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Degenerate spin-boson system
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The temporal evolution of a degenerate two-level system (spin) coupled to a dissipative bath
(bosons) is studied in this Rapid Communication. Closed-form expressions for the occupancy
probabilities and correlation functions are found by functional methods. The non-Markovian
characteristics such as explicit dependence on the initial condition and a possible long-time tail
behavior are shown to be present. We also suggest a reasonable procedure for the construction of
the Green's function of the nondegenerate system.

The interaction of a two-level system with a dissipative
bath serves to model a large class of phenomena occurring
in condensed-matter physics: for example, the x-ray-
absorption and emission spectra of simple metals, ' the
Kondo-Anderson effect, and macroscopic quantum tun-
neling, etc. These have been studied both intensively and
extensively for a long time. In a more recent investiga-
tion, a related model —the Jaynnes-Cummings model—has been studied by the method of dynamical superalge-
bra. An interesting response of the two-level system was
found when the external perturbation has quasiperiodic
time dependence. In a rigorous study, phase transition
was shown to exist in the limit of infinitely many spins,
where the system (spins plus bosons) exhibits a high-
temperature phase in which the spins and bosons decou-
ple.

The approximation solution to this problem was first
given by Pauli, where he wrote down a master or rate
equation describing the time development of the transition
probability P„(nlabels the states of the discrete system)
on physical grounds:

r)tPn = —Z (~.kPk —~k.Pk),
k

scattering operators were found' under the rotating-wave
approximations of Hepp and Lieb. ' Instead we sha11
adopt functional methods which include the finite-tem-
perature effect. ' ' The exact probability" is reproduced
and we are able to obtain exact spin-spin correlations.
The system is modeled by the Hamiltonian:
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where y„yt (a=1,2), pk, and pkt are the usual Fermi
and Bose creation and annihilation operators and o,
(a =1,2, 3) are the Pauli matrices. The units are
h =kz =1. We shall study the time evolution of the prob-
ability amplitude from a given initial state ttI& =1, @2=0,
and unprescribed boson distribution at t 0. The finite-
temperature action with mp =0 is

~p eP
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S can be made diagonal in spin space by a rotation of y:

where F'„k is the amplitude of transition from state n to
state k. The rate equation was shown to be valid by
Weisskopf and Wigner and by Van Hove under certain
conditions. The essential point in these approximations is
that one assumes the relaxation process of the discrete
system is Markovian and hence neglects the effect of
memory. These considerations were discussed in great de-
tail by Fain, ' where he also pointed out the qualitatively
different behavior resulting from lifting the Markovian
approximation. A representative of this class of problems
is simply that of a two-level system coupled to a continu-
um boson field supporting Auctuation of all frequencies.
The coupling between the two is what causes the spin flip.
We shall study the problem in the case where the two-
level system is degenerate in energy without the Markovi-
an approximation. The exact expression for P„(t)was
found by Fain. " Expressions for the line-shape and

ep
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where

Ala)A=a3

and y=A(. From Eq. (4) the Matsubara Green's func-
tion of the discrete system under the influence of the bo-
son Geld is easily found because the fermionic part of the
action is quadratic. Therefore,
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where
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Since the phonon distribution is unprescribed, the transi-
tion probability is
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where
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The Matsubara Green's function can be found via the
Schwinger Ansatz: '

I

can be developed into a Fourier series,

1(z) —(o3/p) g e'""'V(ico„)/ia)„,

where co„2nx/p: 2ntcT is the boson Matsubara fre-
quency and V(ico„)are the Fourier coefficients of V(z).
The ansatz fails when coo is nonzero. Physically, the boson
bath experiences a perturbation over a finite "time" dura-
tion ( ~

z —r'
~
) and we are studying the response of the

bath, whereas in the x-ray problem, the response of the
conduction electrons is being examined. Therefore, we
may expect a long-time tail behavior to develop in the
present problem. This will be borne out in later calcula-
tions. The final form of Q(z, z') now reads

