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Flux phases in two-dimensional tight-binding models
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Using a gauge-invariant tight-binding model on a rigid square lattice, we discuss the transition

between a low-temperature flux phase in which orbital magnetic moments alternate antiferromag-

netically in sign from plaquette to plaquette and a normal metallic phase. The order parameter,

which may be chosen to be the magnetic flux penetrating a plaquette, goes continuously to zero at
the transition. We also consider similar phases in a model with m spin colors antiferromagneti-

cally exchange coupled.

The discovery of high-T, superconductivity has led to
increased interest in highly correlated electron and spin
systems in two dimensions. In particular, Anderson' has
suggested that the two-dimensional Hubbard model in the
large-U limit on a square lattice off of half filling might
have a resonating-valence-bond (RVB) ground state rath-
er than a Neel ground state and that electron correlations
in such a state might favor superconductivity. There have
been many formulations of the RVB state. In the
original formulation, there is no broken symmetry to dis-
tinguish it from a high-temperature paramagnetic phase.
Recently, however, there have been proposals for RVB
states that break time-reversal symmetry and propo-
sals for related flux states that break both time-reversal
and lattice-translation symmetry. ' In this paper, we will
use mean-field theory to study two models that have low-
temperature flux phases and high-temperature paramag-
netic conducting phases. The order parameter in the flux
phase is the staggered magnetic flux penetrating a lattice
plaquette. It goes continuously to zero at the second-
order transition to the metallic phase.

Kalmeyer and Laughlin have shown that the RVB
state for the spin- —,

' Heisenberg model on a triangular lat-
tice is well described by a fractional quantum Hall (FQH)
wave function. This state is characterized by a nonvanish-
ing expectation value Si (S2XS3) for any triple spins Si,
S2, and S3 on the lattice and thus by broken time-reversal
symmetry. One of us has shown that the projection onto
the spin-singlet Jastrow subspace of the tight-binding
Hubbard model in the limit of infinite on-site repulsions U
leads to a FQH wave function again with a nonvanishing
expectation value of Si (S2&Si). Aflleck and Marston
have shown that a generalized Hubbard model with m
"flavors" of electrons has a flux phase ground state in the
limit of large m. In this phase, the gauge-invariant prod-
uct around a lattice plaquette of the expectation value of
the hopping operator,

&gg ~ jlC)g =~Cg~j~,

coupling the electron annihilation operator cj at site j to
the creation operator c;t at site i, i.e.,

P (tci2)(tc23)(tc34)(lC4/) ) P ( e

sign from plaquette to plaquette exactly as the spin does in
the Neel state. P is complex except when p~ 0 or p~ tr.

Thus, like the Neel state, the flux phase is invariant under
time reversal followed by a lattice translation. Wen,
Wilczek, and Zee' have pointed out that for any triple of
sites 1, 2, 3,

ImPi23 Im(tci2tc23K3i) (Si' (S2XS3)) .

This relation establishes an equivalence between flux or-
der and spin triple order.

To date, most work on RVB-related phases has focused
on ground-state properties (T 0). Little attention has
been paid to finite temperature and the phase transition to
a high-temperature disordered state that is expected to
occur at nonzero temperature in systems with a broken
discrete symmetry (e.g., time reversal) at low tempera-
ture. Here, we consider two models having flux phases at
low temperature and paramagnetic conducting phases at
high temperature. We show that p~ and related parame-
ters can be treated as traditional order parameters that
vary continuously with temperature T, vanishing in
mean-field theory as ( T, —T ('j near a critical tempera-
ture T, .

Both models we consider have gauge-invariant cou-
plings to the magnetic field. As a result, there is always a
physical magnetic flux p with the same sign as
penetrating each plaquette. Thus, our Aux phases are in
fact orbital antiferromagnets that should be observable, if
they exist, via neutron scattering. However, because mag-
netic moments are spread over entire plaquettes rather
than localized on electrons, the magnetic form factor will
die off rapidly at large wave vector, and the scattering in-
tensity into high-order Bragg peaks will be small. In addi-
tion, as we shall see, the absolute value of plaquette mag-
netic moments will be small so that the scattering intensi-
ty into the brightest Bragg peak will also be small. The
phase p~ and the magnetic flux p are dynamically coupled
and their relative value is fixed in equilibrium.

