would not be present if they
were an ideal lattice positions. Such boundary scattering
is quite weak because of the relatively small number of
atoms that are significantly displaced, and tends to be
peaked on the so-called “boundary diffraction lattice” (or
BDL),’ which is described in Sec. II. This scattering is
generally measured and then compared with correspond-
ing scattering calculated for various atomistic models of
the boundary structure in efforts to obtain structures
yielding self-consistency.

Essentially all of the experimental effort in this field
has focused on a number of [001] twist boundaries in
gold. The published work! 8 has consisted of the mea-
surement of relative diffracted “intensities” on the BDL
of these boundaries, and the comparison of these results
with corresponding calculated boundary structure factors
for various boundary models. The earlier work! ™ must
be regarded as essentially qualitative, since the precise re-
lationship between the measured relative “intensities”
and the boundary structure factors was not defined. Very
recently, however, Fitzsimmons and Sass,”® following
Warren!® and Robinson,!! have developed a diffract-
ometer technique which measures well-defined grain-
boundary integrated intensities and corresponding struc-
ture factors on a relative basis and have applied the tech-
nique to determining the structures of the =57 and =133
[001] twist boundaries in gold. However, the atomistic
structure of the =5 boundary deduced in this work
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possesses atomic displacements which are considerably
larger than those predicted by any reasonable physical
model based on empirical pair potentials* or the
“embedded-atom model” formulation.'?!® This result has
been surprising to workers in the field and has cast some
doubt on the usefulness of the pair-potential and
embedded-atom models.

A drawback of much of the diffraction work to date is
that only relative structure factors have been measured
experimentally for a limited number of reflections per
boundary. These quantities have been measured in arbi-
trary units, and a normalizing scale factor has then been
introduced in order to allow comparison with corre-
sponding values calculated for models of the boundary
structure. The scale factor has been determined by re-
quiring agreement between measured and calculated
values for one (or one pair) of relatively strong boundary
reflections. It is easily seen, however, that important in-
formation regarding the atomic displacements can be
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FIG. 1. Thin-film bicrystal specimen showing geometry of
diffraction in both reflection (on left) and transmission (on right)
modes.
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missed when such a normalizing procedure is used.
Many calculations have shown that the intensity of the
boundary scattering depends sensitively on the magni-
tudes of the atomic displacements in the boundary, as
might be expected. This information is lost when only
~ relative measurements of the scattered intensity (and
structure factors) are made. Erroneous results can, there-
fore, be obtained, particularly in situations where only a
limited number of structure factors have been measured,
as has been the case for boundary studies where the
scattering is weak and difficult to measure.

In view of this situation, we have developed a
diffractometer technique that allows the quantitative ex-
perimental measurement of absolute grain-boundary
structure factors. The technique is relatively straightfor-
ward and avoids the need for determining the resolution
function of the particular experimental arrangement. In
the present work (paper I), we describe the technique and
the analysis on which it is based, and also give a brief ac-
count of the way it can be used to gain information about
grain-boundary structures by utilizing x-ray diffraction
and computer simulation. In paper IL'* we apply the
method to the investigation of the structures of the series
of [001] twist boundaries in gold, which includes the
3113, 325, 213, 217, and 25 boundaries. Good agree-
ment is obtained for all boundaries between experimen-
tally measured absolute structure factors and correspond-
ing structure factors of boundary structures calculated by
computer simulation using the embedded-atom model.
The structure of the X5 boundary, determined by
Fitzsimmons and Sass,’ is shown to possess displacements
that are much too large, and, hence, it is incorrect. These
results lead to the important conclusion that the atomis-
tic structures calculated by means of the embedded-atom
model are realistic, and, hence, lend credence to this
method of calculating boundary structure.

