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ON-diagonal long-range order in Laughlin's states for particles obeying fractional statistics
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Laughlin has proposed mean-field wave functions for particles obeying (1 —1/J) fractional
statistics ~here J is an integer. We demonstrate oA-diagonal long-range order in these wave

functions, which is closely related to the oA'-diagonal long-range order in the electronic wave func-

tions corresponding to J completely filled Landau levels. The presence of of-diagonal long-range
order signifies Bose condensation of bosonlike multiplets containing J particles. For J 2, which

may be relevant to high-temperature superconductivity, our result implies Cooper pairing in

Laughlin's wave function for half-fermions.

Exotic statistics are allowed in two dimensions. Inter-
change of two particles changes the many-body wave
functions by a phase factor e"",~here v defines the statis-
tics of the particles, and in principle can assume any value
in two dimensions. Ferrnions and bosons correspond, re-
spectively, to v 1 and v=0, which are the only allowed
statistics in three or higher dimensions. Examples of frac-
tional statistics are found in the fractional quantum Hall
effect (FQHE) where the quasiparticle excitations in the
Laughlin ground state for 1/m filling factor have been
shown to obey v= 1/m statistics. 3 Laughlin has also con-
jectured that the "holons" and "spinons" in a spin-
liquid state (if it exists) of a spin- —, antiferromagnet obey
v=

& statistics.
Due to the complicated statistics, the many-body states

of particles obeying fractional statistics do not, in general,
subscribe to a single-particle-like interpretation as is
available for bosons and fermions. The two-v-particle
problem has been studied by Arovas, SchrieAer, Wilczek,
and Zee, where they compute the second virial coef-
ficient. Recently, Laughlin has proposed a mean-field
solution for a liquid of particles obeying v= 1 —1/J statis-
tics where J is an integer. Laughlin's wave function is
given by

where @J[[z;]l is the antisymmetric wave function for
(spinless) fermions in the presence of a transverse mag-
netic field such that J lowest Landau levels (LL's) are ful-
ly occupied. Particle positions (x,y) are labeled by
z =x+iy. In this paper we show that there is oA'-diagonal
long-range order (ODLRO) in the state described by this
wave function. This ODLRO is, not surprisingly, very
closely related to an ODLRO in @J[[z;]]. For J= 1 the
ODLRO in III [[z;]]has been studied by Girvin and Mac-
Donald (GM). However, their method cannot be gen-
eralized straightforwardly to other values of J due to the
lack of a simple form for NJ [[z;]] such as the one avail-
able for J=1. We instead use second-quantized many-
body techniques which allow us to study the ODLRO for
arbitrary J. Of course, for J= 1 we recover the result of
GM.
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The study of QDLRO requires an evaluation of pJ in the
»mtt In nI ~&—„ Ig —

gl ~&g, and In
We will show that in this limit pJ- I ri

—gI, where
a(J) J/2 is the exponent characterizing ODLRO in +J.
For J 1 this result is in agreement with that of GM.

We first redefine the problem in a more amenable form
in the fermion language. Substituting +J[[z;j] from Eq.
(1) into Eq. (2) yields, in the second quantized notation,
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where the expectation value refers to the fermion ground
state @J,
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and lit(z) is the usual destruction field operator,

Ilt(z) =pc, (z I j,m). (s)

Here the quantum numbers j and m are the LL and the
angular momentum indices, respectively, and cJ is the
destruction operator for an electron in a single-particle
state (z

I j,m),

ei me jI

( +m)1

'I 1/2

e "t 'I. (t), (6)

An exchange of two composites of n v-particles pro-
duces a statistical phase factor of exp(inn v), implying
that composites of J particles obeying (1 —1/J) statistics
behave like bosons. Therefore, we consider as a candidate
for ODLRO the J-body reduced density matrix defined
as

