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We have incorporated the full potential into the linear augmented —Slater-type-orbital method.
Here we report on the details of the calculations and also specifically on the nature and the
significance of the non-muSn-tin terms, some interesting structures of the potential and the charge
density for standard test systems such as fcc Al, bcc W, fcc Pt, all of which have the Qz point-group
symmetry. We have seen that for cubic systems, both the l =4 and I =6 components of the charge
density and the potential in the sphere regions are important. We have also seen that this method
with its inherently small basis set is capable of yielding total energies of comparable accuracy to the
full-potential linear augmented-plane-wave method.

I. INTRODUCTION

First-principles electronic-structure calculations have
come a long way during the last two decades. There is-
now a standard procedure, based on the Hohenberg-
Kohn-Sham local-density approximation, which has been
quite successful in predicting, for example, crystal struc-
tures, heat of formation, charge density contours, and
surface states. This standard procedure involves the solu-
tion of the one-electron Schrodinger equation and the
construction of the charge density by summing over oc-
cupied orbitals. There have been many techniques pro-
posed for solving the Schrodinger equation but most of
the modern ones used some sort of a basis set so that the
problem is reduced to diagonalizing a matrix. The most
common basis sets consist of plane waves or augmented
plane waves which have been shown to be extremely ac-
curate but also expensive since rather large matrices have
to be constructed and diagonalized. Previously we have
suggested using augmented Slater-type orbitals as a basis
set —one which is significantly smaller so that diagonali-
zation is not the rate-limiting step. However, the method
was only set up for muffin-tin potentials. The purpose of
this paper is to extend it to include the non-muffin-tin
terms as we11.

For systems with low symmetries, such as the 215
compounds, full potentials are certainly important.
However, we will show here that even for highly syrn-
metric cubic systems the full potential can have
significant effects on certain quantities such as the t2s-es
splitting of the d bands at the center of the Brillouin
zone. %'e will also show that the total potential along
different crystal directions can vary by as much as 5 —10
eV near the muffin-tin sphere boundaries in cubic crystals
and that the charge densities deviate significantly from
the muffin-tin behavior. Finally we will compare some of
our calculated energies with other calculations and exper-
iments.

II. METHOD
A. Basis set

The linear augmented-Slater-type-orbital (LASTO)
basis set has been described in detail elsewhere. '

gz(r) = g exp(ik R)g„t (r —R—~, ),1

&c R
(2)

where N:= Ii, n, lm, I, is a collective index, R labels a
unit cell vector, v; the position of the ith atom within the
unit cell, and N, the total number of cells in the crystal.

The Slater-type orbitals have several desirable features
such as having a nonsingular behavior everywhere in
space and falling off as atomic wave functions at large
distances. Their Fourier transforms can also be obtained
analytically. From Refs. 1 and 2,

4m. ( i )'YL(q)—

X f dr jt(qr )r"+'exp( gr)—
is the Fourier transform of a Slater-type orbital with
q=k+Cx, L:= I l, rn I is a collective angular momentum
index, and Q is the volume of the unit cell. The integral
appearing in the above equation can be evaluated analyti-
cally. ' It consists of a ratio of two polynomials in q. Ac-
tua11y it is much more convenient to use the reciprocal-
lattice representation of Eq. (2). It is straightforward to
show that

P~(r) = g exp[iq. (r —~; ) ]P„L(q)
N, q

=+exp(iq. r)f~(q) .
q

As with the other augmented schemes the basis func-
tion inside the jth sphere is taken to be

0;.L(r) =r [13;.L J Aged rJ )+~;.L,JAgJd rJ )]YA(r, »

BrieAy, the crystal is partitioned into muffin-tin and in-
terstitial regions. In the interstitial the basis is a Bloch
sum of Slater-type orbita1s,

(r) =r" 'exp( gr ) Y—
t (r),

where the YI 's are the usual spherical harmonics. Then
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where g and g are solutions of the scalar-relativistic Dirac
equation and its energy derivative. The p's and a's are
chosen by matching the interior and the exterior func-
tions and their spatial derivatives at the sphere boundary.
Here A:= IA, , hatt I denotes the angular momentum indices,
and our cutoff value A. ,„

is 8.
Using these basis functions, we construct the overlap

matrix

V(r) =g exp(i' r) V(Ci),
G

while i~side the jth sphere it has the form

VJ(r) =g VJ (r )IC& (rj ), (7)

ed as a Fourier expansion in the interstitial region and as
an expansion in spherical harmonics inside the spheres.
Therefore, in the interstitial

and the matrix elements of the muffin-tin part of the
Hamiltonian H&&. may be evaluated as described previ-
ously.