II. THE BOUNDARY DIFFRACTION LATTICE (BDL)

We are concerned with a specimen of the form shown
in Fig. 1, containing a boundary with a two-dimensional
(2D) structure corresponding to the periodicity of the
coincidence site lattice (CSL) parallel to the boundary.
The thicknesses of crystals 1 and 2 are larger than the
thicknesses of the boundary region in each crystal,
defined as the regions where significant atom displace-
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FIG. 3. Boundary diffraction lattice (BDL). The base vec-
tors, af and aj, are reciprocal to a, and a, in Fig. 2, and k is
perpendicular to the boundary. Relrods of diffracted intensity
from the boundary are present on the BDL line elements, as
shown schematically.

ments are present. Such a specimen can be regarded as a
2D “‘crystal” composed of the unit cells shown in Fig. 2,
where a,; and a, define the 2D periodicity in the boundary
plane, and t is a vector normal to the surface and of mag-
nitude equal to the total specimen thickness. The
diffracted intensity is then expected to fall on a lattice in
reciprocal space, i.e., the BDL, composed of an array of
line elements that, as shown in Fig. 3, run perpendicular
to the boundary and project on the boundary plane in a
pattern corresponding to the reciprocal lattice of the 2D
boundary lattice defined by a, and a,.° The unit vectors
of the BDL are taken to be af, a, and k. The vector k is
parallel to t, and a convenient choice for its magnitude is
the smaller of the spacings of the planes in the reciprocal
lattices of crystals 1 and 2, which lie parallel to the
boundary. A general vector in this space is represented
by

g=Haf+Kas+Lk .

All lattice reflections from the perfect crystals 1 and 2
fall on a subset of the elements of the BDL. The addi-
tional scattered intensity due to the displaced atoms in
the boundary region falls, more generally, on elements of
the BDL in the form of patches corresponding to relrods
(reciprocal-lattice rods shown schematically in Fig. 3),
which are elongated along L because of the relatively
small thickness of the boundary region.

III. ANALYSIS FOR ABSOLUTE
GRAIN-BOUNDARY STRUCTURE FACTORS

We assume that the specimen, consisting of a 2D as-
semblage of unit cells as in Fig. 2, has the shape of a
parallelogram with sides equal to N;a; and N,a,.
Diffraction can be in reflection or transmission modes, as
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illustrated in Fig. 1. Using standard methods and assum-
ing simple kinematic scattering,'® the scattered intensity
at a distance R is then

sin®(wN,H) sin*(wN,K)

sin?(wH)  sin¥(#K)

e4

m?c*R?

J=I, fEIF,|1*B, ,

(1)

where I, is the incident-beam intensity, e the electron
charge, m the electron mass, c the velocity of light, f, the
atomic-scattering factor, F, =F,(H,K,L) the “reduced”
structure factor of the unit cell (assuming unity as the
scattering factor of each atom), and B, the polarization
factor, given by

B — 1+( cos?20,, )( cos*26,)
b 1+ cos®20,, '

(2)

Here, 0,, is the Bragg-scattering angle for the monochro-
mator used in the present experimental technique (see
Sec. IV A), and 6, is the usual scattering angle. If the
Bragg condition was satisfied exactly, Eq. (1) would give a
peak intensity of

e4

7= m?2c*R?

NIN3f2F,|*B, . 3)

As in the case of 3D crystallography, however, Eq. (3)
does not represent a measurable quantity. Instead, we
turn to the notion of an integrated intensity, which can
be both calculated and measured. Such an integrated in-
tensity is the total-energy flow (i.e., power), which is
diffracted when the Ewald sphere intersects a relrod on
the BDL, as illustrated in Fig. 4. In this situation, the
specimen is held in fixed position, and the total counting
rate produced by the intersection of the Ewald sphere
with the relrod is counted as indicated schematically.

The contribution to the total power, E,, diffracted by
the grain boundary from a patch of area d 4 lying on the
intersection of the Ewald sphere with the relrod is

dE,=R*\*J dA , (4)
where A is the x-ray wavelength. Now,

_ ajdH-a5dK _ dHdK

dA (5)

COSYy Sp COSYy

where s, is the area of the unit-cell face in the grain
boundary, and vy, is the angle between the grain-
boundary normal and the diffracted beam. Inserting Egs.
(3) and (5) into Eq. (4), we can neglect the relatively slow
variation of F,(H,K,L) with H, K, and L, and integrate
over the entire intersection with the relrod to obtain

}\ZBbflglFb(H,K:L)lleNz
Sp COSY ’

e4

mict

E, =1,

Setting n, equal to the number of unit cells per unit area
of grain boundary in real space, we have

NN,

=n?s, , 7
S LTS ()
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FIG. 4. Intersection of Ewald sphere with grain-boundary in-
tensity relrod. Intersection located on BDL at (Haf,Ka¥,Lk).

where S, is the total area of grain boundary irradiated.
Therefore,

e4

m2ct

A2B, f2|F,(H,K,L)|? "5Ss (8)
bfb b E k] COS’)/b .

