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Berge et al. have generalized Villain’s fully frustrated XY model on a square lattice by multiply-
ing the antiferromagnetic exchange constant by a factor . Using the Monte Carlo method, they
find that the specific heat displays both Ising-type and Kosterlitz-Thouless-type phase transitions
with T < Tgr, where T1(n)—Tx1(7) as 7— 1, thus implying a multicritical point. Using mean-
field theory we find a phase diagram in good qualitative agreement with that found by Berge et al.,
explicitly producing the tetracritical point at =1, and providing a physical picture for the struc-
ture of the phases. The nonferromagnetic, collinear phase for > 1 is found to possess antiferro-
magnetic order. When a magnetic field H is included, the paramagnetic and ferromagnetic phases
coalesce to a single collinear phase, and the antiferromagnetic and noncollinear phases coalesce to a
single noncollinear phase. The critical surface H (T,n) separating these phases (which should be
characterized by a divergence in the staggered susceptibility) has been determined, again within
mean-field theory. A phase-only mode-fluctuation analysis is also presented, yielding results con-
sistent with the mean-field analysis, as well as explicitly revealing the fluctuating modes that become
unstable at the transitions; with these modes one can explain the presence (and absence) of suscepti-
bility peaks for the four phase transitions found by Berge et al. For T; < T < Tk, one and only one
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mode condenses, leading to a standard KT phase transition.

I. INTRODUCTION
A. Summary of related work

Systems with competing interactions are well known in
physics and lead to rich thermodynamic phase diagrams;
examples are the antiferromagnetic next-nearest-neighbor
Ising (ANNNI) model,' and various representatives of
XY spin symmetry (such as helimagnets,? frustrated mod-
els,> and arrays of Josephson junctions in an applied mag-
netic field*). Competing interactions lead to frustration,
with the result that the true symmetry of the model is not
simply given by the number of spin components: for in-
stance, the actual symmetry group of a frustrated XY
model is U(1) XZ, where, in addition to the underlying
overall orientational, or U(1), symmetry of the spins, frus-
tration adds a discrete up-or-down, or Z,, symmetry.>>

For frustrated XY models in two spatial dimensions,
the possibility exists that the discrete Z, symmetry (the
ground state is doubly degenerate) may give rise to an
Ising-type transition at a temperature 7. This would be
in addition to the U(1) symmetry giving rise to the usual
Kosterlitz-Thouless (KT) vortex transition at a tempera-
ture Txr. Arguments based on mean-field (MF) theory
indicate that, if two transitions do occur, then T} = Tkr.
This is because noncollinear ordering (needed in order to
obtain the Z, symmetry) can only be defined if the spin
system already possesses some XY rigidity over a reason-
ably long length scale, and this happens only when
Ty < Tgr (see also Dzyaloshinskii®). On the other hand,
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arguments based upon considerations of topological de-
fects indicate that one should rather expect Ty Tgy.”?
In this case it is argued that vortices of fractional
“charge” are localized on domain-wall corners, so that
when the domain walls associated with an Ising transition
become unstable, the corner vortices unbind, thereby dis-
rupting the XY order.

Nevertheless, for the specific case of Villain’s “odd”
model of fully frustrated XY spins on the square lattice3
(where each plaquette has three ferromagnetic and one
antiferromagnetic nearest-neighbor bonds of equal
strength), numerous studies all suggest that T;=Tgr.
Numerical simulations by Teitel and Jayaprakash® were
consistent with this result, and the mean-field theory of
Shih and Stroud,!® as well as the renormalization-group
analyses by Yosefin and Domany,'! and by Choi and
Stroud,!? gave this result exactly.

For the fully frustrated antiferromagnetic triangular
lattice, with nearest-neighbor antiferromagnetic interac-
tions (FFTR), Monte Carlo (MC) calculations by Mi-
yashita and Shiba!® indicated that perhaps T;% Tk,
with T} the larger of the two. However, Monte Carlo
calculations by Lee et al.!* which also considered the
effect of a magnetic field H (thereby lowering the symme-
try of the Hamiltonian) supported Ty=Tky for H=0.
(These authors also argued that T = Tk because the Is-
ing transition should trigger the KT transition.) A
mean-field analysis, including the effect of H, yielded the
exact result T =Ty for H=0." (Note that, in finite H,
the structure of the phase diagram in mean-field theory

264 ©1989 The American Physical Society



40 PHASE DIAGRAM FOR THE GENERALIZED VILLAIN MODEL 265

differed substantially from that obtained using Monte
Carlo. Specifically, a Potts-type phase was found in
Monte Carlo, which does not occur in mean-field theory.)
In addition, renormalization-group analyses by Yosefin
and Domany,'! and Choi and Stroud'? gave T;= Tkt ex-
actly.