where the E& 's are the normalized lattice harmonics
V

which have the full local symmetry about the jth atom
site. From these expressions the non-muffin-tin (NMT)
matrix elements of the Hamiltonian

B. Non-muSn-tin matrix elements H~~= ~Vr ~d r

As in the full-potential linear augmented-plane-wave
(FLAPW) method the total potential can be represent-

I

can be constructed. For the jth sphere, the NMT parts
of the matrix elements are given by

Hg&'"= g fK YzYz dr Pz J.+Plv zA fgj&VJ' gz& rdr. +Pz „alv. Afg ,&VJ g &,r dr.
A, A', v

+~~,Aplv J~ fg, l.VJ, gjq~ d~+a& JAa&, ~ f gJ~VJ g,~.r dr

Although these may seem to involve many indices and
hence be computationally cumbersome they can be han-
dled efficiently using the properties of the Gaunt integrals
(integral of the product of three spherical harmonics).
For a highly symmetric system the number of nonvanish-
ing Gaunt coefficients can be quite small. These Gaunt
integrals are done using a Gaussian integration tech-
nique.

For an atom with local cubic symmetry, the normal-
ized, nonzero lattice harmonics up to I =8 entering Eq.
(7) are given by

&o= ~o,o

K =Q —,', Y4 +Q —,', (Y4 + Y ),
v'2 v'7

+6 4 Y6,0 4 ( Y6, —4+ Y6,4)

&33
Ks = Ys o+ —s'Q —',"(Y8 4+ Ys 4)

+ —,', Q—",'( Ys s+ Ys s ) .

Hinterstitial —~y q
a (q)g f(Q 6~)p (q~t)

6 G'

where f is the Fourier transform of the product

(12)

f(r)=V(r)&(r) . (13)

Although the step functions 8 and f have slowly converg-
ing Fourier expansions due to their discontinuities, it
does not affect the accuracy of the matrix elements
defined by Eq. (12). This is due to the cutoff in the
Fourier expansion of the basis function giv which deter-
mines the accuracy of Eq. (12). We use fast Fourier
transforms (FFT) to handle the product function. The
Fourier series cutoff for the potential and the charge den-
sity is chosen to be twice that of the basis functions. This
will guarantee that when taking products of the form P'g
we do not throw away the extremum contributions. Also
note that the overlap contribution to the matrix element
is obtained easily by replacing f by 8.

The resulting Hamiltonian (H) and overlap (S) ma-
trices lead to the secular equation

The interstitial contribution to the Hamiltonian matrix
elements is handled via the step function 6 de6ned as

y H~„,a~, =ey S~„,A~, . (14)

1, r H interstitial region;
Or ='

0, otherwise. (10) C. Charge density

The Fourier transform of the step function 0 is

4~ exP( i@i Ry)R yjl(GR )
8(Cx) =5o il

y y

where R z denotes the radius of the sphere y. The contri-
bution to the Hamiltonian matrix is obtained as

Once the above eigenvalue problem is solved the
charge density can be constructed by summing over the
occupied states I as

(r)=y ei (15)
1c,I

where
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S=[R~tj, (16)

where R is a rotation and t a translation.
The effect of S on a Bloch function gl, (r) is to produce

a Bloch function with k'=Rk. But the set of all Rk
spans the entire Brillouin zone. Therefore

gPk(r)gq(r)= g [Sgl,(r)]'Sfl,(r) . (17)
Bz kE IBZ

S

Further, this density has the full symmetry of the lattice
because the sum on S on the right-hand side of Eq. (17) is
a projection operator which projects out the part of gl, gl,
which transforms according to the fully symmetric repre-
sentation of the space group. Now by definition

Sgl,(r }=g„(s 'r) (18)

so

p(r)= y q'„(S-'r)q'„(S-'r).I

S,occupied

(19)

The symmetrized charge density in the jth sphere may
also be written as

pj(r)=gp„'(r )&l (r. ) (20)

Using Eqs. (19) and (20) it is possible to obtain p„'which
will completely determine the charge density in the
spheres.

The interstitial density is calculated as follows. If AN
denotes the coefBcients of the eigenstate I, then define

+l',(r) =g ~xA(r) .
N

The sum in Eq. (15) should be carried out over the full
Brillouin zone (BZ). In practice one wishes to work in an
irreducible wedge of the BZ (IBZ) which for cubic sys-
tems is 4, as large. The Hamiltonian is invariant under
all 48 symmetry operations and therefore the eigenvalues
are the same no matter which irreducible wedge is
chosen. However the charge density is not so behaved
and therefore the density obtained from —,', of the zone
does not necessarily have the full symmetry of the lattice.
To obtain the properly symmetrized density it is neces-
sary to relate the Bloch functions in different wedges of
the Brillouin zone. This may be done using the space-
group operators.