Q(z, r';[V]) -Qo(z, z')er(') t('
O'=5'o(z, r') exp
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where I(z) is an unknown functional of V to be deter-
mined and Qo satisfies Eq. (5) with V 0. Using the an-
satz, we find 8,I(z) =criV(z) Because .Q(z, z') describes
propagation of fermionic excitation in the imaginary time,
it must be periodic in z and z' with period )8, while Vbeing
a functional of the boson Geld is periodic in ~ with period
P. Therefore, I(r) must be periodic in z with period P and

from which

&trg(z, 0)trQ(0, z)&a Qo(z)Qo( —z)(2+2&e &s), (8)

where trQ g, g„,with F(r, z') defined according to
Eqs. (7) and (8) and &e &t) -&(. &s. The boson average
in Eq. (8) can be calculated by the following formulas:
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This gives:
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Performing the frequency sum and upon continuation to
real time, the above becomes:

Bl( [l —coscol((t —t )]
8 s =exp

CO'(l —e ')
where t is. Note that at zero temperature, the Bose fac-
tor in Eq. (9) becomes unity and

Go(t —t') - ——,
' sgn(t —t') .

Using these on the definition of P+ ~, we recover the re-
sults of Fain, "

P (t) ) (l +e r,((T=O)),

where

Z(t, T-0): 2g [l coscok(t ——t')].
k 60k

Note also that at t =0, the correct norxnalization is found.
The probability of spin down is thus, P —— 1 —P++, and
is zero at t 0, thus showing the dependence on the initial
condition. To study more precisely the long-time relaxa-
tion, let us take the case where the pseudospin is coupled
to a two-. dimensional boson bath with dispersion relation
cok ck and consider contact interaction Bk Be
(a a small positive number to limit the large momentum
processes). Converting the sum into an integral over k, we
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find

Z(t, T 0) = — (I co—sckt)e ' - — ln —(8 /c n)ln8 dk I 8 (ct) +a 2 2 ct
c « 2k' 2x c Q a

in the limit of ct » a, exhibiting the long-time tail, a very slow relaxation process highly non-Markovian in character. At
low temperature, the tail is enveloped by stretched exponentials:

t rr(t/p)
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where Eq. (12) is found by using

and
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a=0, 1,2, 3 and cz =I. From a straightforward calcula-
tion, Eq. (14) becomes

~'"(r) = g e...,e.'...&a...,(0,.)g..., (r,o)&, , (i s)
al a2

where c7'. At~'A and P is defined by Eq. (7).
Using the results given above, the susceptibility at

imaginary time is given by

g (5) Qp(r)Qp( r) la']]0']]+Q'2po'22

g I/(n +a ) (n/2a)[cothza —(I/xa)].
n=1

Equation (13) follows by a series expansion in t/P, valid in
the low-temperature region and g(x) is the Riemann ],

"
function. The simplicity of this method is refiected in the
calculation of correlation functions. Consider, for exam-
ple,

g'"(.o) =&s'(.)s'(o) &
—&s'(.)&&s'(o) & (i4)

where

s'(r): -(yea'y)(r),

I

decoupled from the bath, i.e., Z 0.
Having done these calculations we shall now address

the issue of the existence of the discrete nondissipative
(i.e., sharp) levels in the spectrum of the couple system. It
was pointed out by Fain, " that the non-Markovian relax-
ation is due to the "sharpness" of the discrete levels,
where a value /kB], /t])k was assigned to them. In order to
determine the existence of these levels, we must calculate
the density of states (DOS) of the spin subsystem. If the
DOS has &function peaks, then we conclude that the lev-
els are sharp, otherwise the nondissipative structures do
not exist. As will be shown in the following calculations,
one does not find any &function peaks but rather more ex-
otic behavior in the DOS. The DOS at T-0 is defined as

G(t) - ——,
' sgn(t)e ""I. (i9)

Taking the coupling which produces the long-time tail and
putting Eq. (19) into Eq. (18),we find

D(co) -(2/to, ) J dx(1+x ) "cos(cox/to, )

-(2n't'/ra, )(2p),/to) ]t' "E„]t2(co/tp,)/I (p), -

D (cp) —2 Im dt cos(tot )trG)t (t ),
where

GR(t): -ie(t) [G(t) —G( —t)]
is the retarded real-time Green's function of the spin sys-
tem, G(t) is the Green's function obtained from the ana-
lytic continuation of the Matsubara Green's function at
T-0 and is

