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We perform the standard spin-wave analysis of the triangular Heisenberg quantum antifer-
romagnet. Contrary to the variational calculation of Anderson, we diagonalize exactly the quad-
ratic part of the spin-wave Hamiltonian and obtain results in a 1/S expansion. We compute the
ground-state staggered magnetization per spin and the ground-state energy. For spin %, the
agreement with the variational values of Huse and Elser suggests that the triangular lattice has

long-range magnetic order.

The suggestion that a resonating-valence-bond (RVB)
state is linked to high-temperature superconductivity' has
prompted a reexamination of quantum antiferromagnetic
spin systems. The spin-§ square-lattice Heisenberg anti-
ferromagnet (HAF) has been studied within perturbation
theory,? spin-wave theory,? exact diagonalization on
small-size lattices,* and in quantum Monte Carlo simula-
tions.> There is now convincing evidence that this system
has a Néel-ordered ground state. At least two simple can-
didates remain for a quantum spin-liquid ground state.
The first one is obtained by adding to the square-lattice
HAF a frustrating next-to-nearest-neighbor exchange in-
teraction.® The other one is the spin-3 triangular HAF
as originally suggested by Anderson. In his work,” he
gave an estimate of its ground-state energy using the vari-
ational spin-wave method of Kubo.® Calculations of only
the ground-state energy have recently been performed in
the context of two different spin-wave methods: the Vil-
lain method® and an extended version of the Holstein-
Primakoff method.'® However, the staggered magnetiza-
tion has not been considered and so no conclusion about
Anderson’s proposal has been inferred from these calcula-
tions. In this Rapid Communication we use the conven-
tional spin-wave theory® to obtain the first quantum
corrections to the ground-state staggered magnetization
and energy. For spin 3, we obtain a value E,
= —(.1796J/bond in agreement with previous results®!°
and close to the variational value of Huse and Elser!'!
Ey=—0.1789 and to the value coming from exact diago-
nalization of small clusters!? Eo=—0.183+0.003. We
obtain a sublattice magnetization reduced from its classi-
cal value 0.5 to 0.239. All these numbers are quite
different from the estimate Eo~ —0.158 from various
RVB-type variational wave functions,'*!* and also from
the variational spin-wave value’ Eg= —0.154. This sug-
gests that the situation of the frustrated triangular-lattice
HAF is quite similar to that of the square lattice: a
ground state with long-range Néel order exists in both
cases.
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We consider the triangular-lattice antiferromagnet.
Only nearest-neighbor exchange is considered, so the
Hamiltonian is

H=JZS,"SJ', (l)
i,j)

with (i,j) denoting nearest-neighbor pairs of sites and S;
denoting quantum spins. The starting point of the spin-
wave expansion? is a classical ground state of (1). It con-
sists of three sublattices, A, B, and C, with spins on each
sublattice at an angle of 2zn/3 to those on the other two
sublattices. Nearest-neighbor pairs of spins are on
different sublattices, while each spin is on the same sublat-
tice as all of its second neighbors at distance +/3 nearest-
neighbor spacings. We choose a particular classical
ground state with the spins on the A sublattice oriented
along the z axis, and those on the B and C sublattices ro-
tated 27/3 away from the z axis in the x -z plane (the sites
are lying in the x -z plane and the rotation between 4 and
B is around the y axis perpendicular to the plane). We
then introduce three kinds of Holstein-Primakoff bosons,
a, b, and ¢, on sublattices A4, B, and C, respectively to pa-
rametrize the spin operators. The species a describes the
quantum fluctuations of the spin away from its classical
direction z: S, =S —a*a, St =4a+/2S,and S “=a */2S
(at leading order). On the other sublattices we have to
take into account the 2x/3 rotation so that on the C sub-
lattice:

Mg+ _lete®
Sy 2(S cc)+J§§[ > ]

+
s,-—;-(s—c+c)+\fz‘§[—-§£%}, )

+
C—C
Sy =VI§ S,

at the order we need in the 1/S expansion. On the B sub-
lattice, we just rotate by —2x/3. We then substitute in
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the Hamiltonian (1) and expand, keeping only the quad-
ratic part in the H -P oscillators.

It is then necessary to introduce the Fourier transforms
of the bosonic operators a,b,c. Each sublattice is itself
triangular so that all k vectors are living in a hexagonal
Brillouin zone. This leads to the following formula:

H__ S 35Sy | s “k]_
5 B+ > ; (af ﬂk)Ho(k)[ﬁk+ 3],

J
3)
where
ai
a, = | by and ay =B 4)
Ck

and B represents the number of bonds. The new Hamil-
tonian to be diagonalized is Ho(k), a 6 X6 matrix of the
form

1+M —3M
Ho)=| _3ar 1411 5)
where
0 z z*
M=|z* 0 z|. 6)
z z¥ 0
In this formula, the complex number z is given by
2= X%, )
L
where L =1,2,3 and the two-dimensional vectors §; are

pointing towards half of the neighbors of a site. We made
use of the set

8 =(1,0), 52=[—%,l/2-_3—], 53=[_L __\/_3]_

®)

The key observation is that all the 3x3 blocks building
Hy(k) are permutation matrices and thus can be diago-
nalized simultaneously in the basis

i =(1,1,1), ur=0,7,72),
)

uy=(1,j2j) with j=expQin/3).