The simplest model exhibiting a Aux phase is a gauge-
invariant tight-binding model on a square lattice. We call
this the t-p model. Its Hamiltonian H is the sum of a hop-
ping Hamiltonian Hh, ~ and a magnetic Hamiltonian H .
We take

is nonzero. The gauge-invariant phase 41~ alternates in Happ ~ (tjj ctlT jcz+ ttj cj cT tl7)
&ij &,a

(4)
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where the sum is over nearest-neighbor bonds (ij),
t;J te' ", and p;J

—pj, (e/Ae) , I'A dl, where A is the
vector potential which we treat as a classical variable.
Also

a -2CX X
p ', (i j)ep

(5)

Hh, p- —g[c,, ), U(q)cq, 2, +c.c.],
q, cr

where the sums are over the Brillouin zone
~ q

+
~ qy )

~ n/a and

where t~, t2, ti, and t4 are the complex hopping ampli-
tudes around a plaquette as shown in Fig. 1. We choose a
gauge in which the phase p is equally distributed on all
bonds so that t

~ t 2 t i t 4 te '~ . The spectrum of

~here the sum is over all plaquettes p. The scale of ener-
gy in cgs units is set by C (4xpo) '(e I/a )a, where
a is the lattice constant of the two-dimensional lattice in
the xy plane, I is the distance the magnetic field penetrates
in the z direction, a»7 is the fine-structure constant,
and po is the magnetic permeability of the medium in
which the lattice is embedded. The equilibrium state of
this model is clearly conducting when the p;~ is zero and
there are less than two electrons per site.

When there is one electron per site (half filling), this
model has a Peierls instability favoring a doubling of the
unit-cell size which can be accomplished (in the absence
of coupling to other degrees of freedom such as lattice dis-
tortions) by the antiferromagnetic array of fluxes shown
in Fig. l. A natural order parameter for this phase is the
staggered magnetic flux p g&;~i ~~&;J measured in units
of the quantum of flux @0 hc/e. To carry out explicit
calculations, we take the unit cells at R to contain two
sites and introduce the corresponding electron operators
cR ~ and cR 2 ~. In terms of their spatial Fourier trans-
forms we have

Hh p consists of two branches for each spin with energies

e, (q, y) -se(q, y)

2ts
~
e '4t cosq„a+e'4 costa ~,

where s ~1 and e(q, p) =
) U(q) (. This spectrum has

some remarkable properties. When p =0, e(q, 0) =0
along the edges of the Brillouin zone defined by

( q, ( + ( qi, ( -ir/a. For all nonzero p, e(q„p) =0 at four
points, q, [+' n/(2a), + ir/(2a)], on the Brillouin-zone
boundary, implying that at half filling, the Fermi surface
consists of four points. There is a Dirac energy dispersion
in the neighborhood of these points with

e(q, +k, y) -c(y, 8) i k (

=2tadl+cos(p/2) sin(28)
~
k ~,

where 8 is the angle k makes with the x axis. This leads to
a linear density of states near zero energy of the form
D(e)

~ e) (2nt a [ sing/2 [ ). Thermodynamics at low
temperature will be dominated by this linear term in
D(e). Thus the specific heat is proportional to T and the
compressibility, paramagnetic, and diamagnetic suscepti-
bilities proportional to T. As T T, , the domain in e
where D(e) —

( e( vanishes, and there are no unphysical
singularities associated with the vanishing of p as T~ T, .
It is worth noting that when p =x, e, (q, p) has the same q
dependence as the gap function for s+ id-wave supercon-
ductor discussed by Kotliar in an RVB model for super-
conductivity.