D. Potential

nP"" '(r)=a& (rlR)'[1 (r!R) ]", r—~R . (22)

Here a& should be chosen to have the correct multipole
moment and n is arbitrary. The larger n, the more
derivatives of the pseudodensity vanish at the sphere
boundaries. Different values of n can be chosen for
different atoms and different angular momenta to optim-
ize convergence. We have used n values as high as 14 in
the calculations reported here. This radial form com-
bined with the correct angular dependence ( F& ) plus the
plane-wave density [p „(G )] gives rise to the total pseu-
dodensity,

p
""'(G) =n (G)+p~„(G). (23)

Solving the Poisson equation for this density yields the
correct Coulomb potential in the interstitial region, i.e.,

As noted previously the form of the crystal potential is
given by Eq. (7) in the sphere regions while the interstitial
potential is given in terms of a Fourier expansion [Eq.
(6)]. There are two separate contributions to the poten-
tial, namely the exchange-correlation and the Coulomb
potential. In order to calculate the Coulomb potential it
is necessary to solve Poisson's equation. The strategy,
suggested by Weinert and Hamann, is to first calculate
the potential in the interstitial region by replacing the ac-
tual charge density inside the spheres with a smoothly
varying pseudodensity having the same multipole mo-
ments. This will determine the potential everywhere in
the interstitial including the sphere boundaries. Then the
potential inside the spheres can be obtained by solving a
boundary value problem with the true density. The need
for a pseudodensity arises from the fact that a Fourier ex-
pansion of the true density would require an impossibly
large number of Fourier components because of the rapid
variation of the charge density near the nuclei.

Following Weinert we would like the pseudodensity to
have the following properties. (a) It should have the
same multipole moments as the difference, true
density plane—toaue -density, inside the spheres. (b) It
should go smoothly to zero at the sphere boundaries
r =R. (c) Its Fourier transform should be known analyti-
cally.

It turns out that the following radial function can be
used to construct a pseudodensity satisfing the above re-
quirements:

8 (q)=g A~g~(q) .
N

(21) 4 pseudo' ~
p coulomb(G) ~p (24)

If 8 (r) is the inverse Fourier transform of 8 (q), then
the summation

occupIed

8 (r)B (r)

will give rise to an unsymmetrized density. By Fourier
transforming this density and symmetrizing according to
the symmetry of the space group of the problem, as dis-
cussed above, the complete (plane-wave) density p~„(G)
in the interstitial regions may be found.

The choice of the zero of the potential is arbitrary, and
we choose it to be the average of the interstitial Coulomb
potential.

In the sphere regions, calculating .the Coulomb poten-
tial is equivalent to solving a standard Dirichlet's prob-
lem since the potential at the sphere boundaries is
known. For completeness we show the expression for
the Coulomb potential inside a sphere of radius R below
(for 1 =0, p& includes the nuclear charge density also},
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(2l+1)R "
(25)

Xj& (GR )exp(iG r; ) . (26)

Note that the potential in Eq. (25) is the sum of the well-
known volume term and a surface contribution.

To calculate the exchange-correlation potential at a
given point in space it is necessary to obtain the charge
density there. The charge density is easily found from
the methods described previously. The exchange-
correlation potential in. the sphere regions is obtained us-

ing a Gaussian set of points in the unit sphere with corre-
sponding weights. This set of 150 points integrates prod-
ucts of spherical harmonics YL YL to machine accuracy
for I, /'&9. The starburst mesh mentioned in Ref. 4 fails
for such products at l values such as 8. Since our l ex-
pansion goes up to l =8, we have used the Gaussian mesh
in the present calculations.

The exchange-correlation potential in the interstitial
regions is handled with an FFT algorithm. The Fourier
coefticients of the density calculated above are used to get
the real-space density and hence the exchange-correlation
potential. We have used the Hedin-Lundqvist form in
the calculations reported here.

III. RESULTS

A. Computational details

In order to test the full-potential LASTO method we
have calculated the charge densities, potentials, total en-
ergies of bcc tungsten, fcc platinum, and fcc aluminum.

We varied the basis set from single g (1() which in-
cludes 5d, 6s, and 6p for W and Pt, and 3s and 3p for Al
to double g (2g) which adds 6d, 7s, and 7p for W and Pt
and 4s and 4p for Al to double g+ polarization term
which adds a 4f function to W and Pt and a 3d function

where the Coulomb potential on the sphere boundary is
given by

@Coulomb (R )
—4 &

v ~ y Coulomb( G )~ e
(G )1 I

V
G

V

to Al. The g values are listed in Table I. They were
chosen to minimize the total energy of the metal in its
normal crystal structure.