Additional work on the fully frustrated XY model in
two dimensions has been devoted to models that, when an
extra parameter is chosen properly, reduce to the tri-
angular FFTR or square Villain models with nearest-
neighbor exchange. Van Himbergen!® has used Monte
Carlo calculations to study a triangular model with the
same symmetry as the FFTR, but a slightly different in-
teraction, finding results consistent with T7=Tgy. A
number of authors have studied models whose extra pa-
rameter can give different symmetries: Berge et al.!”!8
studied the square lattice using Monte Carlo techniques;
van Himbergen!® studied the triangular lattice using
Monte Carlo techniques; Granato studied the square lat-
tice using renormalization-group techniques;?*® Choi,
Chung, and Stroud?! studied the square lattice using both
Monte Carlo and renormalization-group techniques; and
Thijssen and Knops? studied the square lattice using
Monte Carlo techniques. In these cases, the symmetry
groups of the models break into two subgroups represent-
ing the Ising and XY symmetries, allowing for the possi-
bility of two separate transitions. When these models
reduce to the FFTR or the Villain model, they yield
T,=Txr-

We wish to focus on the model considered by Berge
et al.'7 These authors introduced a symmetry-breaking
field by replacing the antiferromagnetic bonds —J by
—nJ (see Fig. 1). (We shall refer to this as the general-
ized Villain model.) Although the symmetry of the Ham-
iltonian has changed, one expects, by continuity, that re-
sults obtained in the limit 17— 1 pertain to the original
fully frustrated model of Villain.

L f

FIG. 1. Generalized Villain model, where the double hor-
izontal lines represent nearest-neighbor bonds of strength —7J.

Berge et al. performed Monte Carlo simulations to ob-
tain the (n,7) phase diagram of this model. For
1=7<1, on lowering the temperature there was (in the
sense of a weak specific-heat peak) a transition of a KT
nature, from the paramagnetic phase P to an implicitly
ferromagneticlike phase (which we will denote F), accom-
panied by a divergence in the susceptibility. This was fol-
lowed by (in the sense of a strong specific-heat peak) a
transition of Ising nature, from the F phase to a complex
noncollinear phase, with no accompanying divergence in
the susceptibility. We denote this phase C (its ground
state has two chiralities). For 7> 1, on lowering the tem-
perature there was a transition of KT nature from the
paramagnetic phase P to a nonferromagnetic, collinear
phase, with no accompanying divergence in the suscepti-
bility, followed by a transition of Ising nature, from the
nonferromagnetic, collinear phase to the noncollinear
phase C, accompanied by a divergence in the susceptibili-
ty. Thus, Tgr (n)> T((n) for n7#1 (in agreement with
the mean-field argument). It was also found that
Ty(n)—>Tgr(n) for n—1 (see Fig. 2). Subsequently,
Granato and Kosterlitz,2>?* and later Arosia, Vallat, and
Beck,? performed a renormalization-group calculation in
the Coulomb-gas representation, showing that such a
phase diagram is expected for two coupled XY models.