To study the phase transition from the metallic state
with p =0 to the flux phase with p nonzero, we consider
the free energy per site f= —,

'
Cp +fho~(p), where

f= — -gin(1+exp[ —p[se(q, p) —p]]), (10)2

p~ q, s

where P= 1/T and p is the chemical potential. The
overall factor of 2 in this expression arises from the spin
sum. We now restrict our attention to systems with one
electron per site for which p =0 for all temperature. In
this case, the equilibrium equation of state obtained by
minimizing fwith respect to p is Cp = —'dfh, ~/Bp or

2 tanh —,
' pe(q, y)

Cp = — gt cosq a costa . sing/2.
plV z eq, p

(11)
The transition temperature T„determined by the first ap-
pearance of a nonzero solution to this equation, is given by

T, t exp( —2n[C/(2t)] '

= t exp j —2+a ' [(e 'I/a ')/Set] '~'j, (12)

FIG. l. Array of currents which give rise to an antiferromag-
netic Aux lattice. Each unit cell contains two sites, No. l indi-

cated by a circle and No. 2 by a square.

or T, =te for a=l =10 cm and t =10 eV. This
extremely small transition temperature is a result of the
very large magnetic energy associated with the creation of
current loops 10 A on a side. Thus, p will always be small
even at zero temperature, even though the absolute
minimum of fh, ~(p) occurs at p =x.

Though the magnetic Aux is the most natural order pa-
rameter for the flux phase of the t-p model, other gauge-
invariant order parameters are equally acceptable. These
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can be constructed from averages of the gauge-invariant
hopping operator

(13)

where i and jcan be any sites on the lattice. Of particular
interest is the hopping operator for nearest-neighbor sites.
Let

T [t+(m —1)JK+i(m —1)JL]e (20)

and t2 and t4 replaced by T*. The equation determining
EC is then

consistently determined. The spectrum for this model is
identical to that of the t-p model with t ~ and t3 in Eq. (7)
replaced by

PL

K K —iL

(icosi)

. (i4) K —PU (q, p)e '4j tanh —,
'

Pe(q, p)/e(q, p), (21)
Then,

The current (measured in energy units) between two sites
i and jis

I;, - —2t Img&x;, &

—
&
—8Hh, p/8iti;, ) .

In the flux phase depicted in Fig. 1, there is a current in
every bond with magnitude I —28fh»/8&. Thus,

—,
' I 2tL 2t (P~'j sin(y+P )/4 — CP. (17)

This is the lattice version of the magnetic Maxwell equa-
tion, Vx B (4ir/c) J. It provides an equilibrium relation
between the magnetic flux p and the plaquette phase pj, .
Thus, p, p~, I, or L are all equally good measures of the
flux order. If the sites 1 and 2 in one unit cell and 3 adja-
cent to 2 are vertices of a right triangle corn(rising half a
plaquette, we find ImP i 23 IIIi [8(lc3 / &K e' +2(x3i)
xK e '4j2]. One can choose a gauge in which (x3i) is
real and equal to (x)3&. In this case, &x3i) is zero at half
filling and when p ir at all fillings. Thus, (Si S2xS3) is
another order parameter for our flux phase only off of half
filling and when pair, in which case, it alternates in sign
like p and p~.

The simple t-i' model we just considered elucidates
most of the important qualitative features of flux phases.
Unfortunately, it has a vanishingly small transition tem-
perature. More realistic transition temperatures are real-
ized in the t-J model of Affieck and Marston in which
there are m spin colors and an exchange term,

zr ~ rW V'l
xx ex JXi ~(CiaCiqCjgCja CiaCiaCj /CJOY) y

(i,j)a, g

added to the Hamiltonian. This term favors the spontane-
ous generation of current loops for sufficiently large m.
Here we consider the t-J-p model in which H,„is added to
the gauge-invariant model of Eqs. (4) and (5). We can
treat the transition to the flux phase in mean-field (MF)
theory using standard decoupling procedures in which the
complete Hamiltonian is replaced by the effective Hamil-
tonian,

HMF -J g &xji&(x~j)
(i,j ),cr& g

Z (Tjiciacja+ Tijcjacia) 9 (I9)
&i,j ),cr

where Tj [t + (m —1)JK]e " Tj*, is the gauge-co-
variant effective nearest-neighbor hopping. The average
EC of the nearest-neighbor hopping operator is to be self-

which when used in conjunction with the Maxwell equa-
tion [Eq. (17)] relating P to L determines K K+iL and

Because C)) t, p will always be much less than L, and
the magnetic flux can be set to zero in Eq. (20) with negli-
gible error. Thus K and L are determined (except for very
small J) entirely by the t Jmod-el with a transition tem-
perature T, of order t exp( —irJt/4J ). The magnetic flux
is, however, fixed by Eq. (17). These equations imply that
both p and L vanish as ( T, —T (

' j as T~ T, , whereas
K is nonzero for all T and varies smoothly near T, . Note
that K~O in the high-temperature phase, which is thus a
metal. From the numerical solution to Eq. (21), we find
that K is larger than L for all temperatures, indicating
that the phase p~ of the t Jmod-el never attains the value
x favored by fh».

