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We report the results of a numerical test of the coherent-anisotropy-field approximation

(CAFA) for characterizing the high-field limit of the magnon spectrum for a lattice model of a

ferromagnet with random anisotropy axes. The CAFA reproduces the downward shift in the fer-

romagnetic resonance frequency and accounts for the modification of the density of states induced

by the disorder. The agreement confirms the analogy between the random-axis model in the

high-field limit and the potential Auctuation model for the random-alloy problem.

I. INTRODUCTION

In a recent paper, ' an approximate treatment of the
magnon excitations in a lattice model of a ferromagnet
with random-axis anisotropy was outlined. The analysis
pertained to the high-field limit where the applied mag-
netic field was large in comparison with the exchange and
anisotropy fields. It was pointed out that there was a for-
mal analogy between the random anisotropy problem in
the high-field limit and the problem of the electronic
states in a model alloy with random potential fluctuations.
This analogy was utilized to develop an approximate
theory for the magnons based on the concept of a coherent
anisotropy field which is the magnetic counterpart of the
coherent potential that plays a central role in the
coherent-potential approximation for random alloys. The
purpose of this paper is to report the results of a test of the
coherent-anisotropy-field approximation (CAFA) against
exact results for finite arrays of spins that are obtained
utilizing matrix diagonalization and equation-of-motion
techniques. In Sec. II we review the random-axis model
and the CAFA, Sec. III is devoted to a discussion of the
numerical techniques, and Sec. IV summarizes the com-
parison between the CAFA and the numerical calcula-
tions.

II. RANDOM-AXIS FERROMAGNET
AND THE CAFA

The Hamiltonian for a ferromagnet with random-axis
anisotropy takes the form

P = —g J)S; SJ —Sg(n S;) +HQS;. (1)
(i,j) I I

In Eq. (1), the first and third terms denote the exchange
and Zeeman interactions, respectively. The second term
is the random anisotropy and is characterized by an an-

isotropy axis n; which varies randomly throughout the sys-
tem. One can develop a harmonic theory for the excita-
tions by carrying out a Holstein-PrimakoA' expansion
about the equilibrium spin orientations.
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In the high-Geld limit, the spins are lined up along the
applied field. In this limit the harmonic approximation to
the magnon Hamiltonian takes the form

Po =g gSJ;~a; a; —g SJ;~ (a; a~+a~ a;)
i j (i j)
+ 3SDg(cos 8; ——, )a;ta; +H g a;ta;, (2)

where S is the spin, a;(a; ) obey Bose commutation rela-
tions, and D =2)[1—1/(2S)] is the renormalized anisot-
ropy constant. The symbol 8; denotes the angle between
the anisotropy axis and the applied field.

In our analysis we will assume that the spins occupy
sites on a simple cubic lattice and that the exchange in-
teraction, limited to nearest neighbors, is the same for all
nearest-neighbor pairs. With these assumptions, the first
and fourth terms in Eq. (2) can be combined leading to
the result

I

Rp=g(6SJ+H)a; a; —SJg (ata~+a~ta;)
(ij )

+3SDQ(cos 8; ——,
' )a; a;,

I

(3)
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(G)[k E —H (E)]=[E—H'(E) —E(k)] ' (4)
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where the prime signifies that the sum is limited to nearest
neighbors.

In the alloy analogy, the first and third terms in Eq. (3)
play the role of the uniform and Auctuating terms in the
potential, while the second term corresponds to the elec-
tron transfer or hopping term. The influence of the disor-
der depends on the ratio D/J and on the distribution of
cose. We will consider cases of moderate to strong disor-
der corresponding to D/J =3, 6, and 9. We also make the
assumption that cos8 is uniformly distributed between —1

and +I so that the average value of the potential fIuctua-
tion is zero.

In testing the CAFA, we will focus on the ferromagnet-
ic resonance, or uniform mode, frequency, and the density
of states. Both of these are obtained from the CAFA
propagator (6) defined by
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where E(k) is the magnon energy in the absence of disor-
der

E(k) H+2JS(3 —cosk„—cosk~ —cosk, ),
and H;(E) is the frequency-dependent coherent anisotro-
py field whose calculation is outlined in Ref. 1. The uni-
form mode frequency coo is determined by the peak in the
inlaginary part of (6)[O, coo —H;(mo)], whereas the densi-
ty of states p(E) is given by the sum

p(E) - —(I/~)g im(G) [k,E —H:(E)] .