B. Overview of present work

It is the purpose of the present work to study the gen-
eralized Villain model both within the context of mean-
field theory and a phase-only mode-fluctuation (or
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FIG. 2. Mean-field phase diagram for the generalized Villain
model in the H=0 plane. P stands for the paramagnetic phase,
F for the ferromagnetic phase, AF for the antiferromagnetic
phase, and C for the noncollinear chiral phase. The diamonds
give the Monte Carlo values from Ref. 17, scaled in temperature
to make the critical temperatures match. Monte Carlo finds
(T /T )mc=~0.45, which is much lower than the mean-field value
(T, /T )Mmp=V2. Thus (T, )yp/( T, )mc=~3.14.
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Landau-Ginzburg-Wilson) analysis. These less rigorous
approaches have the advantage that they permit an ana-
lytic study, from which it is possible to determine the
symmetries of each of the states involved. It is not obvi-
ous that mean-field theory should yield the same sort of
phase diagram as Monte Carlo, but since (as will be seen)
there is such a close correspondence [in contrast to the
FFTR (Refs. 14 and 15)], it is possible to employ mean-
field theory to make more explicit identifications of the
various phases. In particular, the mean-field analysis in-
dicates that the nonferromagnetic, collinear phase for
mn>1 is antiferromagneticlike (an identification that has
not been made previously), so that in what follows we will
refer to that phase as AF. This implies that as one passes
from n <1 to > 1, there is a qualitative change in the lo-
cal symmetry of the collinear phases that appear, a result
that can be tested by further Monte Carlo calculations.
Unless in this case mean-field theory is wrong qualitative-
ly (not merely quantitatively), it would appear that for
some value of 77 such a symmetry change should occur, at
which T\=Tgy. From this viewpoint, only the value of
n at which this occurs would be in dispute, and mean-
field theory concurs with the value 7=1 obtained by oth-
er methods.!"2%2!1 Moreover, mean-field theory makes it
possible to employ simple arguments to explain: (1) the
nature of the phase diagram (and a related phase diagram
obtained earlier by DeGennes?®); (2) the presence (and ab-
sence) of peaks in the uniform susceptibility (two of the
phase transitions correspond to the onset of ferromagnet-
ic order, and two correspond to the onset of antiferro-
magnetic, or staggered, order); and (3) the unusual struc-
ture of the states for n=1.

Using the mode-fluctuation analysis it will be shown
that for 1 there is a regime (7| < T < Tgy) for which
the Coulomb-gas analysis, which assumes that two types
of XY phases are condensed, is inapplicable because in
fact only one type of XY phase is condensed. The cou-
pling of the two types of condensed phases presumably
causes the lower transition to be of Ising nature.

In Sec. II we employ the Stratanovich-Hubbard trans-
formation to derive the mean-field equations for the gen-
eralized Villain model. From these we obtain the corre-
sponding (7, T) phase diagram. It is strikingly similar to
that obtained by Monte Carlo simulations and shows the
singular role of the line n=1. A discussion is given of the
susceptibility maxima found by Berge et al. in light of
the mean-field theory. We also consider the effect of a
magnetic field H on the phase diagram, finding the criti-
cal surface H.(T,n) (which should be characterized by a
divergence in the staggered susceptibility) that separates
the ferromagnetic-collinear (F and P in H) and
ferromagnetic-noncollinear (C and AF in H) phases (see
Fig. 3). We argue briefly that if a staggered field H; is in-
cluded, then in (H,, T, 1) space a surface H, (T, 1) exists,
characterized by a divergence in the ordinary susceptibil-
ity, and separating the antiferromagnetic collinear ( AF
and P in H;) and antiferromagnetic noncollinear (C and F
in H,) phases.

In Sec. III we derive the Landau-Ginzburg-Wilson
functional appropriate to the present model, in the frame-
work of a phase-only approximation that applies at tem-
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FIG. 3. Critical surface H.(T,n) for the generalized Villain
model, from mean-field theory. For H above this surface the
system is in the noncollinear phase; for H below this surface the
system is in the collinear phase.

peratures for which the amplitudes are frozen but the
phases are not. We compute the amplitudes of the fluc-
tuating modes, and briefly reanalyze the critical proper-
ties of the model. Its structure is somewhat richer than
that of the model studied by Granato and Kosterlitz,?>%*
and its analysis casts light on the role of the fluctuating
modes and on the nature of the various transitions. We
also remark that y=1 and T > T\=Tk appears to be a
disorder line,?” where correlation functions change over
form monotonic to oscillatory behavior. Section IV pro-
vides a summary and some concluding remarks.

II. MEAN-FIELD ANALYSIS

Consider the following Hamiltonian on the square lat-
tice:

ﬂz—%—zJ,jS,'Sj—ZH'S, > (1)

y

where the (double-counting) sum is over nearest-neighbor
pairs separated by a unit lattice spacing, the S; are classi-
cal XY spins of unit length, H is a magnetic field pointing
in the y direction, and the bond couplings J;; are equal to
—mnJ on every other row and to +J elsewhere (Fig. 1).
The partition function of the model is given by

z=[ [H (DS;) ]exp<—37{{s,.;> , 2)

where B=1/T.
A Stratonovich-Hubbard transformation of the form



18

exp

IT

i

B
?2 J‘.IS‘.S]
LJ

_ 1 i
Vdetf3J f Vor

PHASE DIAGRAM FOR THE GENERALIZED VILLAIN MODEL 267

€xp [_%2 hi([B‘Jrl)ijhj +32 h;'S; |, 3)
ij i

where J;; =[J];;, allows one to integrate out each of the angular variables §;, each integration producing 27 times a

