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The infinite-U Hubbard model with a finite number of holes is studied. With two holes, the
Nagaoka state is shown not to be the ground state of the model in any dimensions. The one-
dimensional model with an arbitrary number of holes is also studied in detail.

The discovery of high-temperature superconductors has
stimulated a lot of recent interest for the problem of the
motion of holes in quantum antiferromagnets. One of the
key ideas of the resonating-valence-bond (RVB) theory is
that spin and charge degrees of freedom may decouple in
a spin liquid state.! However, most studies address the
problem of one hole moving in an antiferromagnetic spin
background.?> Because hopping of the hole interchanges
spins on different sites, one expects to find much weaker
antiferromagnetic correlations in the vicinity of the hole.
The dipolar texture discussed in Ref. 2 describes the
asymptotic configuration of the antiferromagnetic order
parameter far from the core region, whose size is expected
to grow as t/J increases. When the doping is large
enough, these core regions surrounding the holes are likely
to overlap, and one obtains a new phase which is deter-
mined by the properties of the core. It is then difficult to
describe the new ground state of the system by starting
from the antiferromagnetic vacuum.

In this limit it becomes interesting to understand better
the nature of the spin background which minimizes the ki-
netic energy of the holes. For this reason we would like to
present some new results on the infinite-U limit (J=0) of
the Hubbard model, where only the kinetic energy term
remains in the Hamiltonian. The model has been exten-
sively studied already.®~® The main result has been ob-
tained by Nagaoka,* who showed that for one hole the
ground state has the maximal value of the total spin (we
will call such a state a Nagaoka state). More recent work
has been devoted to understanding the instability of the
ferromagnetic state when a small J is switched on or when
there is a finite concentration of holes.*”® Although
many approximate approaches suggest that the Nagaoka
state is stable for small concentrations of holes (with
J=0), there is no rigorous proof of this assertion and the
stability of the Nagaoka state is still an unresolved prob-
lem.

Exact diagonalizations of small clusters’ suggest, how-
ever, that the Nagaoka state is destroyed in the presence
of two holes, even when J is still set to zero. This is be-
cause the exchange energy of the system is lowered in the
spin-flipped state. A similar result is obtained using a
variational approach for finite concentration of holes
(n > 0.5 on square lattice).?

In this paper, we shall first give a detailed discussion of
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the one-dimensional (1D) case with an arbitrary number
of holes. Then the problems associated with generaliza-
tion to higher dimensions are outlined. In higher dimen-
sions we eventually exhibit a wave function for two holes
in a nonferromagnetic state which has a lower energy than
the Nagaoka state, proving explicitly that this instability
is indeed a quite general phenomenon.

Let us first discuss the 1D Hubbard model in the
infinite-U limit. The Hamiltonian may be written as

H= —t(z)(l —n,',a)ciTng,g(l _nj,—cr) . ¢))

i
In this limit the Bethe-ansatz wave function® takes a
very simple form. Let us denote by x,,...,xuy
(xpm+1,...,xn) the coordinates of the up (down) spin
electrons, respectively. For an open chain and a given or-
dering Q of the electrons xg; <xp2 < * -+ <xgn We have

,xn) =F(Q)Det(e™**?) . )

The Slater determinant above enforces the antisymmetry
of the wave function with respect to the sets of up and
down spin coordinates, respectively. Furthermore, it
satisfies the constraint of no double occupancy. By simple
counting arguments the wave functions (2) span a space
of dimension CYC# (where L is the total number of sites
on the chain), which is the correct one for M up electrons
and N — M down electrons on L sites with no double occu-
pancy.

For a closed chain, ¥ has to satisfy periodic boundary
conditions. ¥ is invariant under the change xo,— Xg|
+L and Q— QC, where C denotes the cyclic permutation

vixy,...

