
PHYSICAL REVIEW B VOLUME 40, NUMBER 4

Mean-field theory for the t-J model
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We present a new mean-field theory for the t-J model using a representation in which singly
occupied sites or spins are represented by bosons and empty sites or holes by fermions. We obtain
a phase diagram which includes ferromagnetic, antiferromagnetic, spiral (with the pitch inversely

proportional to the density of holes), and disordered spin-liquid phases, with a clear separation of
charge and spin excitations. We comment on the conditions for obtaining superconductivity in

the model.

There is considerable recent interest' ' in the proper-
ties of the t-J model, which can be represented by the
Hamiltonian '

K —t+Pctc P ——gP(C~C; )P.J (1)P JP 2 J &J

Here C;~ =c;lcl 1
—c;tc~~ creates a singlet pair of spins on

nearest neighbors (ij), and P is the projection operator
that eliminates double occupancy of sites. The second
term is simply the superexchange interaction ——,

' J(S; SJ—
4 n;nl), where S;(—= 2 c;„o„~;„)and n;(—:c;„c;„) are

the spin and number operators at site i. The first term
permits motion of holes (or spins). As is well known, the
above model is the e6'ective Hamiltonian for the large-U
Hubbard model, '" with J 4t /U. Recent interest in
this inodel' ' was stimulated by Anderson's suggestion'
that it contains the physics of the Cu02 layers in the
high-T, materials. ' Zhang and Rice' have argued that
such a model can be derived from a multiband Hubbard
model' for the Cu02 layers. Thus one would like to un-
derstand the properties of this model, in particular its
phases and whether it exhibits superconductivity, as a
function of t/J, the temperature T, and the filling factor 8
( defined as the deviation from half filling, or the fraction-
al number of empty sites).

The central result of this paper is that an elegantly sim-
ple mean-field theory takes into account the crucial com-
peting spin correlations in the model and the way they
affect and in turn are affected by the motion of holes.
Specifically, we obtain a T =0 phase diagram with four
phases, a "ferro" metallic phase with long-range ferro-
magnetic order for tb&& J, an "antiferro" insulating phase
for t &&J and 8 not too large, a "disordered spin-liquid"
insulating phase with only short-range antiferromagnetic
correlations for t &(J and 8' large, and a "spiral" metallic
phase with long-range spiral (incommensurate) spin or-
der when tb- J. The results are summarized in Fig. I,
and discussed in more detail below. While these phases

have been obtained in several papers, ' using various
separate approximate methods, ours is the first simple
mean-field theory that obtains all of them in a single
scheme and permits detailed calculations in the incom-
mensurate phase. We also discuss preliminary results for
the conditions for obtaining superconductivity in this
model.

Our new mean-field theory for the t-J Hamiltonian uses
the representation: c;t„b;tJ'"; where b;t„are Schwinger-
boson operators which represent the spins '

S;(= —,
'

b;~ter;, ) and f; are hole-fermion operators which
re resent the empty sites. There is a local constraint
b;„b;„+ftf;=1 which has to be imposed to preserve the
Hilbert space, but we impose this only on an average as in
all such mean-field theories. In this representation (1)
can be written '

K —2tg(B,tjf~~f;+ H.c.)
(ij )

—2'(i f,"y, )A,~ A;, (I f,t—f, ), —
(ij )

Bi~ —2 ~b, ~b~~, A;J —2 z rsb; bj

Our choice of representation and the mean-field theory
has the following features. Exactly at half filling (6=0)
our theory reduces to the Schwinger-boson large-N theory
recently studied by Arovas and Auerbach' and later ex-
tended by us. ' Arovas and Auerbach showed that a
mean-field theory with (A;~)&0 for the quantum antifer-
romagnet, and with (B;1)~0 for the quantum ferromag-
net, gives a surprisingly good account of the "spin-liquid"
(i.e., strongly correlated but disordered) phase, especially
in low dimensions. In our extension, we have shown that
this theory can account for long-range magnetic order in
these models, provided we associate the magnetic ordering
with a Bose condensation of the Schwinger bosons. This
theory correctly reproduces the spin-wave theory results
for the low-temperature magnetization and the spin-wave
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tor &ftf;& 6 via (Lagrange multiplier) chemical poten-
tials X and p, respectively. We find that the following
simple choice for the mean-field amplitudes,

(A;/& iA sin(Q. r;~/2), (B;J& 8, (ftfj.& D, (4)

where Q denotes the zone-corner wave vector, captures
the essential physics of competing spin correlations and
hole motion. In particular, as we show below, a nonzero
value for A corresponds to short-range antiferromagnetic
correlations, and for 8 to ferromagnetic correlations; a
nonzero value of D implies hole mobility.