The wave function inside the spheres in Eq. (5) was
carried up to A, =8 as were the charge density and the po-
tential. In the interstitial, the reciprocal-lattice expan-
sion was carried up to a cutoff of about 7a o

' for the den-

sity and the potential. The Brillouin zone was sampled at
110 special k points for the fcc structures and at 70 spe-
cial k points for the bcc structure. The core levels were
calculated self-consistently using the fully relativistic
Dirac equation with the spherically symmetric part of the
full potential.

In local-orbital methods such as LASTO and LMTO
(linear muffin-tin-orbital method), a major fraction of the
computer time is spent on constructing the matrix ele-
ments, while in the LAPW method the diagonalization
step is the bottle neck. For small unit cells these methods
may take comparable computer times with the local or-
bital methods being slightly faster. However, for large
unit cells (with more than 10 atoms), the computer time
for the diagonalization step, which increases as N& where

XG is the number of plane waves for the LAPW basis, is
bound to slow down this method compared to a local or-
bital method. This is because the matrix element con-
struction in a local basis method increases only as
XL NG+NGXI with NG again being the number of plane
waves used to expand the interstitial basis functions and

XL being the number of basis functions. Note that XL is

always very much smaller than NG and for large unit
cells we expect a gain of about NG/NI with LASTO
compared to LAPW.

B. bcc W

The higher harmonics of the nonspherical density and
the potential p1 and V& for bcc W are shown in Figs. 1

V V

and 2. It is clear from these figures that the l =4 and
l =6 terms are the dominant nonspherical contributions
to the potential and the charge density. We also note

TABLE I. Values of g for bcc W, fcc Pt, and fcc Al. LASTO parameter g in units of ao ' used in the

calculations reported here. The orbital type (principal quantum number and the orbital angular

momentum) is given in parentheses.

Single g

Double g+ polarization

bcc W

(5d) 2.45
(6s) 2.32
(6p) 1.73
(6d) 4.03
(7s) 1.90
(7p) 2.73
(Sf) 1.38

fcc Pt

(5d) 2.65
(6s) 2.66
(6p) 1.96
{6d) 3.72
(7s) 1.94
(7p) 2.66
(5j) 1.50

fcc Al

{3s) 0.80
(3p) 0.80

(4s) 1.00
(4p) 1.00
(3d) 1.20
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FIG. 1. The higher {l=4,6, 8) harmonics of the density for
bcc W. Note that the l =4 component follows the nodal struc-
ture of the Sd orbital.

that the I =4 term is non-negligible well inside the
muffin-tin sphere. Note that for bcc W, the number of
nodes in p4 corresponds exactly to the number of nodes in
the Sd orbital which will be explained later using Eq. (27).
These harmonics can be used to generate the potential
and the charge density inside the spheres, along an arbi-
trary direction in the crystal [using Eqs. (7) and (20)].

Shown in Figs. 3 and 4 are the charge density and the
potential along (100},(110), and (111)directions near and
outside the muftin-tin boundary. It is interesting to see
the continuity of the potential and the charge density and
their first derivatives at the sphere boundary since we

FIG. 3. The actual density along (111),(110), and (100) crys-
tal directions for bcc W near and away from the sphere bound-
ary. These have been shown up to the halfway point between
neighboring atoms along a given direction. Although we have
used two different representations for the density in the spheres
and in the interstitial regions, note the continuity of these densi-
ties and their first derivatives with the full potential. The sphere
boundary is at the point where there is a step discontinuity in
the muffin-tin density.

have used two di6'erent representations in the two re-
gions, sphere and interstitial. This clearly shows the ade-
quacy of the cutouts used in the various expansions in our
calculations.

For the bcc structure, the (111} direction has the
highest density since this is the direction of the bond with

O
I

O
O

C5

O
O

OO
O

O
Or

I

bcc W
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O
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go I

OO~
I

O
C«I

I

Cr

/

I

(110)
(mu ffin tin)
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I I I I I I I I I

O
O

I

0.5
I I

1 1.5 2

Radial Distance (bohr)

FIG. 2. The higher harmonics of the potential for bcc W in
hartrees. Note that l =4 and l =6 components are comparable
and significant near the sphere boundary.

