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Green-function Monte Carlo study of quantum antiferromagnets
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We have studied via Green-function Monte Carlo (GFMC) technique the S= —, Heisenberg
quantum antiferromagnet in two dimensions on a square lattice. GFMC is a T=O stochastic
method that projects out the component of the ground state in a given variational wave function.
From studies on lattices up to 12 x 12, we find the ground-state energy per site
E /0J= —0.6692(2). We include the zero-point motion of the elementary excitations in the
ground state and show that it produces long-range correlations in the wave function. We obtain a
staggered magnetization mt=0. 31(2) in units in which the classical Neel state is 0.5. The struc-
ture factor at long wavelengths is S(q) —q and from the slope we deduce the spin-wave velocity.

The discovery of high-temperature superconductivity
has brought about an increased interest in the problem of
quantum antiferromagnets. ' Recently, there have been a
number of calculations of the S= 2 Heisenberg model in
two dimensions on a square lattice by different methods:
exact diagonalization on small clusters up to N =4 x 4, a
variational calculation using trial states with long-range
order (LRO) built in, and a finite-temperature path-
integral Monte Carlo study. ' Analytically, this problem
has been approached by a renormalization-group analysis
of the nonlinear a model as well as by a 1/N expansion of
the generalized SU(N) Heisenberg model. Based on
these studies, there seems to be a gro~ing consensus that
the ground state has LRO with a staggered magnetization
60% of the classical value. On the other hand, Liang,
Doucot, and Anderson have done a variational calcula-
tion using resonating-valence-bond states that do not have
any LRO. They show that by including singlet bonds be-
tween distant sites they can lo~er the energy to within 1%
of the energy of a state with long-range order.

In this paper, we describe a different method to study
the Heisenberg quantum antiferromagnet from those
given above, called Green-function Monte Carlo
(GFMC). Previously, it has been used successfully to
obtain the ground-state and low-lying excited-state prop-
erties of continuum many-body systems. It has the advan-
tage over finite-temperature Monte Carlo as it does not
require an extrapolation to zero temperature or to small
time step. It can be applied to fairly large lattices, limited
only by computer time considerations, unlike exact diago-
nalization methods that are limited by memory. GFMC
goes beyond variational methods by projecting out of a
variational wave function +T the component of the true
ground state. We also address the question concerning
the nature of correlations present in the ground-state wave
function. %'e argue that to obtain the correct behavior of
the staggered magnetization and the structure factor, it is
important to include the zero-point motion of the spin
waves and show that they produce long-range correlations

e'"'(~) =g(z I6 Iz')e'" "(z'),
R'

(2)

where 6 =1 —z(H —w). The parameters w and z are
chosen such that G projects out the ground state. This is
achieved by choosing ~=EO, the ground-state energy,

between the spins in the ground-state wave function.
The Hamiltonian for the S =

2 Heisenberg quantum
antiferromagnet is given by H Jgt, JETS; S~ where the
coupling J is positive and connects spins on nearest-
neighbor sites of a square lattice. Given the commutation
relations of the spins, we introduce a new set of boson
operators by the following transformation: S;t e;b;t and
S,'=n; ——,', where e; = ~ 1 on the even (odd) sublattices.
Note that since (b; ) 0, the bosons have a hard core,
i.e., a site can be occupied by, at most, one boson. The
Heisenberg Hamiltonian is transformed to

H - g(b, tb—, +—b;b,')+Jgn;n, +E~, (1)J
(ij) &ij )

where Etv —JZN/8 is the energy of the classical Neel
state, N is the total number of sites, and Z =4 is the coor-
dination number. The first term in Eq. (1) is the kinetic
energy for bosons and the second term is a repulsive in-
teraction between bosons on adjacent sites, in addition to
the hard-core constraint in the commutation relations. To
obtain ground-state properties, we work in the (S,)„,-0
subspace, which implies that the number of bosons is half
the number of sites; the computational methods described
below are, however, applicable to any value of S,.

Given a variational wave function WT(R), where JRj is
a particular configuration of bosons, the expectation value
of an operator is given by (0)~ =(% T I 0 I %'r&/&% r ( O'T&.

The expectation values require an evaluation of 2%-
dimensional summations, best handled by Monte Carlo
methods.