The resulting mean-field Hamiltonian is quadratic in
the Bose and Fermi operators and can be easily diagonal-
ized (the Bose part by a Bogoliubov transformation). We
find propagating fermionic and bosonic quasiparticles
with dispersions
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spectrum. This is different from the results obtained in
the fermionic representation, and hence we favor the bo-
sonic representation of spins over the fermion. Further-
more, the mean-field decomposition of the hole hopping
term t ties together hole mobility and short-range fer-
romagnetic correlations, which is the physics discussed by
Nagaoka for the U eo Hubbard model.

Specifically, we do a simple Hartree-Fock factorization
of (2) using (A~&, (BJ&, and (ftfj& as the mean-field am-
plitudes. [This is equivalent to doing a Peierls variational
calculation or to the n ~ ~ limit of an appropriate large n
generalization of (2).] We take into account the (aver-
age) constraint ((g b;tb; +ftf;)& 1 and the filling fac-

FIG. 1. (a) Phase diagram of the t Jmodel on a square -lat-

tice at T 0 in our mean-field theory showing the antiferro, fer-
ro, disordered spin liquid, and spiral phases. See text for discus-
sion. (b) Variation of (tt/2) —ko as a function of b along the
antiferro-spiral phase boundary (solid line) and at t/J 1.96
(long-dashed line). Also shown are the boson bandwidth

(dash-dotted line) and 100&fermion bandwidth (short-dashed
line) along the antiferro-spiral phase boundary, in units of J.

respectively. Here z is the coordination number, d=(tD
+JPB/2)z, a —=JAPz, yt, =(2/z)pmsosk b, and
=(2/z)gmsink b. R and P are expectation values given

by R:—(A;~~A;~& and P=((1 —ftf;)(1 —f~~fj)&. Using
these we derive self-consistent equations for A, 8, D, A, ,
and p, and solve them numerically for the lowest free-
energy solution for various values of t/J, b, and T. In this
paper for the most part we discuss T 0 results for the
square lattice.

One important component of the physics contained in
our mean-field theory is brought out by the spin-spin
correlation function, which is given by (for r; er~)

(S;+S/ & f(r;J.)f (r;J)+g(r,j)g*(tj,), (7)

f(r;~ ) .-„cosh28t,
(„) -g ' '" „.„h2e 4( )+-,'1, (8)

where n(tok) (e "' —1) ' is the Bose-distribution func-
tion and tanh28t, —apt, /(X+dyt, ) is the Bogoliubov pa-
rameter. When i and j are nearest neighbors it is easy to
show that f(r;J) f (r~t) 8 and g(r;/) —g (r~;) A,
and thus (S;+SJ & —(Bz —A ). Hence the result that A
promotes short-range antiferromagnetic correlations and
8 short-range ferromagnetic correlations. From our self-
consistent mean-field equations we find that a nonzero
value of 8 implies a nonzero value of D and vice versa.
Thus the correlation of hole motion with ferromagnetic
correlations discovered by Nagaoka is automatically in-
cluded in our simple mean-field theory.

The short-range correlations determined by A and 8 set
in at high temperatures, governed by t and J. At these
temperatures our self-consistent equations show that k is
such that cot, has a gap. Hence from (7) and (8) it follows
that the spin correlations decay exponentially at long dis-
tances and the system has no long-range spin order.