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Radial Distance (bohr)

FIG. 4. The actual potential in eV along {111),(110), and
(100) bcc W. These have been shown up to the halfway point
between neighboring atoms along a given direction. The
muffin-tin potential is also shown here for comparison, by align-
ing the 1s core level with the full-potential calculation.
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the nearest neighbor. The next-highest density is along
(110) in spite of the fact that the next-nearest neighbor is
along (100). This most likely to be due to the stronger
influence of the body centered atom. The potential along
the above three directions follows the trends seen in the
density; i.e., more negative potentials (hence more attrac-
tive) corresponding to higher charge densities. This is
presumably due to the dominance of the exchange and
correlation parts of the potential as compared to the
Coulomb part. Also note that there is a weak minimum
in the potential along (110) at the halfway point to the
next atom.

It is also interesting to compare these to the results
from a fully self-consistent muffin-tin calculation. As ex-
pected the muffin-tin potential and the density represent
averages along these three directions near the muffin-tin
sphere boundary. However note that out in the intersti-
tial [for example, along (110)] the difFerence between the
muffin-tin potential and the full potential can be as large
as 2—3 eV. This shows that the muffin-tin potential is not
a suitable approximation for open structures.

We have also looked at the t2~-eg splitting of the
tungsten d bands at the center of the Brillouin zone with
and without the full potential. The full-potential number,
which is about 3.5 eV, agrees well with other tungsten
calculations and is about 0.5 eV larger than the value
given by our muffin-tin calculation.

C. fcc Pt

The higher harmonics of the nonspherical density and
the potential for fcc Pt are shown in Figs. 5 and 6. Again
the l =4 and l =6 terms appear to be the most important.
Note that they are of nearly equal magnitude at the
sphere boundary and the 1 =4 terms are significant well
inside the sphere boundary. It is important to have the
l =8 terms at least as a check on the convergence of the

CO

O

C5

O

O
O

fee Pt

OO
O

yVVg'"

CQO
O

I

0.5

l„=8

1.5 2 2.5

Radial Di8tance (bohr)

FIG. 6. The higher harmonics of the potentia1 for fcc Pt in
hartrees.

Crr
O
O

I

lattice harmonic expansion. For low-symmetry systems
one may not be able to ignore the higher-l terms as we see
here that for high-symmetry (cubic) systems one should
at least go as high as I =6 in the lattice harmonic expan-
sion inside the sphere regions. We also note that the l =4
and the l =6 harmonies of the calculated (fce Pt) density
closely resemble those reported in Ref. 8.

It is interesting to note that the l =4 and l =6 harmon-
ics of fcc Pt have the opposite sign compared to those of
bcc W up to a distance of about 2ao from the nucleus.
Most of the l =6 contribution is due to tails from the
other sites. However, we may try to analyze this
difFerence in sign of the l =4 harmonic in terms of the on

O
O

O
O
O

go
O

I

fcc Pt

O
O

0
~B~ O

Q

CD~OO
%4
IQ

+ O
O

g+ O

"-- (11Q)

fcc Pt

(rnid ffin tin)

(111) ~~
(1oo)

O
O

I

0.5
r I

1.5 2

Radial Distance (bohr )
2.5

CgO
O

3 3.5 4 4.5 5 5.5

Radia/ Diatance (bohr)

FIG. 5. The higher (I =4,6, 8) harmonics of the density for
fcc Pt. Again the nodal structure of the I =4 component is the
same as that of the 5d function up to about 2a0. See text for
various other conclusions that can be drawn from this figure.

FIG. 7. The actual density along (111),(110), and (100}crys-
tal directions for fcc Pt near and away from the sphere bound-
ary. These have been shown up to the halfway point between
neighboring atoms along a specified direction.
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site d orbitals. If we carry out a rather simple analysis of
p4 in terms of the (non-negative) weights wz and wz

2-y2 xy

of the d ~ 2 and d„»orbitals (using an expansion of thex —y
wave function up to l =2), it can be shown that

(100)
(111)

(27)p4(r}= lg~(r)I'(~&, ,
—~g ),

where ~g2(r}~ is a product of the square of the l =2 radi-
al function, the relevant Gaunt integrals of the form

f Yz 2 F2 z 1'4 4 dr and other positive constants. This
equation clearly explains why p4 has the same nodal
structure as the Sd function well inside the sphere. From
Eq. (27) and Figs. 1 and 5, it is also clear that for bcc W,
the dominant orbitals are t2 (d„)type while for fcc Pt
they are e (d 2, ). We may also roughly estimate (by

comparing the magnitudes of p4 and po) that these
differences in orbital weights in Eq. (27) correspond to a
few percent of the total charge density. While for bcc W
the L =4 density harmonic does not change sign up to the
muffin-tin sphere boundary, for fcc Pt it changes sign in-
dicating the breakdown of the assumptions that led to
Eq. (27), i.e., the importance of the higher-L orbitals near
the sphere boundary.