To go beyond the variational method, we define an
iterative procedure to obtain the wave function at the nth
time step, given its value at the previous time step by
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and the time step to be z~ 2/(Em, „—w), where Em, „ is
the maximum eigenvalue of H. For this problem, we have
E,„=NJ, corresponding to maximum potential energy,
so that z = I/NJ. This guarantees that all the eigenvalues
of G corresponding to the excited states of H have abso-
lute values less than unity. As n , the wave function

approaches the ground-state wave function @0. The
form of the projection operator in Eq. (2) is well suited for
a lattice problem for which there is a cutoff in energy. It
does not involve a time-step error and is simple to evalu-
ate.

The ground-state wave function for a Bose system is
non-negative so that @ " (R) can be treated as a proba-
bility density We. begin with a set of about 1000
configurations or walkers distributed according to

(R'):—O'T(R'). The propagation of a random walker
from a point R' in configuration space to R in Eq. (2) in-
volves two basic processes: (i) Diffusion: —these moves
are governed by the kinetic energy operator that hops a
boson from one site to another. (ii) Branching: —In the
course of the random walks, if a configuration evolves into
a region with a very high potential energy, such walks are
terminated. On the other hand, if a starting configuration
evolves into one with a low potential energy, such favor-
able configurations are multiplied. The process of making
multiple copies is called branching. In addition, it is pos-
sible to significantly reduce the variance of the

energy~
by

importance sampling. The basic idea is to sample @
which biases the diffusion of random walks in config-
uration space according to a simple guiding function %"o.
The population at the nth time step or generation, given
by the total number of walkers in that generation, and its
growth and decline is controlled by the constant w. We
continue iterating Eq. (2) with importance sampling for
approximately 1000 generations until the required vari-
ance is achieved. Details of this method will be published
elsewhere. '

To construct a wave function for the many-body in-
teracting boson system, we use a Jastrow trial state

+sR(R) IIf(r; —r ), (3)
i&j

where f is typically a short-ranged function of the relative
distance between bosons i and j on a lattice. The pair
correlated wave function in Eq. (3) is symmetric under
the exchange of any two particle coordinates. The hard-
core condition requires that f(0) 0, and for large sepa-
ration between the bosons we take f to be unity. For in-
termediate values, f is determined by a variational calcu-
lation by minimizing the energy or by minimizing the
diA'erence between the variational and GFMC estimates
of the correlation functions. If f(b) 0, where b is a vec-
tor to a nearest-neighbor site, then one of the sublattices is
occupied by bosons and the other one is empty, i.e., we get
a state with diagonal LRO. In terms of spins, this is a
Neel state with sublattice magnetization along the z direc-
tion. On the other hand, if f(b) -1, the boson wave func-
tion has o+-diagonal LRO, and in terms of spins, corre-
sponds to a Neel state with sublattice magnetization in the
XY plane. For guiding the random walks, we use a one-
parameter wave function with the optimal value of
f(b)-0.58 in Eq. (3).

By GFMC we obtain the mixed estimate of an operator
0 between the true ground state @0 and a trial state or
importance function +T that can be different from the
guiding function, given by (0)~ =(@p

~
0

~
+T)/(C&p ~%'T).

For the special case of the energy, since +0 is an eigen-
state of the Hamiltonian, the mixed estimate gives the
true ground-state energy (H)~ =Ep. For a general opera-
tor, the mixed estimator must be corrected to give the true
expectation value in the ground state. One way to do this
is to assume that the diA'erence between the trial wave
function and the true ground-state wave function is
small, so that (@p ~

0
~
@p) =2(O)~ —(0)y.

The variational Monte Carlo (VMC) estimates of the
energy per site at the optimal value of the parameter f(b)
is shown in Fig. 1. It is approximately 30% lower than the
Neel-state energy E~ —0.5 J. Also shown in Fig. 1 are
the GFMC results for the energy for lattice sizes up to
12x 12 with periodic boundary conditions. We emphasize
that even with an importance function as simple as the
classical Neel state, we obtain good agreement with the
GFMC results in Fig. 1, though as expected, the error
bars are larger for the same number of iterations. For a
4X4 lattice our result for the energy (Ep/J= —0.7018
~ 0.0002) agrees very well with the exact results
(Ep/J= —0.701780). The energy is found to scale asL, where L is one edge of the lattice and the extrapolat-
ed value is

-0.64

-0.66—

-0.68

-0.70

0.000 0.005 O.OIO O.0I5
1/L

0.020

FIG. 1. The GFMC results for the energy per site E as a
function of L '. The GFMC results (solid curve) is compared
with the VMC energy values (dashed curve). Both used a
short-range one-parameter wave function. The extrapolated ex-
cess energy (over the classical Neel state contribution), F. —0.5
J obtained by GFMC is lower than the VMC by —13%.