So far, we have not corrected for energy losses due to
mass absorption in crystals 1 and 2. If 3, is the angle be-
tween the incident beam and the boundary normal, the
diffracted radiation follows a total path length in the
specimen given by

l,=t,;/cosP, +t,/cosy, (9a)
for the transmission case, and

ly=t,/cosP,+t,/cosy, (9b)

for the reflection case, where ¢, is the thickness of crystal
1 (assumed to be on the incident side, as in Fig. 1) and ¢,
is the thickness of crystal 2. Therefore, finally,

. 4
Eb:PO ez 4 )\'szf[ﬂFb(H’K’LHZ
m-c
ny
X exp(—uly) (10)

(cosy, ) cosBy)

where P is the total power of the beam incident on the
specimen, and u is the linear absorption coefficient.

At this point, it is worth noting the differences between
measuring an integrated intensity in two dimensions and
in three dimensions. In the 3D case, i.e., in a lattice
reflection, the integration is carried out in two steps:
First, one integrates over the entire receiving area, and
then over all incident-beam directions. Experimentally,
the first integration is carried out by setting the receiving
counter slit so wide that all of the diffracted radiation is
recorded, while the second integration involves rotating
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the crystal through the Bragg reflection. In this way, all
parts of the crystal satisfy Bragg’s law with each element
of the primary beam. In the 2D case, however, only the
integration over the receiving surface is necessary. The
integration over all incident-beam directions is done au-
tomatically, since the reciprocal-space intensity distribu-
tion involves relrods and not points. Experimentally,
then, one must still use a receiving slit that is wide
enough to collect all of the diffracted intensity, but in the
2D case the crystal need not be rotated.

In principle, absolute values of |Fb(H,K,L)| could be
calculated from Eq. (10) if all other factors were known.
However, the quantity P, is difficult to determine. We
therefore adopt a procedure in which we normalize the

J
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integrated grain-boundary intensity to the integrated in-
tensity from a crystal-1 or crystal-2 reflection that is
nearby in reciprocal space. Using standard methods
again,!” the total energy scattered by either crystal 1 or 2
in Fig. 1, when the Ewald sphere is passed through one
of its Bragg reflections by rotations at a rate o, is

nlA.
(sin26,)( cosB,) ’

e4

mict

P
Ec=".2
(0]

A’B,.f2|F.(H,K,L)|?

(11)

where the subscript ¢ indicates crystal quantities, and the
quantity A4, for the transmission case is given by

exp(—ut/cosy ){1— exp[ —ut,(1/cosB,—1/ cosy,)]}

u(1/cosB.—1/cosy,)

¢ exp(—ut / cosP, ){ exp[ut,(1/cosB,—1/cosy.)]—1}

(for crystal 1 excited) ,
(12a)

w(1/cosB,—1/cosy,)
and for the reflection case by

1— exp[ —ut,(1/cosB,+1/cosy,)]
w(1/cosB,+1/cosy,)

¢ exp[ —ut (1/cosB.+1/cosy.)]— exp[ —ut(1/cosB,+1/cosy,)]

(for crystal 2 excited) ,

(for crystal 1 excited) ,

(12b)

p(1/cosB,+1/cosy.)

Here, B, and y, are the angles made by the incident and
scattered beams with the boundary normal, and we have
again assumed that crystal 1 is on the incident side, as in
Fig. 1. Also,

_ 1+(cos’26,,)( cos’26,)
¢ 1+ cos20,, ’

(13)

Under conditions in which the incident beam is main-
tained constant, and where the incident power delivered
to both the grain-boundary region and either crystal 1 or

N

|F,(H,K,L)[* [ C, 1 1

n2A.\

(for crystal 2 excited) .