The actual potential and the charge density are, of
course, calculated by combining the above harmonics
with the appropriate lattice harmonics as mentioned pre-
viously. In Figs. 7 and 8 we show these along the three
crystal directions (100},(110), and (111)near and outside
the sphere boundaries. The bond direction in the fcc
structure is (110} and along this direction we see the
highest valence density and the most negative (hence at-
tractive) potential near the sphere boundary. Again we
see the crystal potentials along these three directions
differing by as much as 3 or 4 eV near the muffin-tin
boundary. There are similar variations with respect to
the muffin-tin potential as well.

There is a very interesting feature in the potential
along the (111}direction which, to our knowledge has not
been reported previously. The potential shows a double-
well structure in the interstitial along this direction and
the two minima (approximately) correspond to a —,

' and a

3
of &e distance between the two neighboring atoms

along (111). There are, of course, the empty lattice sites
of the fcc (111)stacking. It may be possible to trap light
atoms like hydrogen in such potential wells. Further ex-
amination of the potential around this empty site shows
that it is actually a saddle point. Anyway, this shows
that the full potential scheme yields important informa-
tion with regard to the structure of the density and the
potential that cannot be obtained using other approxi-
mate methods and the above information may turn out to
be crucial in situations such as interstitial trapping.

We also note here that the potentials again follow the
charge densities (or vice versa) along these three crystal
directions, i.e., more negative potentials correspond to
higher charge densities. The t2g -eg splittings at the
center of the Brillouin zone calculated from the self-
consistent full-potential scheme and from the muffin-tin
potential are about 2.2 and 2.0 eV, respectively. Al-
though this difference in fcc Pt (0.2 eV) is not as large as

(mu ffin tin)

C5
~ ~ Q

CO—

g 7

O

fcc Pt

2 3 3.5 4 4.5 5 5.5 6 6.5

RadiaL Distance (bohr)
FIG. 8. The actual potential in eV along (111), (110), and

(100) for fcc Pt. These have been shown up to the halfway point
between neighboring atoms along a specified direction. Note
the potential well along the (111) direction in the interstitial
with a minimum at

3
of the distance to the neighboring atom.

There will be a similar minimum at the 3 point giving rise to a
double-well structure. Further examination of these features
shows that these are saddle points.

fcc

0.5
I 1 I

1 1.5 2

RadiaL Distance (bohr)
2.5

FIG. 9. The higher (I =4,6, 8) harmonics of the density for
fcc Al. Here the nodal structure of the l =4 component follows
that of a 3d orbital (i.e., no nodes).

that is calculated for bcc W (0.5 eV), it is still significant.
The muffin-tin potential (and the density) once again
represents an average potential (density} near the sphere
boundary, but not in the far away interstitial regions,
again showing its inadequacy in handling open struc-
tures.

D. fcc Al

Aluminum is thought to behave as a free-electron met-
al and hence it would be interesting to look for deviations
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from that behavior, if any. The higher harmonics (Figs. 9
and 10) of the density and the potential are monotonic
functions unlike in the cases of bcc W and fcc Pt. The
spatial variations of these harmonics are definitely less
than those of bcc W but somewhat comparable to fcc Pt
in magnitude. Again the I =4 and the I =6 terms appear
to be the most important. Once again we see that p4 fol-
lows the nodal structure (zero nodes) of the 3d orbital
which is the relevant one here and is mainly due to tails
from the other sites.

The variations of the actual density and the potential
along (100), (110), and (111)crystal directions are shown
in Figs. 11 and 12. The densities along these three direc-
tions look somewhat Aatter compared to the previous
cases, however again there are variations of the order of a
few eV in the potential along the three directions. We
also note a double-well potential in the interstitial region
along (111) similar to that seen in fcc Pt. Here also the
two minima correspond to the —,

' and —', of the distance be-
tween neighboring atoms along the (111) direction. As
explained for fcc Pt this is closely related to the fcc (111)
stacking and should be expected in other fcc metals.

One important difference seen here from bcc W and fcc
Pt is that the potentials along the three directions do not
follow the trends in the charge densities. The bond direc-
tion, which is (110) for the fcc structure does not have the
highest charge density near the sphere boundary, al-
though it has the most negative (hence most attractive)
potential in this region. The ordering (by magnitude) of
the densities along (111) and (110) directions appear to
have switched compared to what is seen for fcc Pt. This
may be due to the different types of orbitals that contrib-
ute to the densities in this region for the two cases fcc Pt
(d orbitals) and fcc Al (s and p orbitals) and its effects on
the crystal field.