The appearance of the cubic roots of the unity is the mani-
festation of the ternary symmetry of the problem. We
perform a generalized Bogolyubov transformation:

a

A
B + B +
This has to preserve the boson commutation relations and

map Hy onto a diagonal matrix. ThlS can be achieved by
taking the column vectors of T~

=T (10)

Aiu;

oty an

where the coefficients A; and y; satisfy hyperbolic ortho-

normalization conditions: |A;|?2— |u;|*>=1, etc. Once
three column vectors are found, the three remaining ones
(T is 6xX6) are obtained by the action of —o,. The con-
struction of T is indeed the nontrivial part of the problem.
One then has to take into account the inversion symmetry
which relates ¢ and g to keep only the A modes over the
entire Brillouin zone. The Hamiltonian is then

2 3
H__S 3)+353 T w A A,
J 2 k L=1
3S
+—2 Y (o +or+w;—3). (12)
X

The eigenfrequencies for a mode of wave number k are
given by

0 (k)= —=2p.)(0+4p,), 13)

where py=z+z*, py=zj+2z%*j2 and p3=zj%+z*].

The ground-state energy including the zero-point mo-
tion of the quantum spins can then be written as
S+c+0|—

Eo=—§ (J/bond),

(14)
c=1—L T (0, +w+as).
N %

If N stands for the total number of sites, the sum over k
extends over the Brillouin zone corresponding to a single
sublattice. The ground-state staggered magnetization per
spin at the same order is given by

1
= — + —_—
(S;)=S—A+0 S

(15)

14+p; (k)
A=__+——-Zzi: w’:k)

We find ¢=0.2184 and A=0.261, leading to E,
= —0.1796J/bond and {S,)=0.239, i.e., a reduction of
the spin of more than 50% from its classical value. The
values of ¢ and A are higher than those for the square-
lattice HAF which are® ¢ =0.158 and A=0.197. This is
in agreement with the naive expectation that the frustrat-
ed lattice has a more pronounced zero-point motion, the
frustrated lattice being closer to the disorder than the
square lattice.

It is interesting to note that this value for E is much
lower than the Eo= —0.154 estimated from the variation-
al spin-wave theory.”® It is worth stressing the differences
between the two methods. We have used the conventional
spin-wave theory® which leads to an expansion of the vari-
ous quantities of interest in powers of 1/S. The relevance
of this method in the spin-3 cases is of course question-
able, especially when one knows only the first quantum
correction. However, the case of the square-lattice HAF
shows that this can be a sensible procedure since the esti-
mate (S;)=0.303 is very close to the values obtained
through series analysis?’ and quantum Monte Carlo.’
Perhaps we are helped by some inverse power of the coor-
dination number. On the other hand, the variational
spin-wave method of Kubo involves the choice of a trial
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Hamiltonian that can be diagonalized in a particular
basis. One then computes the diagonal elements of the
true Hamiltonian in this basis. The vector minimizing the
expectation value is then considered as an approximation
to the true ground state. This is in essence a variational
procedure which is difficult to improve systematically.
The other variational methods that have been applied to
the frustrated HAF gave ground-state energies most prob-
ably well above the true value. The original RVB propo-
sal’ has been refined by Oguchi, Nishimori, and Tagu-
chi.'> They extrapolated finite-lattice results from sys-
tems including up to 20 sites and found Eo=—0.158
+0.003. A very similar value is quoted by Kalmeyer and
Laughlin.'* They used a variational wave function in-
spired from that of the fractional quantum Hall effect.
The spin-wave results of Nishimori and Miyake®'® lead
to Eo=—0.182 when contributions up to 1/S? are taken
into account, but with no information on the staggered
magnetization. Since they expressed the Hamiltonian in
terms of spin operators, each quantized in the direction of
the classical orientation, their spin-wave modes are related

by a nontrivial transformation to our physical modes, the
ones which are relevant to an actual experiment.

The diagonalization of small clusters'? has led to an es-
timate for the ground-state energy which is E
= —(.183 +£0.003, but with no information on (S;).
Huse and Elser'' have performed a variational calculation
with an ordered trial function including three parameters.
They deduce a strict upper bound on Eo=< —0.1789.
This value is reached with a sublattice magnetization of
about 0.34. These numbers are very close to our spin-
wave values. The whole picture strongly suggests that the
spin-+ triangular HAF has a Néel-ordered ground state.
Of course, a spin-wave argument is circular: One can only
prove that one is dealing with a local minimum. For this
expansion to be safe, one has to check by another com-
pletely different means (e.g., quantum Monte Carlo) that
the ground state is ordered.
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