PJ [ril ~ ~ ~ riJ~(I ~
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where t r /2, and m = —j, —j+1, . . . , 0, 1, . . . , and

j 0, 1. . . J—1. Clearly, S(r(k) is a multivalued function
and the off-diagonal density matrix defined in Eq. (2) de-
pends upon the choice of the cuts as well as the branch on
which the integral is evaluated. This fundamental
difficulty with the very definition of the off'-diagonal ma-
trix elements arises in the case of fractional-statistics par-
ticles due to the multivalued nature of their wave func-
tions. Even though we do not resolve the issue of an
unambiguous definition of a generalized reduced density
matrix, we note that the ambiguity is not so severe insofar
as the exponent a describing the asymptotic power-law
behavior of the ODLRO is concerned; a large class of cuts
produces a unique value of the exponent even though the
prefactor depends on the specific choice of the cuts. Con-
sider a pair of nonoverlapping disks D„and D» of radii R„
and R» with all points rt(, lying in D„and all points pk ly-
ing in D». Then the exponent will be independent of R„,
R» and the specific choice of cuts so long as one chooses
branch cuts which are confined within one disk or other
[in which case S(rt;)S((,";) is single valued outside the
disks] and R„and R»are held fixed as I rt

—gI ee. This
results from the fact, which will become clear later in the
paper, that the exponent is determined entirely by the in-
tegrand far from the points g and g. In light of this asser-
tion, we approximate S(rl(, ) by S(r(k =r(), and write,
dropping the irrelevant phase factors,

S(~)=II (~; —r()
(7);=( Iz; —ql

'

and a similar expression for S(gk). In doing so we have

completely eliminated the complications arising from the
rnultivaluedness of S, without affecting the desired ex-
ponent. Notice that it is not allowed to identify the argu-
ments of the creation or destruction field operators; pJ
vanishes identically if any two of the gl, 's or any two of
the g(, 's are equal.

Anticipating ODLRO, we write the following factor-
ized asymptotic form for pJ.

p[r((, (".(]=g [r((]g'[g~], (8)

g[gk]=(N+JI y (r(J) . y (r(()S(q) IN), (9)
where IN) is the N-fermion state with filling factor J.
The exponent a is closely related to the size dependence of
the correlation function g, whose asymptotic form we now
investigate. Without any loss of generality, we take g to
be the origin. Application of the operator S on the N-
particle state moves the particles away from the origin,
thus leaving a charge deficiency near the origin. The
correlation function g is the projection of the resulting
state onto the N-particle state obtained by bodily remov-
ing J particles at r(1, . . . , r(J from the (N+J)-particle
state. In second-quantized form

N

S = g g T( ('cl, c(' (10)
NI I, I(,.)

where the subscript l; denotes a single-particle state
(j,m), and

Z

Thus, under the operation of S on I [l j), each single-
particle state I is mapped onto a single-particle state l;

s I [I,'j) = '+z;(. '
I [I,j), (12)I;, i

where the sum is over all distinct configurations [I;j. No-
tice, (i) all 1; (also, all l;) are distinct due to Fermi statis-
tics, implying that the mapping is one-one. (ii) TJ ~' ~ is
nonzero only if m m'+I. Thus, under the mapping the
angular momentum quantum number of each particle is
increased by one. It is useful to depict the single-particle
states by points in the j—m space and the mapping by ar-
rows, as shown in Fig. 1. To each arrow connecting
(j',m') to (j,m) is associated a matrix element T~
and the product of all the matrix elements in a given map-
ping determines the amplitude of the resulting con-
figuration. It is easy to see that S creates J holes near the
origin, which makes it clear why one must consider the J-
body reduced matrix, pJ, as the possible candidate for
ODLRO; there is no possibility of ODLRO in pq with
J' & J, which is not surprising since a composite of Jparti-
cles [each obeying (1 —1/J) statistics] is the smallest
group that behaves like a boson.

Let us start with an initial fermion state
I jl j,M) in

which all single-particle states
I j,m) with —j~ m ~ M

and 0~ j~ J—1 are occupied. S maps it onto states
I [l;j) with all angular momentum states —j~m ~ M
+1 in the J LL's are occupied except for J holes near the
origin, such that there is one hole for each angular
momentum state m ~0 (which can be in any available
LL). Thus, there are J!hole configurations, and all states
with a given hole configuration X can be obtained from a
given state I tIi&) with the same hole configuration by per-
mutation of particles. Thus, we can write

where the sum is over all distinct states [I;j that can be ob-
tained from +& after I' permutations. The asymptotic size
dependence of g is the same as that of the coefficient a' s.
Evaluation of these coefficients is, in general, rather for-

FIG. l. A typical process illustrating the effect of the opera-
tor 5 (defined in the text) which maps each single-particle state
(j,m) to another single-particle state (j',m+1) as indicated by
the arrows. J holes are created near the origin, one for eachI~0.
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midable, but we have been able to accomplish it in the
limit M ee to order (1/M), which is sufhcient to yield
the exponent characterizing the ODLRO. The simplify-
ing feature that enables us to determine the exponent is
the observation that S connects angular momentum m
only to m+1, which allows us to relate a~ and aM+& and
obtain an asymptotic solution. The procedure is still rath-
er involved and here we give only a brief outline of the
details. First, it can be shown that the leading order be-
havior of T~M+ ~,J ~ is given by

(15)

M+i M M+1 M M+1 M M+1 M M+1

FIG. 2. The coe%cient a~+~ is obtained from a~. Only the
terms that make a contribution to O(1/M) are shown.

