PHYSICAL REVIE%' B VOLUME 40, NUMBER 4 ¹ AUGUST 1989

Superconducting properties of the $Ba_{1-x}Rb_xBiO_3$ system

Izumi Tomeno* and Ken Ando

Advanced Research Laboratory, Toshiba Research and Development Center, Saiwai-ku, Kawasaki 210, Japan

(Received 27 March 1989)

Magnetization measurements revealed that $Ba_{1-x}Rb_xBiO_3$ exhibits superconductivity at $T_c = 29$ K in the $0.28 \le x \le 0.44$ range. In this range the room-temperature crystal structure belongs to the cubic phase. The T_c value is independent of Rb concentration, although the lattice parameter decreases linearly with increasing x. Material parameters for $Ba_{0.6}Rb_{0.4}BiO_3$ are derived from measurements on the lower and upper critical fields. Comparison with $Ba_{0.6}K_{0.4}BiO_3$ shows that physical properties of the two superconductors are practically described by the same material parameters. The Sommerfeld parameter γ is found to be 2.4 mJ mole⁻¹ K⁻², which is in good agreement with the value estimated from the normal-state susceptibility.

Since the discovery of the 30-K superconductors $Ba_{1-x}K_{x}BiO_{3}$, ^{1,2} several experimental studies have been carried out in order to investigate the physical properties in this system. One of the most prominent features in the $Ba_{1-x}K_xBiO_3$ system is the absence of magnetic order. Muon-spin-rotation³ and magnetic-susceptibility^{4,5} measurements support the interpretation^{6,7} that the Bi(6s)- $O(2p)$ bands in both BaBiO₃ and Ba_{1-x}K_xBiO₃ have nonmagnetic character. The situation in $Ba_{1-x}K_xBiO_3$ is in sharp contrast to the competition between antiferromagnetism and superconductivity in Cu-0-based compounds, such as $La_{2-x}Sr_xCuO_4$ (Ref. 8) and YBa₂- $Cu₃O_{7-x}$ ⁹ The observations on oxygen-isotope effect in $Ba_{0.6}K_{0.4}BiO₃$ (Refs. 4 and 10) suggest that the electronphonon interaction plays an important role in the superconducting pairing mechanism. According to the neu-
tron^{11,12} and x roy differentian^{2,13,14} results Be. K BiO. tron^{11,12} and x-ray diffraction^{2,13,14} results, $Ba_{1-x}K_xBiO_3$ for $0.25 < x < 0.45$ exhibits a cubic perovskite structure both in superconducting and normal states. Based on 'critical-field measurements,^{4,15} $Ba_{1-x}K_xBiO_3$ is regarded as an extreme type-II superconductor. This is similar in character to the 12-K superconductor $BaPb_{0.75}Bi_{0.25}$ O_3 . $16 - 18$ In spite of the simultaneous discovery of superconductivity in $Ba_1-xK_xBiO_3$ and $Ba_1-xRb_xBiO_3$, ^{1,2} we lack definite information concerning the superconducting properties of the Rb-substituted material. In this Rapid Communication, we present the superconducting range and the lattice parameter in $Ba_1-xRb_xBiO_3$ as a function of x. Furthermore, we determine both lower and upper critical fields, and normal-state susceptibility. Then we derive material parameters describing superconducting properties. We compare the present results with those for $Ba_{0.6}K_{0.4}BiO_3$ and $BaPb_{0.75}Bi_{0.25}O_3$.

The powder samples used in this study were prepared using the two-step procedure invented for $Ba_{1-x}K_xBiO_3$ using the two-step procedure invented for $Ba_{1-x}K_xBiO_3$
by Hinks *et al.*¹¹ Appropriate mixtures of BaCO₃, Rb_2CO_3 , and Bi_2O_3 were calcined at 750 °C for 12 h in flowing N_2 gas, pulverized, and then annealed in O_2 at $400\degree$ C for 1 h. We estimated the average grain size in the sample to be 5.5 μ m using a HORIBA centrifugal particle analyzer.

The $Ba_1-xRb_xBiO_3$ samples were characterized by

powder x-ray diffraction at room temperature. For $0.28 \le x \le 0.44$, all the observed Bragg peaks were indexed on a cubic unit cell. By the analogy of the Ksubstituted crystal, ¹³ Ba₁ - _xRb_xBiO₃ in the 0.28 < x < 0.44 range is expected to have a cubic perovskite structure with space group $Pm3m$. As shown in Fig. 1, lattice parameter a decreases linearly with increasing x . Similar behavior has been observed for the $Ba_{1-x}K_xBiO_3$ sysbehavior has been observed for the $Ba_{1-x}K_xBiO_3$ system.¹¹ In an octahedral environment, the ionic size of K^+ or Rb^+ is slightly larger than that of Ba^{2+} , while the size of Bi^{5+} is considerably smaller than that of Bi^{3+} . The Rb