r

crystal 2 is the same, the P, terms in Egs. (10) and (11)
cancel. In addition

C,=KE, ,
C.=KE, ,

(14)
(15)

where C, is measured x-ray counting rate in the bound-
ary experiment, C. is measured number of counts in the
crystal experiment, and K is a constant of proportionali-
ty. Finally, by combining Egs. (10) and (11) and using
Egs. (14) and (15), we obtain i

|F(HK,L)? | C.o 72 | exp(—uly)

B,
B,

All quantities on the right-hand side of Eq. (16) are either
known, can be measured, or can be calculated. Since
|F,|? and |F,|? are functions of temperature, the experi-
ment, therefore, yields the ratio |F,|?/|F,|? at the tem-
perature of measurement. If the experiment is carried
out at room temperature (as is commonly the case), the
best procedure would be to use a molecular-dynamics
model to calculate |F,|? at room temperature. Absolute

(16)

(sin26,)( cosf,)

(cosyy ) cosfBy)
n? )

r

values of |F,,|2 could then be obtained from Eq. (16),
which could then be compared with grain-boundary
structure factors for boundary models also calculated by
the same molecular-dynamics model at the same temper-
ature.

On the other hand, if molecular-dynamics models are
unavailable, the known static values of |F,|? correspond-
ing to the perfect crystal without thermal vibration can
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be used in Eq. (16), along with a relatively small Debye-
Waller correction factor in order to obtain corresponding
static values of |F,|? (designated in the following by
|F2|?), which can be compared with calculated values of
|F2|? using molecular statics modeling. In this pro-
cedure, the effects of temperature in modifying the struc-
ture factors are eliminated to a considerable extent be-
cause |F,|? and |F,|? appear as a ratio. In fact, the only
temperature effect that arises is that due to the difference
between the Debye-Waller factor for the grain boundary
and that for the lattice, and we therefore have

AR
F.P

|Fy|>= |FOI’T 17)
where the experimentally determined ratio |F,|2/|F,|? is
given by Eq. (16), |Fc°|2= 16 for the case of gold, and the
correction factor I', due to the difference between
Debye-Waller factors, is given by

1672
}"2

I'= exp ({u?)sin?0, —(u?) sin%@,) | , (18)

where {u?) and (u?) are the mean-square displacements
of atoms projected along the diffraction vector!® in the
grain boundary and in the perfect crystal, respectively.
As shown in paper II,'* the correction factor I is close to
unity and can be estimated to a degree of accuracy
sufficient for present purposes.

IV. EXPERIMENTAL TECHNIQUE
A. Diffractometer and specimen

Since the boundary scattering is relatively weak and
also has a complicated distribution in reciprocal space, a
special diffractometer was constructed. In general, the
instrument consisted of an 18-kW rotating-anode x-ray
source, monochromating and collimating optics, a pre-
cision four-circle goniometer, and two x-ray scintillation
detectors in the arrangement illustrated in Fig. 5. Most
of the beamline path was under vacuum. The system
was fully computer controlled with automated data ac-
quisition. Features were also added which allowed the
convenient measurement of the bicrystal specimen
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FIG. 5. General top-view arrangement of diffractometer.
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geometry. In the following, we give a brief description of
the equipment. Further details may be found in Ref. 15.

The optics of the incident beam (Cu Ka radiation)
were controlled by the collimating slits and the mono-
chromator. The monochromator was a singly bent,
graphite single crystal with is cylindrical axis parallel to
the scattering plane, which was placed so that it focused
the incident beam approximately at the specimen. The
beam intensity was automatically monitored by a detec-
tor which received x rays that were scattered at right an-
gles to the beamline path by a thin Kapton polymer film
intersecting the beam.

The four-circle goniometer was a standard Huber in-
strument with the ¢, X, @, and 6 axes illustrated in Fig. 6.
It was driven by four stepping motors that were con-
trolled by a slightly modified computer program original-
ly written by Professor Mark Sutton of McGill Universi-
ty for use on the MIT/IBM beamlines at the Brookhaven
synchrotron. The program also collected and stored data
and allowed one to work in either real or reciprocal space
by scanning in terms of angles or in terms of the recipro-
cal lattice of either crystal 1 or crystal 2.