12 - N—1I N
23 -+ N 1§°
The invariance of ¥ under such a substitution yields
F(QC)e™ ' =F(Q), a=1,...,N. (3)

Since CVN =1, we may summarize the result for the follow-
ing set of equations:

e =eit | F(QC)=e T'F(Q),
) N 4)
eM=1, E=-2tY cosk,.

a=1
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These equations provide a complete solution to the
infinite-U Hubbard model for arbitrary numbers of elec-
trons. Let us discuss further the case when L is even, cor-
responding to an unfrustrated ring. If N=L—1 (one
hole) the lowest-energy state is obtained for A=0 and a k
distribution where the k = state is empty. A =0 is com-
patible with the Nagaoka state, in agreement with Nagao-
ka theorem. However, in 1D the ground state has larger
degeneracy since the energy depends only on the crystal
momentum A of the associated spin chain, rather than on
the total spin.

If now N=L—2 (two holes) and A =0, the lowest-
energy state is obtained by removing k=z and
k=n—2n/L (or k=x+2n/L) from the k distribution.
The energy of such a state is

2n 472 -
Eo=-2 [I+COST] - _4+7‘T+0(L Y. (3

In (5) and henceforth we set t=1. However, if A=x
from (4), the k distribution is shifted by n/L and the
ground state corresponds to removing k =x— /L and
k =n+n/L, leading to

2
E”=—2[2005—17f—]=—4+2LL2+0(L 4. )

We have then E,— Eq=—272/L?>+ O(L ~*). As a result
the ground state has a spin crystal momentum (A) of =,
and hence the state is orthogonal to the Nagaoka state.
We note that Ej and E, correspond to the ground-state
energies of two spinless fermions and two hard-core bo-
sons, respectively. It turns out that the crystal momentum
of the spins can be used to absorb the minus sign arising
from the exchange of two fermions, and thus keep their
orbital wave function nodeless. This results in a lower ki-
netic energy.

Now we ask whether the above mechanism can be tran-
sposed to higher dimensions. We know the holes in the
Nagaoka state behave as free fermions. As we add holes
to the system, the holes have to go to states with higher
and higher energy due to the Pauli principle. We may
view such an increase in energy as a result of frustration
. caused by the fermionic statistics. Another way to under-
stand the frustration is to notice that the wave function of
the holes changes sign upon interchanging two holes.
Thus the wave function must contain nodes which in-
crease the kinetic energy of holes. It therefore might be
advantageous to eliminate some of the nodes in the hole
wave function and to thereby lower the kinetic energy.
This may be achieved by transferring some nodes to the
spin part of the wave function at a much lower energy
cost. Removing nodes from the hole wave function in
some sense resembles changing the statistics of the holes
from fermionic to bosonic. Of course there is a competi-
tion between this exchange mechanism and the direct
Nagaoka effect which favors the ferromagnetic Nagaoka
state. We thus expect that the ground-state energy of a
system with 8N holes to be higher than that of a hard-core
boson system, but lower than that of spinless fermion sys-
tem of equal holes concentration.

These ideas have some special consequences in two di-

mensions, where one can imagine binding the holes to a
texture of the ferromagnetic state which would behave as
flux tube and thus change the statistics of the holes. In
our 1D example with two holes, the path of exchanging
the two holes covers the whole ring. Giving the spin
configuration a crystal momentum = completely removes
the minus sign coming from the fermionic statistics of the
holes, since exchanging the two holes shifts the spin
configuration by one lattice spacing. In higher dimensions
there are many paths for exchanging the two holes. One
may try to assign a crystal momentum 7 to the spin
configurations along the exchange path, but it is impossi-
ble to do this consistently for every such path, since the
crystal momentum operators for different paths may not
commute. A partial solution of this problem would be to
bind each hole to a skyrmion in the ferromagnetic state.
A skyrmion is a texture in which the order parameter is
uniform at infinity and wraps the order-parameter sphere
exactly once. When the hole hops in a skyrmion back-
ground, the skyrmion texture acts like a “magnetic” flux
to the hole. The skyrmion-hole band state is similar to a
charge-flux bond state. One might expect that the minus
sign associated with part of the exchange paths is removed
by the skyrmion texture.

The main drawback of the above proposal is that the
presence of the texture renormalizes the hopping ampli-
tude by a factor less than unity even in the large skyrmion
limit. This reduces the bandwidth and increases the ener-
gy of the holes near the bottom of the band. Strong quan-
tum fluctuations are required beyond this semiclassical
picture in order to restore the full hopping amplitude of
the hole.