Bessel function I(3|H+h;|). The change of variables

¥, =3 ([BJ]1"");h; 4)
J
then leads to
z=[ A (—BF(¥;})) (5)
I |5 | (e —BFI¥D) -
Here the ¥,’s are two-component Gaussian variables with units of magnetization, and
—BF{¥;}=—313 ¥,;-BJ;¥,;+ 3 In27I, [/3 }2 J,;¥;+H ‘ l +Jindet(BJ) . (6)
ij i J

Setting 8F /8W,; =0, and employing the local mean-field
H;, one obtains the mean-field equations for the thermal
average of the ith spin,

Il(u)

O=H. . =3 J. WO =77
‘I’i H,R(BH,)y H1—§JUWI+H’ Rlu)= Io(u) ’

N

where I,(x) is the modified Bessel function of order n.
Clearly, R(BH;) is the magnitude of the thermal average
of the ith spin, and H; is its direction.

Symmetry considerations and the requirement that the
overall magnetization point along § dictate the choice

M sinf, M ,sinb,
W= wo=
i M cosO, | “/ |M,cos0, |’

(8)
—M sinf, —M,sinf,
V=1 m , W=
1cosB,; M ,cos0,
for {i,j,k,1} equivalent to {1,2,3,4} of Fig. 1. Here
M,=R(BH,), M,=R(BH,), 9
2M 7 sinf;+2M,sin0,
—2M 7 cos@,+2M,cos6,+H /J ’
—2M,sin6,+2M sinf,
2M,cos0,+2M cos6,+H /J ~

tanf,= (10a)

tanf,= (10b)

The corresponding free energy per plaquette f is given by

f= %[2M,Mzcos(91 —6,)+ M3 0826, — M3 c0s26,]

——ZT—lnwo(ﬁH1 \o(BH,)] . (1)

A. Zero-field case

Simple analytical results may be obtained in the (7, T)
plane along three lines: at T'=0, and along both KT
lines, P-F and P-AF. The F-C and AF-C lines must be
determined by solving two coupled transcendental equa-
tions.

1. Zero-temperature limit

At zero temperature one has M =M, =1. Then, from
Egs. (10a) and (10b) it follows that s =6, —6,=26,%® (so
6,=130,), and that (with 35 =26,)

sins =7 sin3s ,
f=(J/2)(3coss —ncos3s) .

We thus recover the result of Berge et al. that the ground
state is ferromagnetic (s =0) for 7 =<1, and canted for
7> 1. In particular, the canting angle is given by

172

3n—1

sin s = 417

(12)

2. The mean-field KT lines

The P-F and P-AF transitions are of second order,
characterized by M,,M,—0. From Egs. (9) and (10) we
obtain

—(1=p)+[(1+7)+4]""
2(1+7)

BP-F‘I: for T]< 1 R

(13)

(1—m)+[(1+7n)>*+4]'2
2(1+7)

BP-AFJz fOI' 7’>1 .

3. The noncollinear, or Ising, lines

The F-C and AF-C transitions are also of second or-
der, characterized by 6,,0,—0 for the F-C boundary and
by 6,,0,—m/2 for the AF-C boundary. From Eqgs. (9)
we obtain

M, =RQ2BJ|nM,—M,|),
M,=RQ2BJ(M,+M,)),

and from Egs. (10a) and (10b) we obtain
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—L =+t for n<1,
M, F-C n
(15)
M 2 1/2
—L =t +n) for p>1
M; | 4rc n

To find the F-C and AF-C lines, Egs.
merically.

These results of Eqgs. (12)-(14) are summarized in the
(1, T) phase diagram of Fig. 2, which clearly has all the
features of the MC phase diagram of Berge et al. Note,
however, that the temperatures at which the phase transi-
tions take place in MC are lower because of the fluctua-
tions included in the MC calculations.