Ep/J= 0.6692+'00002.

The excess energy Eo —E& obtained by GFMC is
significantly lower (by —13%) than the one-parameter
variational estimate of the energy. Gross, Sanchez-
Velasco, and Siggia used a method similar to GFMC,
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but without importance sampling. We find that our re-
sults for lattice sizes up to 12x12 are consistently lower
compared to those of Ref. 5 by —2% (which is about
seven standard errors). Perhaps their results have not
converged, especially since in the absence of importance
sampling there may be large fluctuations in the data. We
find that the correlation functions for a 4&4 lattice ob-
tained by the GFMC method are in excellent agreement'
with the exact results. This shows that even though the
trial state has unequal correlations along x, y, and z„ the
ground-state wave function arrived at with GFMC is very
close to a singlet for small lattices.

We give the structure factor for a 12x12 lattice along
the [10] direction, using a short-range importance func-
tion [Eq. (3)] in the mixed estimate. At long wavelengths,
as depicted in Fig. 2, the structure factor is of the form
SsR(q)-a+bq'. From the Feynman-Bijl theorem, this
is not consistent with the elementary excitations being
phonons or spin waves. This points to the inadequacy of
using importance functions with only short-range correla-
tions and suggests the importance of including the zero-
point motion of the elementary excitations in the ground-
state wave function. ' " The Hamiltonian for the collec-
tive coordinates representing the sound mode or spin wave
is given by

HLR 2 g mq[p(q)p( —q)+r((qp(q)p( —q)], (5)
q &qc

where the density fluctuation is related to the displace-
ments by p —V u so that mq —1/q . Also roq cq at long
wavelengths (for q less than a cutoff q, ), and c is the ve-
locity of spin ~aves. The harmonic-oscillator wave func-
tion arising from these spin waves is of the form

q LR Q exp — p(q)p( —q) exp
q&q 2 j&j'rjj

(6)
up to a normalization constant, where p(q)

P;exp(iq r;). Thus, we find that the inclusion of the
zero-point motion of spin waves produces a long-range
contribution to the wave function. ' From Eq. (6), the
Jastrow factor in Eq. (3) at large separation between the
bosons is of the form f(r) —1 —a/r, where a-e '. An
improved ansatz for the importance function is to multi-
ply Eqs. (3) and (6), q'T q"sR%'Lit. A similar wave func-
tion was studied by Huse and Elser, described by
f(r) 1 —a/r~ at large r Treating P. as a variational pa-
rameter, they obtained a value of -0.7. Here, we give a
physical justification for an exponent of P =1.0 based on a
spin-wave analysis. The structure factor for Nt( bosons
described by the wave function in Eq. (6) is
S(q) -(I/N(()&p(q)p( —q)&-q in the long-wavelength
limit as seen in Fig. 2 for both lattice sizes 8X8 and
12& 12. Note that at large q the structure factor calculat-
ed with a short-range importance function merges with
that obtained with a long-range importance function, as
expected.

The GFMC estimates of the energy in Fig. 1 are not
affected by the inclusion of Eq. (6), since the energy is
sensitive mainly to short-range correlations in the wave
function. However, the spin-spin correlation functions are
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FIG. 2. Structure factor obtained by GFMC. (To obtain the
ground-state expectation, the mixed estimate is extrapolated or
corrected as described in the text. ) S(q) along the [10] direc-
tion with only short-range importance function is shown by tri-
angles. Note that it incorrectly goes to a nonzero value at small
q. S(q) along [10] for a N 8X8 lattice (squares) and for a
N=12&12 lattice (circles) with long-range importance func-
tion. The spin-wave velocity is extracted from the linear depen-
dence at small q.

m ~ 0.31+.0.02. (7)

This is reduced by —19% compared to the GFMC esti-
mate in short-range importance functions. Our result in
Eq. (7) is consistent with spin-wave ' and finite-
temperature Monte Carlo values of m ~ —0.30.