So far we have not included the on-site Hubbard repul-
sion U in our model. At half filling, this favors a spin-
density-wave (SDW) state at small U that becomes the
Neel state at large U. In the t-U-p model obtained by
adding the Hubbard repulsion to the t-i' model, there is, in
mean-field theory, a line of first-order phase transitions in
the T-U plane separating the flux and SDW phases at very
small U and low T. This line terminates in a mean-field
bicritical point. When J is turned on, 'the critical value of
U at which there is a transition from the flux to the SDW
phase grows with J for m & 2. These results will be dis-
cussed in more detail elsewhere.

The flux phase is characterized by nonzero currents in
each bond. Elementary excitations in which the sign of
the current in a subset of bonds is reversed are allowed,
provided the total current entering every site remains
zero. If the different spin colors are ignored, there are six
permitted configurations of currents in bonds intersecting
a given site. Thus, the symmetry of the flux phase is simi-
lar to that of the ordered phase of the six-vertex model, "
which has a nonzero transition temperature. We there-
fore expect that our flux models will also have a finite
transition temperature, though the coupling to the mag-
netic field and the presence of many spin colors may lead
to interesting modifications of the exact results" of the
six-vertex model. The SDW phase, on the other hand, has
03 symmetry and a transition to the ordered phase only at
zero temperature. We have not yet worked out the impli-
cations of these observations.

The transition from the normal metal to the flux phase
presented here is not the only mechanism which can lead
to a nonvanishing value of ImP f23, An important alterna-
tive scenario is one in which EC for a single bond remains
real and nonzero for all temperatures, but in which the
correlated product Pi 23 develops an imaginary part in a
broken symmetry phase. Such a state, of which the FQH
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states of Refs. 7 and 8 are examples, exhibits directed
correlated exchanges of fermions around a ring without an
effective single-particle current and is likely to provide an
appropriate description of correlation effects in the large-
U limit. More exotic possibilities, such as the transition
from a dimer phase to a flux phase discussed in Ref. 9
may also occur. In any case, it would be of interest to
consider the temperature dependence of the phase of P/23
in these condensed states. We regard it as likely that, as
in the small-U version of this theory, the phase of the loop
correlation function exhibits a nontrivial dependence on
temperature in the condensed state.

Our analysis has concentrated on tight-binding models
at half filling at U 0. The real challenge is, of course, to

extend these ideas to the large-U Hubbard model oA' the
half-filled band. Whether the ground state of the many-
body system is well characterized as a flux phase in this
limit remains to be established. However, if the flux
phases are stable in this limit, their properties should be
similar to those of the low-U states discussed here, just as
the properties of the large-U Neel state are already mani-
fest in the low-U SDW state.

We acknowledge partial support from the National Sci-
ence Foundation under Grants No. DMR 85-19509, No.
DMR 87-03551 (E.J.M.), and No. DMR 88-15469
(A.B.H. and T.C.L.).

'P. W. Anderson, Science 235, 1196 (1987).
2G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988).
S. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35,

8865 (1987).
4G. Kotliar, Phys. Rev. B 37, 3664 (1988).
sW. B. Wiegman, Phys. Rev. Lett. 60, 821 (1988).
SP. Fazekas and P. W. Anderson, Philos. Mag. 30, 432 (1974).

7V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987).

sE. J. Mele, Phys. Rev. B (to be published).
91. Aflleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
'oX. G. Wen, F. Wilczek, and A. Zee (unpublished).
''R. Baxter, Exactly Soluble Models in Physics (Academic,

New York, 1982).