(14) are solved nu-

4. The multicritical point n=1

This limit is quite singular in that the minimum of f,
Eq. (11), subject to the stationarity conditions [(9) and

(10)], is given by 6,+0,=m/2,
M,=M, ,
(16)
0,=3m/8, 0,=m/8

for all T where the system is ordered. In that case, the
magnetizations disappear when BJ <f.J=V2/2, where
B, is obtained from (14) with R(u)—u /2, since u —0 as
B—B,. (Thus T, /J=V"2 in mean-field theory, compared
to the Monte Carlo result T, /J ~0.45.'7) Such behavior
cannot be obtained by approaching the value =1 along
the noncollinear or KT lines. Indeed, for f—B,, Egs.
(15) yield

M —
7;—)‘/2—1 when n—17 ,

M _
—L ,v241 when p—1%.
M,

B. Nonzero field:
The collinear-noncollinear surface

As usual, a magnetic field suppresses the P-F line be-
cause the moment induced in the P phase gives that
phase the same symmetry as the F phase. Thus, in a field,
the P and F phases are no longer distinct. Similarly, a
magnetic field also suppresses the AF-C line, because the
moment induced in the AF phase gives that phase the
same symmetry as the C phase. Thus, in a field, the AF
and C phases are no longer distinct. The effect is that a
critical surface separates the noncollinear phase (4F in a
field, and C) from the collinear phase (F in a field, and P).

This result may also be seen from the fluctuation
analysis given in Sec. III. There it is shown that the P-F
and AF-C transitions are both associated with the uni-
form fluctuation mode O, thus explaining the peaks in
the uniform susceptibility found in Ref. 17. Moreover,
the P-AF and F-C transitions are both associated with
the fluctuation mode Q,=(,0); one expects a peak in
the staggered susceptibility at wave vector Q, to be asso-
ciated with these transitions.

G. N. PARKER, AND W. M. SASLOW 40

For 1 <1, the equation for the collinear-noncollinear
surface is obtained from (10a) and (10b) by taking the lim-
it as 91, 62—>O:

H H
MM, =M, = le2 +M+ o2 J +M M,=0,
(17)
where
M,=R(2BJ|—qM,—M,+H /2J|)
(18)
M,=RQBJIM,—M,+H/2J|) .

Since both M, and M, are less than unity, there exists a
critical field above which the left-hand side of (17) must
be negative, and thus for which noncollinear ordering
cannot occur. This defines the surface H.(T,7) present-
ed in Fig. 3, which was found by solving Egs. (17) and
(18) simultaneously. If Egs. (18) are satisfied, but the
left-hand side of (17) is negative, one is below the critical
surface, as can be seen by considering the high-
temperature limit, where the system is paramagnetic.
At T =0, the critical field is given by

H./20=n—2+[(n+172+1]2, (19)

which follows from Eq. (17) for M, =M, =1.
H_ =0 for n=1, as expected from Sec. ITA 1.

Note that

C. Discussion of phase diagram

Mean-field theory enables one to identify the nature of
each phase, and to provide a straightforward explanation
for why =1 is a multicritical point. By Eq. (7) and Sec.
ITA 1, in the canted state (> 1) for T =0 and H =0 the

mean fields on sites one and two satisfy
(H}—H?2)/(2J ?=[1+7n>—27cos(6,+6,)]
—[2+2cos(6,+6,)]
=(n*=1)n+1)/7.

As a consequence, for =1 the mean fields H; on each
site (see Fig. 1) are of the same magnitude (but in
different directions). As the temperature increases, each
spin is thus subject to the same relative thermalizing
influence, so their mean-field lengths R(BH;) change in
the same way, and therefore the mean fields they produce
also change in the same way. Thus the relative orienta-
tions of the spins do not change with temperature, a re-
sult found in the MC studies of Berge et al.!’

On the other hand, by the above equation, for n <1 the
spins 1 and 4 have a smaller mean field than do spins 2
and 3. Therefore, thermal energy more easily
overwhelms the mean fields on spins 1 and 4, causing
these antiferromagnetically coupled spins to “melt” more
easily than spins 2 and 3. As spins 1 and 4 melt, their
influence in causing spins 2 and 3 to cant decreases. Thus
the system becomes more ferromagnetic as the tempera-
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ture increases, leading eventually to an F-C transition.
Eventually, the “ferromagnetic’” F phase (which is not
truly ferromagnetic, because site inequivalence causes the
spins to vary from site to site) undergoes a transition to
the paramagnetic phase.?