However, at low temperatures (T less, than a critical
temperature T, in three dimensions, and at T 0 in two
dimensions), the physics is dominated by Bose condensa-
tion of the Schwinger bosons, which leads to long-range
spin order. This arises because the chemical potential X,,
and hence, the minimum of tot, given by (6) decrease as
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the temperature decreases. When A. =A,, (d2+a2) 'i2,

tok develops zero modes at wave vectors +'kn= ~ kn(1,
1, . . . ) with coskn —d/X, and sinkn=a/X, . The Bose
condensation of these modes leads to off-diagonal-long-
range order in the spin-spin correlations function in (7)
given by

(S;+SJ )„,, pecos(2kn r;, ). (9)

For a general kn(Wtr/2 or 0) this represents a spiral spin
order with wave vector 2kn and magnetization pn, which
goes continuously into ferromagnetic order in the limit
kn 0, and to Neel antiferromagnetic order in the limit
ko—tr/2.

Figure 1(a) shows our results for the phase diagram '

for the t-J model on a square lattice at zero temperature.
In the region marked ferro, the minimum energy solution
has A 0 and 8,D~O implying kn =0 and ferromagnetic
long-range order. The effective ferromagnetic coupling is
JF —tD-tb'(1 —b), and the condensate density is

pn (1 —b)/2, which corresponds to the maximum align-
ment of the 1 —b occupied sites. The holes move freely
with an effective bandwidth of t8 -t (1 —b)/ 2. In the re-
gion marked antiferro, the minimum energy solution has
8 D 0, and AeO. This yields kn=tr/2 and corre-
sponds to a Neel state. Here (at the mean-field level) the
holes are localized, since t is not large enough to make
the energy gain due to hole motion win over its frustrating
effect on the antiferromagnetic order and the consequent
loss of exchange energy. The effective antiferromagnetic
coupling is J~ J(1 —b), and the T-0 staggered mag-
netization is pn (1 —b/2) ——,

' Jk(1 —
yt, ) 'i . In the

region marked spiral, A, 8, and D are nonzero, and
0 & kn & tr/2, and the ground state has spiral spin order.
The spiral magnetization is given by

pn (1 —b/2) —
~z J „(1+a yk ) [(I+a yk ) —

ri Pic ]

where a —coskn and g-sinkn. As b 0, kn tr/2 and
the spiral phase goes continuously into the antiferromag-
netic phase at half filling. When 8 becomes very large for
small t/J, the system is unable to sustain the Bose conden-
sation. Hence the long-range order disappears, and one is
left with a disordered spin-liquid phase with just short-
range (antiferromagnetic) correlations.

For small b the deviation of kn froin tr/2, i.e., the in-
verse of the pitch of the spiral scales with b as shown in
Fig. 1(b). The figure also shows the boson and fermion

bandwidths as a function of B. Note that for small 6 the
charge excitations are heavy (small-fermion bandwidth)
and the spin excitations are light.

Consider the question of superconductivity in the t-J
model. For spin-singlet superconductivity one needs
(g~;~J o)—=(A;~ffj) to be nonzero. Within our mean-
field picture, this requires both A;J~O, i.e., short-range
antiferromagnetic correlations and (ff~)aO, i.e., two-hole
fermions must bind. The hole binding can come about by
attractive interactions generated by (spin) fluctuations of
the Schwinger bosons. A preliminary analysis of these in-
teractions due to Gaussian fluctuations about our mean-
field theory indicates that optimal conditions for super-
conductivity occur when t =J and b intermediate.

Our mean-field theory overestimates the stability of the
ferromagnetic phase. It has recently been demonstrated "
that the Nagaoka state is unstable for large 8' and finite U
(which corresponds to finite J) due to "Fermi-surface re-
storing" spin-wave excitations with wave vector kF. We
anticipate that incorporation of such excitations into our
mean-field theory will get rid of the ferromagnetic long-
range order in the bulk of the region marked ferro, and re-
place it by a disordered spin-liquid phase. Also, fluctua-
tions about our mean-field solution promote hole mobility
even in the antiferro phase, and hence may favor the spiral
phase at its expense. Fluctuation effects are also responsi-
ble for superconducting paring between the holes. We be-
lieve that the incorporation of these effects with the above
mean-field theory as the starting point will yield a viable
theory of the t-J model for all ranges of its parameters.

We have also studied the finite-U Hubbard model using
methods similar to those described above, where we intro-
duce an additional fermion operator d; to represent doubly
occupied sites. The resulting mean-field theory yields the
same results as described above in the large-U limit, and
also leads to a theory for the metal-insulator transition in
the half-filled case.
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