E. Total energies

0

(111)
CI

~g (110)

(rn~ ffin tin)
V
+C

fcc Al

CI

Po
tD

I

2.5

(100)
I

'
I I I I

3 3.5 4 4.5 5 5.5

Radial Distance (b«r)
I

6.5

determined variationally can be extremely sensitive to
various numerical cutoffs, choices of parameters (basis),
sphere radii, etc. A well-converged total energy should
not be sensitive to the above. Here we will show the de-
gree of sensitivity of the total energy to our LASTO basis
and for fcc Pt to the choice of the sphere radius.

Within the local-density approximation (LDA) the to-
tal energy may be written in the following convenient
form:

FIG. 11. The actual density along (111),(110),and (100) crys-
tal directions for fcc Al near and away from the sphere bound-
ary. These have been shown up to the halfway point between
neighboring atoms along a specified direction.

In this section we will concentrate on total energies for
the three test cases at hand. The total energy which is
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FIG. 10. The higher harmonics of the potential for fcc Al in
hartrees.

FIG. 12. The actual potential in eV along (111), (110), and
(100) crystal directions for fcc Al near and away from the
sphere boundary. These have been shown up to the halfway
point between neighboring atoms along a specified direction.
Note the potential well in the interstitial along (111)as in fce Pt
and the deviations from the muffin-tin behavior.
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E[p]=g e; —,' —fdr p(r)I V '"" (r)+2[iLt"'(r) —s"'(r)]I

R. R.—
—,'pe. V "' (8 )+ Zj 4—rrf 'dr r p(r) +4m f 'dr rp(r)

R~ - 0 ~ 0
(28)

Note that p(r) [V '"" (r)] denotes the total density
(Coulomb potential) while p(r) [V '"" (R )] denotes
the spherically averaged density (Coulomb potential) in a
given sphere. Z refers to the nuclear charge and R the
radius of the jth sphere in the unit cell.

Although the lattice constants can be calculated within
our calculated scheme we have used experimental lattice
constants (see Table II) for our test cases. However we
have seen that our method is capable of predicting lattice
constants to the same accuracy of the FLAPW method,
and these results will be reported elsewhere. ' The pur-
pose of this section is to discuss the sensitivity of our to-
tal energies with respect to the choice of our LASTO pa-
rameters, sphere radius, and compare some of our results
with other published work.

In Table I we show the LASTO parameters that were
used in these calculations. These were chosen to mini-
mize the total energies at the end of the self-consistent
iterative process. Due to the finite basis that is used in
these methods there is always a basis set error associated
with the total energies. by adding more basis functions
(double /+polarization) it is possible to reduce this error.
For the muffin-tin calculations there is an additional er-
ror due to the shape approximations to the potential and
the charge density.

Our total energies contain the contributions from the
core as we recalculate the core self-consistently. Howev-
er there remains the question of the semicore states such
as the 5p states in W. Since these have a nonnegligible
weight in the interstitial region, the correct way to calcu-
late these is to treat them as valence states in a separate
energy window. In the bcc W calculations reported here

the 5p states have been treated as core states and the
leakage into the interstitial has been treated approximate-
ly. However we intend to calculate them correctly as
semicore in the future. We note that our total energy
shows changes of the order of 8 or 9 mhartrees when go-
ing from a single-g basis to a double-g basis. The
difference in our total energy with the full basis (double
/+polarization), compared to the FLAPW calculation of
Ref. 5 is mainly due to the different values used for the
fine-structure constant as explained in Ref. 2.

In fcc Pt the core leakage is much smaller than in bcc
W. With the full basis, the total energy is not sensitive to
the change in sphere radius from 2.477ao to 2.62ao show-
ing the adequacy of the basis and also other cutoffs used
in our calculations. Corresponding to the above change
in the sphere radius, the muffin-tin potential, single-g
basis total energy changes by 12 millihartrees while the
full-potential, single-g basis total energy changes by 4
millihartrees. This sensitivity in the full-potential case is
an indication of the basis set error, which gets much
smaller with the full (double (+polarization) basis. It
appears that in this improvement to the single-g basis, the
Sf function is more important than the 6d's and the rest.

For fcc Pt, as well as fcc Al, the total energy changes
only by two-tenths of a millihartree corresponding to a
5—7%%uo change in the sphere radius with the full basis.
This is another indication of the adequacy of the basis set
as well as the accuracy of our full-potential scheme. All
the total energies reported here have been calculated us-
ing 110 (fcc) or 70 (bcc) special k points in the corre-
sponding irreducible wedge of the Brillouin zone.