Similarly, for 7> 1 the spins 1 and 4 have a larger
mean-field than do spins 2 and 3. Therefore, thermal en-
ergy more easily overwhelms the mean-fields on spins 2
and 3, causing these ferromagnetically coupled spins to
melt more easily than spins 1 and 4. As spins 2 and 3
melt, their influence in causing spins 1 and 4 to cant de-
creases. Thus, the system becomes more antiferromag-
netic as the temperature increases, leading eventually to
an AF-C transition. Eventually, the “antiferromagnetic”
AF phase (which is not truly antiferromagnetic, because
site inequivalence causes the spins to vary from site to
site) undergoes a transition to the paramagnetic phase.

With this identification of the phases, it is possible to
interpret the uniform (i.e., zero wave vector) susceptibili-
ties computed by Berge et al., using Monte Carlo
methods. For 7 <1 they found a susceptibility peak at
the P-F transition, but not at the F-C transition. This is
as expected: In the P-F case uniform magnetic order de-
velops, so one expects a peak (indeed, a divergence) in the
uniform susceptibility (which is a correlation function of
the uniform magnetization), whereas in the F-C case (in-
volving the development of staggered magnetic order)
one does not expect such a peak. For > 1, Berge et al.
found a uniform susceptibility peak at the AF-C transi-
tion, but not at the P- AF transition. This also is expect-
ed: In the P-AF case staggered order develops, so one
expects no uniform susceptibility peak, whereas in the
AF-C case (involving the development of uniform mag-
netic order) one does expect a uniform susceptibility peak
(again, a divergence). This point will be made again in
J

1
J(q,q ) =—
nl,ml
n2,m2

where

R(q,q')=[2cosg, +(1—n)cosq,18 .+ (1+n)cosq,d
4,9, g,

’ .
,qy+1r

the following section, which is devoted to the fluctuations
that signal the onset of magnetic order. Note that a re-
markably similar phase diagram was found much earlier
by DeGennes?® in the context of a magnetic alloy with
competing interactions. A similar discussion can be
given to explain the mean-field phase diagram found in
that case.

III. PHASE-ONLY
MODE-FLUCTUATION ANALYSIS

Because of strong fluctuations in two dimensions, one
expects the actual phase transitions to occur at tempera-
tures much smaller than predicted by the mean-field
theory of Sec. II. It is then justified to consider fluctua-
tions of the phase of the order parameter while keeping
the amplitude found by a mean-field treatment. We con-
sider only the case H=0 and temperatures high enough
that, in Eq. (6), one may expand the second term using

Inly(x)=x2/4—x*/64+0(x") . (20)

The term in x? determines the transition temperature for
the fluctuations, and the term in x * leads to a coupling of
the fluctuations. Using the identities

1 —ig.n
~ S e v =%(5q,.0+5qy,n)’ (21a)
neven
~ %de—iq’n=%(8qy,0—8qy,,,), (21b)
n o

where n €[1,N] and N is the total number of sites, one
can compute the Fourier transform J(q,q’) of the ex-
change constant matrix J;;, written more explicitly as
J(my, n;; mj, n;). One then finds that

> exp[—i(qul-l—qyn,—q;mz—q;nz)]J(ml,n,;mz,nZ)ZJR(q,q’)Sq .l ' (22)

(23)

Doubling the periodicity in the y direction has introduced a coupling between the fluctuations O=(0,0) and Q=(0, ).
Because of the translational invariance along the x direction, J(q,q’) is diagonal in g, and g.

The eigenvalues of JR(q,q’) are given by

J +(q)=J{(1—n)cosg, £[4 cos’q, +(1+n)’cos’q, 1'} .

[Note that in going to the basis that diagonalizes J;;,

(24)

one must restrict |g,| <7 /2, compensating for this halving of the

Brillouin zone by including both (£) modes.] One can obtain the transition temperature by reexpressing Eq. (6) in
terms of the eigenvectors that diagonalize J;;. One then finds, as in Choi and Doniach,'? that the terms quadratic in the
fluctuation amplitudes are proportional to 1/[BJ.(q)]—+. The system then becomes unstable when the largest of the
eigenvalues satisfies

B=2/[J+(q)],ny - (25)

For 1 <1 the largest eigenvalue is J, (O) and the corresponding normalized eigenvector is
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<q|0+ >E¢1(q)=aaq’o+b8q’Q N

