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Sine-Gordon theory of the non-Neel phase of two-dimensional quantum antiferromagnets
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We examine a recently developed sine-Gordon model description of the non-Neel phase of
quantum antiferromagnets on two-dimensional bipartite lattices. Using a spatial dimensionality
d=1+e expansion we argue that the model always scales to its strong-coupling limit and displays
spin-Peierls or valence-bond-solid order. The structure of the theory in this strong-coupling limit

bears a remarkable resemblance to a fermionic large-1V limit of the nearest-neighbor SU(N) anti-

ferromag net.
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The recent discovery of high-temperature superconduc-
tivity' has led to renewed interest in the properties of
non-Neel phases of two-dimensional quantum antifer-
romagnets. This is motivated in part by the suggestion of
Anderson that novel properties of such phases may be
linked to the appearance of high-temperature supercon-
ductivity.

In a recent series of papers, Read and Sachdev have
considered two-dimensional antiferromagnets which have
a two-sublattice Neel state as their classical ground state.
Following a suggestion by Haldane, they considered the
eff'ect of instantons (hedgehogs) and their associated Ber-
ry phases in the non-Neel phase of such antiferromagnets.
They argued that close to the transition to the Neel phase,
the instanton effects led to the following effective sine-
Gordon theory for the long-wavelength (»g, the spin-
correlation length) properties of the spin-disordered state
of any such antiferromagnet:

and 8; see Fig. 1). The ellipse at the end of Eq. (1) indi-
cate additional terms involving cosines of multiples of
(g, —trSg, ): for simplicity we will neglect these terms in

the initial discussion. All of the remaining discussion will

focus on the case of the square lattice; other bipartite lat-
tices can be treated similarly. It is clear from the struc-
ture of S,p on the square lattice that the results are a
function of 2S(mod4). We will explicitly present the re-
sults for the most important case of 5 = 2, the generaliza-
tion of the calculations to 2S(inod4) el is straightforward
and the results will be indicated later.

An important property of S,o is that, in the absence of
dynamical symmetry breaking, all physically measurable
correlation functions are invariant under the full space
group of the square lattice (we will find later in this paper
that such a dynamical breaking of the square lattice sym-
metry in fact occurs for all non-even-integer S). The
choice of the g, does not explicitly break the symmetry be-
tween the sublattices. To demonstrate this we need the
mapping between correlation functions of g to those of the
spin operators S(r) of the antiferromagnet. ' Let R
denote the coordinates of the centers of the links of the
square lattice; then, for % on any horizontal link,

—y g cos (g, —trS(, )

where z is the Matsubara time, c is a velocity which be-
comes the spin-wave velocity in the Neel phase, z cz, a is
the lattice spacing, P is the inverse temperature, S is the
magnitude of the spin at each lattice site, and E and y are
dimensionless coupling constants. ' The sine-Gordon
field g, has space-time coordinates (R„z), where the R,
are located at the centers of the plaquettes of the lattice of
spins. The g, are a set of fixed numbers determined by the
lattice structure: For the case of the square lattice they
take the values 0, 1,2,3 on the four dual sublattices
W, A', Y,Z (the lattice of spins is made up of sublattices A
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FIG. 1. The two sublattices A, B of the square lattice and the
four sublattices W,X,Y,Z of the dual lattice.
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where Ct and C2 are two link-independent constants
which are determined by microscopic details of the phys-
ics. The expectation values of the S(r) on the left-hand
sides of Eqs. (2) and (3) are clearly physically measur-
able. Let us now consider different elements of the square
lattice space group: (a) the physics is clearly invariant
under all translations which preserve the W,X,Y,Z sub-
lattices; (b) the g fields transform nontrivially under tran-
sitions that interchange the sublattices; e.g. , under
translation in which 8',X, Y,Z X,R', Z, Ywe have

g~ xS —g. (4)

which leaves the correlation functions in Eqs. (2) and (3)
invariant. The same transformation about a point on the
8 sublattice yields g~ @+nSz.

The invariances under other elements of the square lat-
tice space group can be verified in a similar manner.

The mapping between sine-Gordon models and inter-
face-roughening problems is useful in visualizing the
physics of S,o. The field g, can be considered as the dis-
placement of a three-dimensional interface. The pre-
ferred values of g, are, however, dependent upon the sub-
lattice location: interface pinning potential has minima at
g, =2n, +++ST, where the n, are arbitrary integers.

Reference 4 considered the properties of S,G in the
small y limit and found that for 2S(mod4)AO, the uni-
form g state was unstable to a spontaneous lattice symme-
try breaking and the appearance of spin-Peierls order. In
this paper we shall reach an identical conclusion using a
more general renormalization-group-based analysis of
S,G. As is the case with the usual sine-Gordon model
which has (, -0 on every site, a renormalization-group
transformation can be performed in spatial dimensions
d=l+t. for small values of y and e. ' It is necessary to
consider a unit cell of four plaquettes with the fields g~,
g~, gy, and g, on their respective sublattices. We expand
the partition function in powers of y (Ref. 9) and in-
tegrate out fluctuations in g~, g~, gy, and g, over the
momentum shell Ae ( [ k [,6 & A, where A is an upper
cutoA' for the momentum k and "frequency" co. After
reexponentiating the series and rescaling, we obtain, for
small y and e, the following renormalization-group equa-

The right-hand sides of Eqs. (2) and (3) remain invar-
iant after we account for the change in sign of the8„+By+1/2( —1) ' " factors. Note that this particular trans-
formation also interchanges sublattices A, B. (c) Under
rotations about any point of the A sublattice by the angle
nor/2 (n integer), the g fields transform as

g g —nSn,

tions:

= (2+ e —aK ')y+
i
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This is equivalent to maximizing the number of links with
phase slip [g, —g, [ x/2. It is impossible, however, to
eliminate links with phase slip [g, —

g& [ 3'/2. The
minima of E~ are obtained by placing exactly one 3x/2
phase slip on every elementary loop of the dual lattice.
We show examples of two such configurations in Fig. 2.

where a, P are positive constants. These equations are
identical in form to those obtained with the ordinary sine-
Gordon model with g, 0; to this order in y the only
effect of nonzero values of g, are changes in the numerical
values of a and P. The most notable feature of these
equations is that for all initial values of K and y there is a
runaway flow towards large y. The action acquires many
additional cosine terms under renormalization but it is
clear that none of them alter the instability towards strong
coupling. '

We physically interpret the flow to strong coupling' as
signaling the dominance of the on-site potentials in con-
trolling the fluctuations of g; the g fields fluctuate in the
small neighborhood of a ftxed minimum of a potential
with terms involving the cosines of sums over multiples of
g, —xS(,. (In the language of the interface-roughening
problem this is equivalent to stating that the interface is
smooth )We b.egin by considering the simplest such po-
tential: We examine S,G in the large-y limit, ignoring the
eA'ect of the cosines of multiple angles. The on-site poten-
tial energy is minimized by the choice

gs gs + 2pls Ã0 —& s

2

for S=
2 and any set of integers n, . We expect g, to fluc-

tuate in a small neighborhood of g, . By inserting these
values of g, into Eqs. (2) and (3) we find that any choice
of the integers n, (including the spatially uniform one)
spontaneously breaks at least the lattice rotation symme
try in the values of (S; Si). The values of the n, will be
determined by minimizing corrections to the energy to
zeroth and first order in I/y; we examine these corrections
in the following paragraphs.

To zeroth order in I/y, we may neglect fluctuations of
g, about g, . The preferred n, configurations are obtained
by minimizing the energy
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the energy. Expanding S,G to second order in g, -g, and
evaluating the resulting Gaussian functional integral, we
find the following corrections to the energy at order I/y:

3z/2 7t 3z/2

5z/2 2z 5z/2

7z/2 3z l l 3z/21. l3m
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We also note from Eqs. (2) and (3) that the values of
(S; S/) on bonds intersecting a 3x/2 phase slip will differ
from those intersecting a m/2 phase slip; we refer to the
bonds conjugate to a 3x/2 phase slip as "dimers. " The
condition of one 3x/2 phase slip per loop is easily seen to
translate into the condition that the dimers are noninter-
secting and close packed. There is thus a remarkable con-
nection between the minima of Ei and the large-N fer-
mionic mean-field solution of the nearest-neighbor SU(N)
antiferromagnet; " in the latter case the minima of the
energy consisted of nearest-neighbor dimers of singlet
bonds.

As was the case with the large-N antiferromagnet, it is
necessary to consider fluctuation corrections to determine
the n, configurations which are the true global minima of

(b)

FIG. 2. (a), (b) Two configurations of go which minimize the
energy E~. The shaded boxes denote links of the dual lattice
which have a phase slip of 3x/2; all other links have a ir/2 phase
slip. The darkened lines of the lattice of spins are conjugate to
the 3n/2 phase slips and denote links of the lattice which have
values of (S; S~l which differ from those on the thin lines. (b)
One of four spin-Peierls states which are global minima of S,G.

where E2 is a constant independent of the n, and the sum
over t and u extends over all the near neighbors of s. A
simple calculation shows that E2 is minimized by the di-
mer configuration shown in Fig. 2(b) and the three other
configurations related to it by the square lattice symme-
try. This result is again identical with that obtained in the
fermion large-N theory. Thus, our final result is that the
ground state of S,o is fourfold degenerate due to spon-
taneous lattice-symmetry breaking.

We now discuss the effect of adding additional terms to
S,g. It is clear that terms which are cosine of simple mul-
tiples of g, —nS(, on a single site will only affect the
strength of the Gaussian fluctuations but not qualitatively
change the form of the results above. Terms involving
sums and differences of multiples of g, —+ST, on different
sites could possibly change the allowed values of g, but it
is unlikely that they will reduce the lattice symmetry
breaking.

The extension of these results to other values of 2S(mod
4) is straightforward. The case 2S(mod4)=3 is very simi-
lar to the S 2 analysis discussed above; we And a four-
fold degenerate columnlike spin-Peierls state as the global
ground state. For 2S(mod4)=2, the allowed values of g,
are 2n, rr on sublattices W, Y and (2n, + I )x on sublattices
X,Z: After minimizing the fluctuations we obtain a two-
fold degenerate linelike spin-Peierls state as the global
ground state. Finally for 2S(mod4)=0, S,o is identical
to the usual sine-Gordon model and there is no dynami-
cal symmetry breaking; the g fluctuations are massive,
leading to valence-bond-solid order.

This paper has examined a previously developed sine-
Gordon model for the disordered phase of quantum anti-
ferromagnets on bipartite lattices in two dimensions. We
have shown that under renormalization the model scales
to a strong-coupling limit whose structure is very similar
to the fermion large-N limit of a nearest-neighbor SU(N)
antiferromagnet. The scaling to strong coupling is inti-
inately linked to the absence of a rough phase in the
three-dimensional interface-roughening problem. In the
strong-coupling limit, for 2S(mod4) ~0, the system is un-
stable to the formation of a strongly dimerized spin-
Peierls state which spontaneously breaks the group of lat-
tice rotations; breakdown of additional symmetries is also
possible.
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