This implies that of the J1 possible terms, which corre-
spond to J.t ways of connecting J points with angular
momentum M to J points with angular momentum M+ 1,
only the J terms of the type shown in Fig. 2 make a contri-
bution to order (1/M). The relative sign between the first
and the rest of the terms takes care of the fact that they
diA'er by an odd number of permutations. Thus, we get

J—2 Ti+1M+ l,iM TiM+ l,i+1Mx
i =0 TiM+ l, iM Ti+1M+ l,i+1M

We need to know all the matrix elements to order (1/M).
Here, we quote the results

2j+1 1
TjM+1,jM 8M

~ li2j+1
Tj+ 1M+ l,jM TjM+1j + 1M

with the help of which we obtain to O(1/M)

J
&M+1 =&M

8M

This implies that asymptotically g-aM —M—R ~, since the size (radius) R of the system
R —M'~. In Eq. (8), the distance

~ q —gI provides the
natural scale for the distance from q and g where the in-
tegrals can be cut off. This finally leads to

proving the existence of algebraic ODLRO in a gas of
particles obeying (1 —1/J) statistics.

In the limit M the matrix elements TOM+1~'M get
exponentially vanishing contribution from z close to the
origin, as the states

~ j,M& with large M have exponential-
ly vanishing amplitude at the origin. Since the exponent is
completely determined by the matrix elements in this lim-
it, it is unaA'ected by the specific choice of the cuts so long
as they are confined within a finite region near the origin,
as indicated earlier. It is also worth mentioning that a

proper treatment of the interference between the LL's
(i.e., of the inter-LL coupling) is necessary to obtain the
correct power-law behavior.

It is interesting to note the analogies between our study,
where we investigate ODLRO in Laughlin's wave func-
tions for particles obeying fractional statistics, and the
work of GM, where they find ODLRO in Laughlin's wave
functions for FQHE. GM find that for a partially filled
LL with filling factor 1/J, condensation occurs of compos-
ite objects consisting of one electron and J gauge flux
tubes. We find that for J filled LL's, the condensing ob-
jects are comprised of Jelectrons and one gauge flux tube.
This is not surprising since, in view of previous work, '
one should expect the ratio of the number of electrons to
the number of gauge flux tubes to be just the filling factor.
Also, we find the same power-law behavior for filling fac-
tor J as GM do for filling factor 1/J. Due to the appear-
ance of gauge flux tubes, which introduce long-range
gauge forces, the ODLRO in the fermion states is of a
peculiar and unusual nature. However, in the case of
filling factor J, a composite of J fermions and one flux
tube is analogous to a composite of J fermions each carry-
ing a (1/J)-flux tube, which is nothing but a composite of
J particles obeying (1 —1/J)-fractional statistics. There-
fore, the peculiar ODLRO in the fermion system at filling
factor J implies a usual ODLRO for a liquid of particles
obeying (1 —1/J) statistics, in which case condensation
occurs of J particles alone.

The asymptotic analysis in this paper implicitly as-
sumes a finite J, and the results are not valid in the limit
J ~, which corresponds to fermions themselves.

In conclusion, we have identified the order parameter
for an electron system containing J filled LL's and ob-
tained the form of the algebraic ODLRO. This result
translates into an algebraic ODLRO in Laughlin's liquid
state for particles obeying (1 —1/J) statistics. The order
parameter consists of J fractional statistics particles. In
particular, for bosons (J-1),the ODLRO is analogous to
Bose condensation, and for —,

' -fermions (J 2), pairs of
particles condense, which is analogous to superconductivi-
ty. These results strongly suggest that Laughlin's states
do exhibit superAuidity.

N. R. thanks D. 3. Thouless and S. M. Girvin for helpful
comments.
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