In this paper we take an alternative approach. Instead
of binding the holes to a spin texture, we are going to
study hole hopping in a fixed spin texture, and see whether
a proper fixed spin texture can remove some of the frus-
tration arising from the fermionic statistics and lower the
kinetic energy of the holes.

The idea about removing frustration by a fixed spin tex-
ture is best illustrated in a system of one hole on a torus
with a magnetic flux ® going through the torus (Fig. 1).
Let the torus be a L X L lattice. In the Nagaoka state, the
states of the system are labeled by the positions of the
hole, i. The magnetic flux (in a given gauge) changes the
boundary conditions on the hole wave function

FIG. 1. The torus with a magnetic flux going through it. The
two circles on the top and the bottom of the cylinder are
identified.
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wliy,iy) =e"®y(i,+L,i,). In this gauge, the hopping ma-
trix elements remain real. The energy levels of the holes
are given by

L

e=—2 [cos [nxrco-dl +cos(nyxo)] , ™
where n, and n, are integers and xo=2x/L. We see that
the energy of the ground state for nonzero flux is higher
than that for zero flux. This increase of the ground-state
energy can be interpreted as an effect of frustration intro-
duced by the flux. The frustration is reflected in that the
hole wave function acquires a nonzero phase when the
hole hops around the cylinder. Notice that such frustra-
tion exists only when the hole can hop coherently around
the cylinder. When some spins in the Nagaoka state are
flipped, the flipped spins may partially destroy the coher-
ence of the hole hopping around the cylinder. Therefore,
we expect that with nonzero flux ®, the Nagaoka state
with one hole may not have the lowest energy due to the
frustration induced by the flux. The state with flipped
spins has less frustration and thus may have lower energy.
In fact we have shown that when ® =rx the ground-state
energy for one hole and one flipped spin is lower than that
of the Nagaoka state (one hole and no flipped spin) by an
amount of order O(N ~2), where N =L? is the total num-
ber of sites.

Now let us consider the hole hopping in a twisted spin
configuration. The spin state on site i is given by

cos(i,6/2) 9=2_7r
sin(i, 6/2) |° L’

except at the site where the hole is located. This time the
states under consideration are again labeled by the posi-
tion of the hole (Fig. 2). We denote these states by

li,)=@ |S;), ix,i,=0,...,L—1, )
Jj=i

| ;)= (8)

where |S;) is given in (8). Notice that the spin state |S;)
is independent of j,.

To obtain the ground state of the (reduced) system we
may restrict our attention to states with momentum in y
direction k, =0. The problem is thus reduced to a one-
dimensional problem. The effective hopping amplitude of
the hole in the twisted spin background is given by

tirs, =G+ 1,0, a | H | xyiy),a) = —cos—ze— :
(10)

to—1=$€0,i,),a|H| (L~ l,iy),a)=+cos% .

The change in sign of 7o, is due to the fact that |So)

AN
l \‘ hole

FIG. 2. A hole in a twisted spin configuration.

/o

and |S;), although describing the same spin state, have
different signs, i.e., |So)=—|S.). Thus, the hole hop-
ping in the twisted spin background sees a fictitious flux =
going through the cylinder. The energy of the hole is
given by

kL

7 cosﬁ, (11)

2

g=—2—2cos [nxo—%-i-

where we have included a possible real magnetic flux ®.
We see that when ® =gz, the hole in the Nagaoka state
and in the twisted spin state have the same energy
g=—2—2cosn/L=—2—2co0s0/2. This degeneracy is
due to two effects of the twisted spin state which cancel
each other: First, the twisted spin state reduces the hop-
ping amplitude and increases the energy of the hole at the
bottom of the band; second, the twisted spin state also in-
duces a fictitious flux which cancels the frustration intro-
duced by the external magnetic flux. This second effect
reduces the energy of the hole.