FIG. 1. Cubic lattice parameter a and critical temperature T_c for $Ba_1-xRb_xBiO_3$ as a function of Rb concentration x. (a) Room-temperature *a* values are plotted. (b) T_c values are obtained from $M(T)$ measurements.

or K substitution increases the apparent Bi^{5+}/Bi^{3+} ratio. Thus, the ionic-radius relation can account for the change in lattice parameter a with Rb or K concentration. The semiconducting parent-compound $BaBiO₃$ has a monoclinic distorted perovskite structure consisting of two distinct Bi-O bond lengths.¹⁹ X-ray-diffraction patterns indicate that $Ba_1-xRb_xBiO_3$ in the $x < 0.24$ range has a lower symmetry structure related with BaBiO₃. For $x > 0.48$, the RbBiO₂ phase appears in the diffraction data. The phase relation in the present system is similar to the situation reported for the $Ba_{1-x}K_xBiO_3$ systo the situation reported for the $Ba_{1-x}K_xBiO_3$ system. ^{11,13,20} A large energy gap in BaBiO₃ is interpreted in terms of the commensurate charge-density-wave (CDW) instability.¹⁹ The structural phase transition in The structural phase transition in $Ba_1-xRb_xBiO_3$ from monoclinic to cubic symmetry seems to be accompanied by the suppression of the CDW.

Magnetization measurements on powder samples were performed using a commercial superconducting quantum interference device (SQUID) magnetometer. The zerofield-cooled (ZFC) magnetization was determined by warming the sample in a field of 10 Oe after cooling to 4.2 K in zero field. The field-cooled (FC) magnetization was obtained by cooling with the applied field. As indicated in Fig. 2, both ZFC and FC curves for $Ba_{0.6}Rb_{0.4}BiO_3$ yield T_c = 29 K. Schneemeyer *et al.* ¹³ reported that the highest T_c value is 30.5 K in the $Ba_1-xK_xBiO_3$ system. The Rb/K mass ratio may give rise to the slight difference in T_c between $Ba_1-xK_xBiO_3$ and $Ba_1-xRb_xBiO_3$. The FC magnetization observed in the $0.28 \le x \le 0.44$ range corresponds to 10-45% of a full Meissner effect, indicating bulk superconductivity in this material. For lower Rbcontent samples the diamagnetic signal at 4.2 K decreases sharply with decreasing x. At $x = 0.12$ the magnetization indicates 0.1% of perfect diamagnetism. This is due to concentration fluctuation in a fractional part of the sample. Thus, the present results lead to the conclusion that the superconductivity in the $Ba_{1-x}Rb_xBiO_3$ system exists in the $0.28 \le x \le 0.44$ range, where the room-temperature crystal structure belongs to the cubic phase. A similar situation¹¹ has been reported for the K-substituted material. Note that in Fig. 1(b) the T_c values remain constant in the $0.28 \le x \le 0.44$ range. This suggests that

FIG. 2. Magnetization M at $H = 10$ Oe as a function of temperature for $Ba_{0.6}Rb_{0.4}BiO_3$. The solid circles refer to FC data, and the open circles refer to ZFC data.

FIG. 3. Magnetization curve for $Ba_{0.6}Rb_{0.4}BiO₃$ at $T=5$ and 10 K. $H_{c1}(T)$ is defined as the field where $M(H)$ first deviates from linearity. The straight line is a guide to the eye.

the T_c value is independent of hole concentration in $Ba_{1-x}Rb_xBiO₃$.

The lower critical fields $H_{c1}(T)$ were determined from the field dependence of the magnetization after cooling the sample in zero field to the desired temperature. The low-field magnetization results are plotted in Fig. 3. Here $H_{c1}(T)$ is defined as the field where the magnetization $M(H)$ first deviates from linearity. The H_{c1} values are 60 Oe at 10 K and 80 Oe at 5 K. We estimate $H_{c1}(0) = 90$ Oe, on the assumption that $H_{c1}(T)$ increases linearly with decreasing temperature. The upper critical fields $H_{c2}(T)$ were obtained from constant-field magnetization measurements as a function of temperature. In Fig. 4, T_c is the temperature where the constant-field magnetization starts

FIG. 4. Temperature dependence of magnetization M for $Ba_{0.6}Rb_{0.4}BiO_3$ at $H = 30, 40,$ and 50 kOe. Each T_c value is the temperature where $M(H)$ starts to deviate from the normalstate value.