We obtain a rough estimate of the spin-wave velocity

dramatically altered. The trial states in Eqs. (3) and (6),
at the optimal value of the parameters, possess mainly
off-diagonal order measured by h(l) (I/N)P;&b; tb;+(&.
The nonzero value of h(l) at large distances is related to
the condensate fraction of the boson superfluid. In terms
of spins, h(1) describes the correlation between the x (or
y) components of the spins and the constant value at
(L/2, L/2) defined as (m„t) +(m~t) is associated with
the presence of sublattice magnetization in the x and y
directions. We also define the density-density correlation
function, or equivalently, the spin-spin correlation func-
tion of the staggered z component by

g(l) - (1/N)ge; e;+(&n;n;+(& .

g(l) decays to (m, ) =0 at large distances, showing the
lack of diagonal LRO; however, for a finite lattice, we ex-
tract a small value for (m, t) . Thus, from the long-
distance behavior of h(l) and g(l) we obtain the value of
(mt) . In Fig. 3, we give the scaling of the staggered
magnetization obtained by the VMC and GFMC
methods. In the classical Neel state, the value of
m 0.5; however, for an S 2 antiferromagnet, quan-
tum Auctuations reduce m~ from it classical value. We
find that the extrapolated value obtained by using GFMC
with the short-range importance function is mt 0.37,
which is lower than the variational results by about 8%. If
we now include a long-range importance function, we find
a GFMC estimate of
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FIG. 3. The staggered magnetization mt vs 1/L evaluated at
(L/2, L/2) for two diff'erent importance functions. Short-range
importance function: The GFMC estimate (extrapolated) are
the squares and the VMC estimate is shown by the triangles.
The dashed line is a least-squares fit to the squares and extrapo-
lates to 0.37 for the infinite lattice. The classical Neel state has

m =0.5. Long-range importance function: The GFMC esti-
mate is shown by the circles. The variational estimate (not
shown) is within a few percent of the GFMC estimate. The
solid line is a least-squares fit to the circles and extrapolates to
0.31 for the infinite lattice.

from the structure factor in the ground state by using the
f-sum rule. At long wavelengths, the collective excita-
tions exhaust the sum rule and we obtained the well-
known Feynman-Bijl formula, co&=2(n(b))ez/S9. It is
somewhat modified on a lattice by the factor (n(b))
=0.25, which is the average amplitude to hop to the
nearest-neighbor site. ' Here e1,-Jgs[1 —cos(k b)l for
the free-particle energy on a lattice with the sum over the
nearest-neighbor sites along +x and +y. In Fig. 2, it is
seen that S(q) is linear in the long-wavelength region

when evaluated using a long-range importance function.
The spin-wave velocity is given by

Z, =c/c—o —qa(n(b))/[ J2S (q) ],
where @co 2(1 —

y ) '/ /(qa) —J2Ja is the classical
spin-wave velocity and y~

= —, [cos(q„a)+cos(qua)]. We
And that Z„which is a measure of the renormalization of
the spin-wave velocity caused by quantum Iluctuations, is

Z, 1.14+ 0.05. This should be compared with the spin-

wave analysis around the classical Neel state' which

gives Z, =1.158. A more accurate estimate of the spin-

wave velocity can be obtained by a direct study of the ex-
cited states via the GFMC method.

In conclusion, we have used the Green-function Monte
Carlo method to study the exact ground-state properties
of the Heisenberg model by projecting out the excited
states in a trial state. We have found that starting with

even rather simple trial states, e.g. , the classical Neel

state, it is possible to obtain very accurate estimates of the
ground-state energy for fairly large lattices. Here we
have presented results for lattice sizes up to 12x12 but
larger lattices are easily possible. ' To obtain the correct
staggered magnetization and excitation spectrum, we
show that the zero-point motion of the elementary excita-
tions must be included in the ground state. This produces
long-range pair correlations in the wave function and us-

ing spin-wave analysis we have obtained the functional
form of these correlations.

The success of GFMC for the Heisenberg model opens
up the possibility of its application to other problems. Al-
though approximations need to be made to deal with fer-
mions or frustration, some of them have been tested on the
electron gas and on He with good results. It is therefore
encouraging to use the GFMC method to study frustrated
antiferromagnets, Hubbard, and extended Hubbard mod-
els with doping.
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