Written explicitly,

A) 0
0 A2I'

where

+ ( —a b+ —a b) —z(~—, T)]-
(i 6)

(2o)
where co, : -a/c is the cutoff frequency, ]]t: 8 /2c n & 0,
K,(x) is the Macdonald's function, and Eq. (20) can be
found from Ref. 17. The low-frequency asymptote
(to« to, ) of D(t])) depends on the dimensionless parame-
ter p in a nontrivial manner. For 0 (p ( &,

'"n'"/cps) [I ( T
—p)/I (p)] (cplto )
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and the subscript 0 denotes the situation where the spin is

exhibiting a weak algebraic divergence. Upon reaching
p = 2, D(t]))—(2/t]), ) In(2', /c])), and for p & —,', the
DOS becomes independent of co,

D(p)) -(n' '/tp, ) [I (tt —r~ )/I (p)] .
At high frequency (tp» t]),), one expects the DOS to be
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exponentially damped. For 0 (p ( 1,

D(co) —[2' &tt/to, r(lt )j (to/co, )

At p I, one finds pure exponential decay, D(co)
—(n/co, )e ' . The ultraviolet shift in energy

—(coje), )

(Xt,Bt/cak) cancel each other from the numerator and
denominator in the functional averages. ' Furthermore,
this problem can be seen to correspond to the x-ray limit
of the Kondo problem' and p is the same as the parame-
ter a used in Ref. 3. The "vacuum" polarization,

det(8, —cr3 V)/det(8, )
t p

exp trcr3 ) ~' dk „drV(r) Q(r, 7+0;X[V])

where the above is derived from the identity,
f 1

ln [det(A +8)/det(A )] tra„dA.(2 +KB)

and 9 satisfies Eq. (5), is unity. In other words, upon
tracing out the spin degrees of freedom, the bath is
unaff'ected and the total energy of the system is given by
that of the bath alone. If we have instead inserted an ex-
tra term, ey~y, in the Hamiltonian of the spin system, the
total energy decomposed into the sum of the bath energy
and a The energy of the spin system remains unshifted.
However, the DOS has no b-function peaks. The no-
recoil approximation has been used by Edwards and
Peierls in studies of quantum field theory resulting in a
nontrivial asymptote of the electron Green's and vertex
functions. ' In summary, we have given closed-form ex-
pressions for the occupancy probability and the general-
ized susceptibility of the degenerate spin-boson system.
This, in our opinion, is better than using the many-body
wave function of the system, whose explicit form is
difficult to determine. The non-Markovian relaxation of
the discrete system is related to the fact that its behavior
is nonergodic. As to the experimental observation of the
long-time tail, we would like to refer the reader to a stan-

dard treatise in the field. Similarity to the x-ray prob-
lem' can be made more pronounced, if one considers the
Schotte-Schotte oscillator representation of the conduc-
tion electrons, due originally to Tomonaga. In this rep-
resentation, the conduction electrons near the Fermi ener-

gy are bosonized in terms of fictitious sound wave and
since the deep hole in the x-ray problem is structureless,
the conduction electrons experience a transient perturba-
tion. Thus the present problem is equivalent to the x-ray
problem. When coo&0, spin-Aipping processes can no
longer be "rotated" away, thus the present problem be-
comes the Kondo problem, which was discussed in great
detail in Ref. 3. In the extreme where cop» co c/a, we
may disregard the coupling to the bath in the first approx-
imation and an (trivial) exact solution can be found. The
correction to this may be constructed by the Wentzel-
Kramers-Brillouin (WKB) method, in which one regards
the "bath variables" as slowly varying. The partition
function of the system can be expressed in terms of the
off-diagonal elements of 9, which in turn satisfy a
"time"-independent Schrodinger equation with the imagi-
nary time playing the role of the spatial coordinates of the
quantum-mechanical particle and cop playing the role of
the energy. Coupling to the bath introduces a random po-
tential in the Schrodinger equation. The solution of this
remains an outstanding problem. This can also be viewed
as interaction between two types of "particles, " one of
which —the bath-variables —is massless. The WKB ap-
proximation corresponds to the heavy-mass limit' of the
quantum-mechanical particle. The above is deferred to a
later publication.
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