	$Ba0.6Rb0.4BiO3$	$Ba_{0.6}K_{0.4}BiO_3^a$	$BaPb_{0.75}Bi_{0.25}O_3$
T_c (K)	29	30	12
dH_{c2}/dT (kOe/K)	-5.9	-5	-5.3
$H_{c1}(0)$ (Oe)	90	110	20
$H_{c2}(0)$ (kOe)	118	104	44
$H_c(0)$ (kOe)	1.64	1.75	0.46
GL κ	51	42	68
GL $\xi(0)$ (Å)	53	56	87
GL $\lambda(0)$ (Å)	2700	2350	5900
γ (mJ mole ⁻¹ K ⁻²)	2.4	2.6	1.1

TABLE I. Material parameters for the Bi-based superconductors. GL stands for Ginzburg-Landau.

'Reference 4.

^bReference 17.

to deviate from practically temperature-independent normal-state values. The upper critical fields $H_{c2}(T)$ are plotted in Fig. 5 as a function of temperature. The dH_{c2}/dT slope near T_c is found to be -5.9 kOe/K. We. evaluate $H_{c2}(0)$ = 118 kOe from the relationship $H_{c2}(0)$ $0.69T_c(dH_c/dT)_{T_c}$, based on the Werthamer Helfand-Hohenberg (WHH) theory²¹ for the dirty-limi type-II superconductor.

The $H_{c1}(0)$ and $H_{c2}(0)$ values yield superconducting material parameters. The upper critical field $H_{c2}(0)$ is given by $H_{c2}(0) = \Phi_0/2\pi\xi^2$, where Φ_0 is the flux quantum and $\xi(0)$ is the Ginzburg-Landau (GL) coherence length. Both $H_{c1}(0)$ and $H_{c2}(0)$ are expressed as $H_{c1}(0)$ $H_c(0) \ln \frac{\kappa}{\sqrt{2}\kappa}$, and $H_{c2}(0) = \sqrt{2}H_c(0)\kappa$, where $H_c(0)$ is the thermodynamic critical field, and κ is the GL parameter. We can estimate the value for Sommerfeld pa-
rameter $\gamma = 2.4 \text{ mJ mole}^{-1} \text{K}^{-2}$, based on the BCS relationship $\gamma = 0.17[H_c(0)/T_c]^2$ ergcm $^{-3}$ K $^{-2}$. ²² In Table I the derived material parameters for $Ba_{0.6}Rb_{0.4}BiO_3$ are compared with those for $Ba_{0.6}K_{0.4}BiO_3$ (Ref. 4) and $BaPb_{0.75}Bi_{0.25}O_3$. ^{17,18} Here we estimate $H_{c2}(0)$ values from the dH_{c2}/dT data using the WHH equation. Superconducting properties of the Rb- and K-substituted ma-

FIG. 5. Upper critical field H_{c2} as a function of temperature. The data are taken from constant-field magnetization measurements as a function of temperature.

terials are practically described by the same material parameters. Based on the BCS relationship, the difference in T_c between $Ba_{0.6}Rb_{0.4}BiO_3$ and $BaPb_{0.75}Bi_{0.25}O_3$ is partly due to the difference in the density of states near $E_F.$

Figure 6 shows normal-state susceptibility χ values for $x = 0.12, 0.28$, and 0.36 as a function of temperature up to 250 K. The core diamagnetic-susceptibility χ_c is estimat-250 K. The core diamagnetic subsequently α_c
ed to be -2.23×10^{-7} emu/g.²³ After correction for χ_c , we deduce the Pauli spin susceptibility $\chi_P = 0.73 \times 10$ emu/g for $x = 0.36$ from the observed χ value. Thus, the χ measurements yield $\gamma = 2.1 \pm 0.3$ mJ mole⁻¹ K⁻², which is in good agreement with the value estimated from $H_c(0)$. The γ values for La_{1.85}Ba_{0.15}CuO₄ (Ref. 24) and $YBa_2Cu_3O_{7-x}$ (Ref. 25) are reported to be 5 mJ mole^{-1}K -2 . It follows that the common feature of the Bi-based superconductors is the low density of states $N(0)$ near E_F .

As shown in Fig. 6, there is a slight difference in χ between $x = 0.12$ and $x = 0.36$. This indicates that the Rb substitution exerts little influence on $N(0)$ near E_F in

FIG. 6. Normal-state susceptibility χ in Ba_{1-x}Rb_xBiO₃ as a function of temperature. The sample with $x=0.12$ is nonsuperconductive material. Samples with $x = 0.28$ and $x = 0.38$ are superconductors with $T_c = 29$ K. The diamagnetic core contributoriconductors with T_c 22 K. The diamagnetic to λ_c is estimated to be -2.23×10^{-7} emu/g.