The specimen possessed the geometry shown in Fig. 1,
which had the advantage that a relatively large ratio of
grain-boundary “volume” to perfect-crystal volume could
be achieved by using a specimen of small thickness. This
was important in reducing the background scattering
produced by the two perfect-crystal regions. In addition,
the parallel crystal geometry allowed accurate correction
for absorption effects, Egs. (12a) and (12b). The actual
specimens used were 75 nm thick and ~5 mm X5 mm in
lateral dimensions, and were mounted flat on 7.6-um-
thick Kapton polymer films, which, in turn, were
stretched on aluminum ring-shaped holders in the
configuration shown in Fig. 7. Great care was taken to
avoid wrinkling and to obtain as flat a specimen as possi-
ble [see paper Il (Ref. 14) for preparation details]. This
ensemble was then mounted on the ¢ axis of the goniome-
ter (Fig. 6), so that the center of the specimen coincided
with the center of rotation of the gonimeter. Finally, the
optics of the diffracted beam and detector system were
controlled by the collimating slits shown in Fig. 5.

The diffractometer technique also included several
features which greatly aided in the determination of the
geometry of the bicrystal specimen. In order to deter-
mine the misorientation of crystals 1 and 2, the
diffractometer recorded the angular settings required to
excite two well-separated Bragg reflections in each crys-
tal. The twist and tilt misorientations (in terms of the
misorientations around an axis normal to the boundary
plane and the tilt misorientation around an axis lying in
the boundary plane, respectively) were then automatically
calculated. The orientations of the boundary plane rela-
tive to the crystal axes of crystals 1 and 2 were obtained
by a laser-reflection technique. In the present specimens,
the grain boundary was very accurately parallel to the
specimen surfaces. By reflecting the beam from the laser
shown in Fig. 6 off the specimen and back on itself, and
reading the corresponding diffractometer angles, the
necessary information was obtained to allow the automat-
ic calculations of these orientations.
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FIG. 6. Four-circle goniometer. Also shown are detector and laser.

B. Operating details

Because of the weakness of the grain-boundary scatter-
ing, the diffractometer was run with relatively large aper-
tures and divergent beams in a low-resolution mode in an
effort to increase the counting rates. However, this tend-
ed to decrease the signal-to-background ratio and, also,
of course, the resolution, and it was therefore necessary
to strike a compromise with regard to these factors.

Stretched
Kapton
film

Flat bicrystal
film specimen

Al ring

FIG. 7. Flat bicrystal specimen mounted on Kapton film,
which, in turn, is stretched on aluminum ring that mounts on
the gonimeter.

The incident-beam optics, particularly the openings in
slit S5 in Fig. 5, were made large enough to ensure that
all of the desired radiation from the monochromator was
incident on the sample. Typical divergences in the hor-
izontal plane were ~0.4°, and a value somewhat larger
in the vertical direction due to the focusing action of the
bent monochromator. The detector optics were adjusted
to minimize the inciden-beam path length “seen” by the
detector. This tended to improve the signal-to-
background characteristics of the arrangement. The ac-
tual background in a scan was, of course, a strong func-
tion of position in reciprocal space, being dominated by
thermal diffuse scattering from the specimen when close
to the crystal lattice reflections (e.g., in the case of low-
angle twist boundaries), and dominated by air and Kap-
ton scattering when much further away (as in the case of
high-angle twist boundaries). Typical scans [e.g., see Fig.
3 of paper II (Ref. 14)] extended over about 5° in 20 in in-
tervals of 0.3° counting times varied between 5 and 45
min per point, depending on the strength of the grain-
boundary reflection.

Careful attention was paid to the proper measurement
of the important quantities, C, and C.. The measure-
ment of C, required the measurement of all of the
scattering produced by the intersection of the Ewald
sphere and the grain-boundary relrod. Since the incident
beam was significantly divergent, and since the specimen
was bent to at least some degree, the scattered beam was
relatively broad at the detector, and care had to be taken
to count all of the radiation. This was accomplished by
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increasing the vertical acceptance of the detector system
to the required level, and moving the detector through
the grain-boundary peak horizontally (in a 26 scan) in in-
crements equal to its acceptance aperture. In this way,
erroneous values of C, due to double counting were
avoided. Similarly, C, was obtained by rocking the sam-
ple over a large angular range, about 4 °, around the exact
Bragg angle, and collecting the entire diffracted beam by
moving the detector in increments equal to its angular ac-
ceptance width.
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