(26)
2 172 _
=120, p=lUFIEAT22 - g2 48— 4P +4) 2
The instability condition, Eq. (25), for 17 <1 then leads to the first of Egs. (13), for Bp .
For 7> 1 the largest eigenvalue is J ;. (Q,), where Q,=(7,0), and the normalized eigenvector is
(qlQ,+)=®,(q)=a8, o —bbyq,+q - @7
The instability condition, Eq. (25), for 77> 1 then leads to the second of Egs. (13), for Bp_4f-
The Fourier transform of the mean-field magnetization is given by Mq=(My, M?}), where
(qIM*) =M} =1(Msin6, + M,sin6, 18q,q, +3(Mysin0,— M ,sinb,)8, g +q » (28a)
(qIM?) =M} =1(Mcos6,+M,c0s6,)8, o+ L(M,cos6,—M,cos6,)8, o . (28b)

For 7 <1 the P-F transition is associated with fluctuations about O and the F-C transition is associated with fluctua-
tions about Q,. For 7> 1 the P- AF transition is associated with fluctuations about Q; and the AF-C transition is asso-
ciated with fluctuations about O.

The amplitudes describing the P-F and AF-C magnetization fluctuations, in the basis that diagonalizes J;;, are, from
Egs. (25) and (28b),
(0+|M?)=V)= %(Mlcos(?1 +M,cos,)+ %(Mzcosez-—Mlcosﬂl ), (29a)
and those describing the P- AF and F-C fluctuations are, from Egs. (25) and (28b)
(Qu+ M%) =W, = (M ,sin6, + Msin6,)— %(MzsinGZ—MlsinBI) . (29b)

In the free-energy density of Eq. (6), we now include terms fourth order in the fields W;. This yields the desired phase-
only approximation. For 971, only one mode contributes to the phase-only Hamiltonian when T > T;(7). As a result,
both the P-F and the P- AF transitions are true KT lines (see Berge et al.!”). On the other hand, across T;(7) one re-
covers the Hamiltonian of two coupled XY models, the coupling term being proportional to (W)X ‘1/61)2. For the spe-
cial case n=1, one has \I/},=\I’61 and Tj(1)=Tgy(1). At this multicritical point, both fluctuations become critical
simultaneously.

Using Egs. (29) and the XY fields defined by W (x)=W¥}e

energy density of Eq. (6) takes the form

i¢>,(x), \Pz(x)=‘l’élei¢2m’ the phase-only part of the free-

Bf < 1T [c (3@, /3x)*+(1—c ) (3@, /3y )*1+ 1T, [c, (3¢, /3x )2+ (1—c, (3@, /3y )*]+u cos2(p,—@,) , (30
r
where In the noncollinear regime, the u cos2(@;—¢@,) term
1 — 2 211/2 couples @; and @,. Assuming that this causes them to
21 == j:?lH_( 1):?4)_:5‘1( 1);;32 ] , (31)  lock together, the helicity moduli are given by
2 - n

L=V Xkg T /T), F2=I\P6112(kBT/J) , (32)

and u o (W))X( \I’él )%,

In the collinear regime (7T <T < Tkr), for n71 one
has nonisotropic helicity moduli ', and T, since
¢171—c, and c,7#1—c, except for n=1. Specifically,
for 7 <1 one has

Iy a0 _ (A—n4+0+9)?1"2+1+79)?

r, (l—c)) 4

(33)
and for 7> 1 one has

— —U—m[4+1+7)*]"2+ (1 +7)
(I—CZ) 4 )

Fx _ €2
Fy

(34)

Fx=FlC1+F2C2, Fy=r1(1_01)+rz(l_C2) . (35)

These are typically not equal, so that again the system is
not expected to be isotropic. For T;> T > Tt one has
I'y=0, and for 7=0.5 Egs. (31) and (35) give
I, /T',=0.875. For T;>T > Tk, Fig. 2 of Ref. 30 gives
I, /T, =~0.5. (Note that Ref. 30 employs a rotated set of
negative bonds relative to Fig. 2, so their x and y axes
must be interchanged to correspond to the present work.
See also Ref. 31.) There is only qualitative agreement be-
tween these two results (both ratios are less than unity).

In the vicinity of Txy(7) (where either ¥, or ¥, is
zero, so that either @, or @, is irrelevant), minimization of
Eq. (30) leads to

A'¢=0 (mod2w),

where
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C A'=(3%/3x%)e, +(3%/3yP)(1—c))
for <1, and
A'=(32/3x2)c, +(3%/3y)(1—c,)

for n> 1. Thus, topological excitations correspond to an-
gles of the form

=, anm[ln(z'—za )],

where the g, are integers located at arbitrary positions z,
on the lattice

z=x/\/c_,+iy/\/1—-c,
for n <1, or on the lattice
z=x/Ve,+iy/V1—c,

for 7> 1. They lead to a term in the free energy propor-
tional to

’Z(IBI

where L is the linear size of the system.