In the previous discussion, we only considered the hole
hopping in a rigid spin background. We did not include
the possibility that the hole may be dressed by spin waves.
In this case the local spin configuration near the hole may
be distorted and the hopping amplitude can be enhanced
by the polarization. To show this, let us consider a
modified state of the hole at site i:

|i)=ali,a)+B|ip), (12)
where a and g are real and |i,8) is given by
| G, 1y),8) =T (1, 1) | Gixyiy), @)
- f(i,+l,i,)| (ix,iy),a) . (13)
The operator T; flips the spin at site i and is given by

T: =ic? For such a dressed hole the hopping amplitude
in x direction is

—t, =i, +1|H|iy)

ti+1,i, =

=|=—a2

6 _ 00 50 0
cos— 2aBsin > +3 cos—, (14)

to‘[_—l“‘(OlHlL'—l)""'tx .

assuming L is even. The hopping amplitude in y direction
is (¢4, +1|H |i,)= —t,= —a?. The energy of the dressed
hole becomes

D

g=—2t, — 21, cos [mco—%+—z . (15)

When ® =7, the ground-state energy is g = —2t, — 2.
Using the relation (i | i) =a?+2p%=1 and minimizing &
by changing 8, we obtain

—sin6/2 |
== =~ -2 0 y
p 3cos6/2+2 "° 16)
g0=—4+ 3 6%,

The hole in the Nagaoka state with ® =z has a ground-
state energy —2—2cosm/L=—4+ ;6% The dressed
hole in the twisted spin background has a lower energy by
an amount 15 82=02x%/5)N ~!. We therefore obtain a
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trial wave function |yx)=2X,;|i) such that {(y|H |y
=¢x(x|x), and hence the Nagaoka state with one hole
cannot be the ground state when ®=x (assuming L is
even). We also see that the twisted spin state, lowering
the energy by an amount of order O(N ~!), is much better
than the one-spin-flipped state. Certainly the Nagaoka
theorem, which only applies to the case with ® =0, is still
correct. The Nagaoka state becomes unstable only after
the flux @ is introduced.

Using the above method we can easily show that the
Nagaoka state with two holes is unstable (not the ground
state) even in the absence of the magnetic-flux ®. The
Nagaoka state with two holes has the ground-state energy
ey =—6—2coskp=—8+«4. In the twisted spin back-
ground, the two states carrying momentum xo/2 and
— x0/2 have the same energy (for the dressed hole):

s|=—21y—2txcos£2-(l=—4+%x3. amn

In the ground state, the two states |xo/2) and | — xo/2)
are occupied by the two holes. The energy of the ground
state is given by —8+ % k4. Therefore, the ground-state
energy of the two dressed holes in the twisted spin state is
lower than that of two holes in the Nagaoka state. The
Nagaoka state with two holes cannot be the ground state
of the system.

In the above discussion we have treated the two dressed
holes as free fermions. This is not quite correct. The two
dressed holes interact when they are next to each other.
However, such a short-ranged interaction can contribute
to the ground-state energy at most a term of order N 2.
This is because the wave function of the two holes ap-
proaches zero when the two holes are near each other.
The energy difference between the Nagaoka state with

two holes and the twisted spin state with two holes is
L x¢=(4x%5)N ~'. Thus inclusion of the interaction be-
tween the holes will not change our previous result when
N is large.

We would like to make two remarks. First, although
the above discussion is for two-dimensional systems, it can
be easily generalized to arbitrary dimensions. Our result
still holds in higher dimensions. Second, the spin config-
uration discussed above does not carry definite crystal
momentum. However, the crystal momenta are sharply
concentrated near (ky,k,) = (z,0).'°

In this paper we have studied the infinite-U Hubbard
model. We showed that the Nagaoka state with two holes
is not the ground state. Spin configurations may generate
a fictitious flux which can reduce the frustration induced
by the fermionic statistics and lower the kinetic energy of
the holes. This result is supportive of the idea of statistics
transmutation in the spin liquid state.'

We stress that we have simply found a state with a
lower energy than the Nagaoka state. This does not mean
our state is close to the true ground state. The most im-
portant and unresolved question is what is the ground
state of the infinite-U Hubbard model at finite hole con-
centration. We hope the discussion presented in this pa-
per may shed some light on this problem.
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