TABLE II. Total energies for bcc W, fcc Pt, and fcc Al. Self-consistently calculated total energies in
hartrees for g values given in Table I, for bcc W, fcc Pt, and fcc Al. The values in parentheses for fcc Pt
are or a sphere radius of 2.477ao (ao being a Bohr radius) and for fcc Al are for a sphere radius of
2.557ao, while all the other values are for touching spheres. The lattice constants used in these calcula-
tions are 5.95ao, 7.4156ao, and 7.653ao for bcc W, fcc Pt, and fcc Al, respectively. Note that for fcc Pt
and Al with the full basis (double g+ polarization), the total energy changes only by two-tenths of a mil-
lihartree due to a 5 —7% change in the sphere radius when the full-potential scheme is used. For the
fcc and bcc cases we have used 110and 70 special k points, respectively, in the irreducible wedge of the
corresponding Brillouin zone.

Single g muffin-tin

Full Potential

Double /+polarization muffin-tin
Full Potential

bcc %'

(hartrees)

—16 156.5016

—16 156.5178

—16 156.5103
—16 156.5256

fcc Pt
(hartrees)

—18 436.2834
( —18 436.2715)
—18 436.2965

( —18 436.2922)
—18 436.2845
—18 436.3048

( —18 436.3050}

fcc Al
(hartrees)

( —241.8778)

( —241.8818)

( —241.9156)
( —241.9195)
—241.9193
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IV. COHESIVE ENERGIES

The cohesive energy, which is defined as the difference
in total energy between the solid state and the free atom,
is more suitable for comparisons with other calculations
and experiments. As can be seen from Table III, these
agree quite well with other published calculations We
would like to point out that our calculated cohesive ener-

gy with the full basis for bcc W agrees to a few hun-
dredths of an eV with the FLAPW calculations of Refs. 4
and 5. This clearly shows that it is possible to achieve the
accuracy of the FLAPW method with a much smaller lo-
cal basis method.

The LDA result overestimates the (observed) cohesive
energies and as one does a better job with the LDA, the
discrepancy with the experiment grows. The problem
here is believed' to be arising mainly from the atomic
(LDA) calculations. For example the LDA predicts the
wrong ground-state (d s ) configuration for W.

The results listed in Table III involve the difference in
calculated total energies for the solid and for the atom
where, in both cases the valence shell was treated in the
scalar-relativistic approximation and where a spin-
polarized LDA calculation was done for the atom in the
highest spin multiplicity appropriate to the atomic
configuration. One of the problems is that the atomic
LDA calculation involves an average over a set of spin
multiplet levels. Spectroscopic data can be used to esti-
mate the energy associated with promoting the atom
from its ground state to this average. Accounting for this
promotion reduces the calculated cohesive energies of
Table III by 0.37 and 0.28 eV for W and Pt, respectively,
reducing, but by no means removing, the discrepancy be-
tween the LDA theory and experiment. The exact
discrepancy depends on the choice of the atomic
configuration employed in the calculation. These issues
will be explored in more detail in a future publication. It
is to be emphasized that taking the differences in energies
between different solids, as when calculating the heat of
formation of a compound, meets with much greater nu-
merical success. It is the inability of the LDA to deal
with an atom with the same accuracy (or error) as the
solid which adversely affects calculating a cohesive ener-

gy

CONCLUSIONS

We have discussed in detail our calculational method
incorporating the full potential. There are two reasons

TABLE III. Cohesive energies for bcc W, fcc Pt, and fcc Al.
Cohesive energies in eV for bcc W, fcc Pt, and Fcc Al calculated
using the total energies of Table II (with the full basis) and
spin-polarized atomic energies. These are shown together with
results from other available calculations and experiments. The
experimental values have been taken from Kittel (Ref. . 11).

Full-potential LASTO
Other theory

Experiment

'Reference 4.
Reference 5.

'Reference 12.
Reference 13.

'Reference 14.

bcc W
(eV)

9.77
9.83'
9.76
9 79'
8.90

fcc Pt
{eV)

7.11

5.84

fcc Al
(eV)

3.98
3.64
4.01'

3 ~ 39
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for doing this. The first is to provide detailed explana-
tions on the technically important, nontrivial points per-
taining to these calculations, and the second is to give the
reader an opportunity to compare our method with vari-
ous other methods. ' ' We have carried out fairly
extensive tests on the numerical aspects of our method
and have shown plots of the full potential and the density
which may be used as checks for any future calculations.
The plots showing the continuity of the potential (or the
density) and its first derivative at the sphere boundaries
and the various fine feature of these plots are not fre-
quently reported in the literature. We have also reported
on the sizes of these non-muon-tin effects through vari-
ous plots, band splittings, and total energies. Finally we
have shown that this method is capable of yielding not
only cohesive energies, but also total energies that com-
pare very well with the all-electron FLAPW method.
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