 $Ba_{1-x}Rb_xBiO_3$. Mattheiss and Hamann⁶ pointed out a similar behavior for $Ba_{1-x}K_xBiO_3$, based on bandstructure calculations. According to their results, the antibonding $Bi 6s - O 2p$ subbands are responsible for the conduction band near E_F , while the Ba 5p and K 3p orbitals participate in the nearly degenerate corelike states

- Present address: Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-Ku, Tokyo 135, Japan.
- 'L. F. Mattheiss, E. M. Gyorgy, and D. W. Johnson, Jr., Phys. Rev. B 37, 3745 (1988).
- $2R.$ J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp, Jr., A. E. Wnite, K. Short, W. F. Peck, and T. Kometani, Nature (London) 332, 814 (1988).
- ³Y. J. Uemura, B. J. Sternlieb, D. E. Cox, J. H. Brewer, R. Kadono, J. R. Kempton, R. F. Kiefl, S. R. Kreitzman, G. M. Luke, P. Mulhern, T. Riseman, D. L. Williams, W. J. Kossler, X. H. Yu, C. E. Stronach, M. A. Subramanian, J. Gopalakrishnan, and A. W. Sleight, Nature (London) 335, 151 (1988).
- 4B. Batlogg, R. J. Cava, L. W. Rupp, Jr., A. M. Mujsce, J. J. Krajewski, J. P. Remeika, W. F. Peck, Jr., A. S. Cooper, and G. P. Espinosa, Phys. Rev. Lett. 61, 1670 (1988).
- 5S. Uchida, H. Hasegawa, K. Kitazawa, and S. Tanaka, Physica C 156, 157 (1988).
- ⁶L. F. Mattheiss and D. R. Hamann, Phys. Rev. Lett. 60, 2681 (1988).
- ⁷L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227 (1983).
- D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Jr., Phys. Rev. Lett. 58, 2802 (1987).
- 9J. M. Tranquada, D. E. Cox, W. Kunnmann, H. Moudden, G. Shirane, M. Suenaga, P. Zolliker, D. Vakinin, S. K. Sinha, M. S. Alvarez, A. J. Jacobson, and D. C. Johnston, Phys. Rev. Lett. 60, 156 (1988).
- ¹⁰D. G. Hinks, D. R. Richards, B. Dabrowski, D. T. Marx, and A. W. Mitchell, Nature (London) 335, 419 (1988).
- ¹¹D. G. Hinks, B. Dabrowski, J. D. Jorgensen, A. W. Mitchell, D. R. Richards, Shiyou Pei, and Donglu Shi, Nature (London) 333, 836 (1988).

below E_F . The same explanation seems to apply to the Rb-substitution effect on $N(0)$. We expect that the mixture of Rb $4p$ and Ba $5p$ bands results in corelike states. The constant T_c values in the $0.28 \le x \le 0.44$ range are interpreted in terms of the concentration-independent low density of states near E_F .

- ²M. T. Weller, J. R. Grasmeder, P. C. Lanchester, P. A. J. De Groot, G. P. Rapson, and A. C. Hannon, Physica C 156, 265 (1988).
- ³L. F. Schneemeyer, J. K. Thomas, T. Siegrist, B. Batlogg, L. W. Rupp, R. L. Opila, R. J. Cava, and D. W. Murphy, Nature (London) 335, 421 (1988).
- ⁴R. M. Fleming, P. Marsh, R. J. Cava, and J. J. Krajewski, Phys. Rev. B 38, 7026 (1988).
- ⁵U. Welp, W. K. Kwok, G. W. Crabtree, H. Claus, K. G. Vandervoort, B. Dabrowski, A. W. Mitchell, D. R. Richards, D. T. Marx, and H. G. Hinks, Physica C 156, 27 (1988).
- ⁶A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. 17, 27 (1975).
- ¹⁷B. Batlogg, Physica B 126, 275 (1984).
- ⁸K. Kitazawa, S. Uchida, and S. Tanaka, Physica B 135, 505 (1985).
- ⁹D. E. Cox and A. W. Sleight, Acta Crystallogr. B 35, 1 (1979).
- 20S. Pei, N. J. Zaluzec, J. D. Jorgensen, B. Dabrowski, D. G. Hinks, A. W. Mitchell, and D. R. Richards, Phys. Rev. B 39, 811 (1989).
- 2'N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
- ²²J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- $23E$. König and G. König, in *Landolt-Börnstein: Numerical* Data and Functional Relationships in Science and Technology, edited by K. H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin, 1976), Group 11, Vol. 8, p. 40.
- ²⁴K. Kumagai, Y. Nakamichi, I. Watanabe, Y. Nakamura, H. Nakajima, and N. Wada, Phys. Rev. Lett. 60, 724 (1988).
- ²⁵R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Esponosa, Phys. Rev. Lett. 58, 1676 (1987).