In the vicinity of T(7), on the other hand, both ¢, and
@, are relevant. The problem simplifies for n~1, where
the system is nearly isotropic. In that case, with
@1~ P,=V, ¢;+@,=w, minimization of Eq. (30) leads to

Aw =0 (mod 27), Av—+Asin2v=0,

> 9.9pn

>

where A « (\Ilé))z(\ll%-(,l )2. Thus topological excitations cor-
respond to angles ¢ of the form

=23 q,Im[In(z —z,)]+F(2)

where F(z) describes a soliton (Bloch wall). As noted by
Garel and Doniach,? strings are attached to the vortices
and the energy of the soliton yields the line tension of the
string, of order V'A (see Refs. 2 and 32). For 7 not close
to unity, the nonisotropic nature of the system compli-
cates the situation, and the above analysis does not apply.

IV. SUMMARY AND CONCLUDING REMARKS

We have studied the generalized Villain model (i.e., the
Berge et al.!’ generalization of the fully frustrated XY
model on the square lattice®), using both mean-field
theory and an analysis of the phase-only fluctuations.
The amplitude of the fluctuating fields describing the
transitions were obtained from a mean-field analysis.
Mean-field theory yields a phase diagram strikingly simi-
lar to that obtained by Berge et al., using Monte Carlo
methods. Most important, it supports the hypothesis
(that Ty =Ty for n=1) which motivated Berge et al. to
generalize the original model of Villain.
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Mean-field theory indicates clearly the special nature
of the value =1, since in that case there is only a
paramagnetic-to-noncollinear transition; moreover, the
structure of the noncollinear phase (i.e., the relative spin
orientations) does not change with temperature. Further-
more, for 771 the mean-field solutions help clarify the
nature of the transitions across the critical lines in the
(n,T) plane: (i) When only one XY phase is condensed,
pure XY transitions occur along the two higher-
temperature lines (see Fig. 2), defined to be Tx1(7). The
mode analysis further indicates that when only one XY
phase is condensed, one expects a standard KT transition
at the P-F boundary, although (as pointed out in Sec. III)
the vortex-vortex interaction will be strictly logarithmic
only in the isotropic (9=1) limit. (ii) when both XY
phases are condensed—and couple with one another (as
indicated by the phase-only fluctuation analysis), so that
chirality can be preserved for each plaquette—Ising-type
transitions occur along the two lower-temperature lines
(see Fig. 2), defined to be T((n). The mode analysis fur-
ther indicates that, when the second XY mode condenses,
the modes interact. This causes strings to be attached to
the vortices (as noted in Sec. III), so that vortex pairs ex-
perience an interaction varying linearly with distance.
Above T =T, the strings melt (i.e., the coupling term of
the XY variables, which corresponds to the line tension,
vanishes).

In addition, the phase-only mode-fluctuation analysis
indicates that the mode describing the XY fluctuations
for- > 1(np<1) describes the Ising transition for
n<1(n>1). This provides a natural explanation for the
peaks in the susceptibility and heat capacity obtained by
Berge et al.'’

For the case 7=1, all four transition lines merge and
two modes describe four instabilities. This line may be
identified as a disorder line,?” for the following reasons.
First, for T > Tyr=7T, the mode structure shows that
correlations display dimensional reduction (the isotropy
of the x and y directions is restored, so that they only de-
pend on (x2+y?)!/2, whereas, e.g., for n<1(n>1), these
correlations would show a ferromagnetic (antiferromag-
netic) oscillation in the x direction. Second, this line in-
tersects the critical manifold (i.e., the critical surface of
Fig. 3) at a multicritical point.

It would be of interest to study this model for H+0 us-
ing the Monte Carlo approach. Specifically, both uni-
form susceptibility peaks should disappear for sufficiently
large H, but a peak in the staggered susceptibility (at
wave vector Q) should remain on crossing the critical
surface H.(T,7n). Moreover, if one were to apply a stag-
gered field H; at wave vector Q,, one would expect to find
a surface H, . (T,n) separating the collinear (but now in
the sense of antiferromagnetism) and noncollinear phases.
In that case, one would expect to find a peak in the uni-
form susceptibility on crossing the surface H, (T, 7).
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