III. NUMERICAL TECHNIQUES

As mentioned in the Introduction, numerical techniques
for calculating the magnon excitations involve matrix di-
agonalization and equation-of-motion techniques. Since
the application of the former to the random-axis model is
discussed in a recent paper, we will consider in detail
only the equation-of-motion approach. Both techniques
have as their starting point a classical (Neel) equilibrium

I

configuration obtained by rotating the spins into their lo-
cal fields, which are the sums of the exchange, anisotropy,
and applied fields, viz. ,

I

H Jg S,+2Dn;(n; S;)+Hi. (7)
J

Since the rotation of the ith spin aH'ects the local fields at
the other sites, the process must be iterated until the total
energy stabilizes (to one part in 10 ).

Having obtained a local equilibrium configuration by
this method, one can develop a harmonic theory for the
magnon dynamics by treating deviations of the spin from
their equilibrium orientations as small quantities. The
eA'ect of this step is to generate a set of linear equations
for the local spin operators. By integrating the equations
of motion, one can obtain the zero-temperature dynamic
structure factor S(k, ro). Since the calculation is similar
to an analogous calculation of the dynamic structure fac-
tor of a Heisenberg spin glass, we will only point out the
changes involved in applying the formalism of Ref. 3 to an
anisotropic system. The major modification entails re-
placing Eqs. (2.4) and (2.5) of Ref. 3 by the correspond-
ing equations

R,I,
= ——,

'
SJJt, u~+ uk+ —

BJI,SD(n~'u~+) 2,

Szk = —
—,
' SJJpuz+ uk +Gal, Sg Jz„yz y„+2SD(nj ~ yz) —SD(uj nj)(uz+ nj)+Hyj'

n

where the symbols have the same meaning as in that refer-
ence.

By using the Auctuation-dissipation theorem, one can
show that the response to a spatially uniform, oscillating
field is proportional to S(O, co). Thus we are led to identi-
fy the ferromagnetic resonance frequency with the loca-
tion of the peak in S(O, co).

IV. COMPARISON

The corresponding comparison for the ferromagnetic
resonance frequencies is shown in Fig. 3, where the solid
curve is the CAFA and the circles (triangles) denote data
obtained by integrating the equations of motion of arrays
of 16x 16x 16 (12x 12x 12) spins. Again, the CAFA is
seen to do a credible job of reproducing the numerical
data.

The negative shift in the frequency of the uniform mode
can be interpreted as an energy shift coming from the cou-

In making the comparison between the CAFA and the
numerical simulations, units were chosen such that
J=S 1. The high magnetic field limit was ensured by
taking H large enough that ~(S,) ~

=1. With ~(S,)[~ 0.99 as a criterion, we used H =12.3, 28.4, and 46.5 for
D/J 3, 6, and 9, respectively.

The results for the density of states are shown in Figs. 1

and 2. Energies are measured relative to H since in the
absence of anisotropy, the application of a field shifts the
energies of all of the modes by this amount. Figure 1 is a
histogram showing the distribution of modes obtained by
diagonalizing the dynamical matrices derived from six
configurations, each with 8 x 8 x 8 spins. Figure 2 is the
density of states in the CAFA. From these figures, it is
evident that the CAFA accounts reasonably well for the
modification of the density of states by disorder, reproduc-
ing the peak that develops at low energies as the distribu-
tion approaches the large-D limit
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p(E) [(E H)/3D+ 3 l ', D~ E H~ 2D, — —
(10)

appropriate when D/ J» l.

FIG. 1. Histogram showing distribution of magnon energies
in a saturating field H. Results from six configurations, each
with 512 spins: (a) D 3, H 12.3; (h) D 6, H 24.4; (c)
D 9, H 46.5. J S 1.
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FIG. 2. Density of states in the CAFA: (a) D=3, (b) D=6,
(c) D=9. All curves have the same area. J=S=I.

pling to modes with finite k, which is induced by the per-
turbation described by the last term in Eq. (3). This re-
sult can be seen in a second-order calculation using the
one-magnon states

i k) -N 'i'+exp(ik r, )a,~ i vac&,

i &0 i g(cos 8J ——,
' ) i

k) i

~

Aro = (3SD) ' g
1 ~o E(0) —E(k)

(cos 8; ——,
' )(cos 8J ——,

' )
[(3SD) /N ]

&,J' tao E(0) —E(k)

(i2)

Since there is no correlation between the directions of the
anisotropy axes at different sites, the cross terms in Eq.
(12) vanish leaving

hru (3SD) N 'g(cos 8; ——,
' ) N ' g fE(0) —E(k)]

kwO

(3SD) ((cos 8 —
—,
' ) &N 'g [E(0)—E(k)]

kwO
(i3)

which is negative since E(0) is at the bottom of the bond
so that E(0) —E(k) (0. In the case of the simple cubic
lattice with nearest-neighbor interactions, Eq. (13)
reduces to

Aco = 0.20D S/J, — (i4)

which matches the solid curve in Fig. 3 over the interval
0~ D(1.

In summary, the data displayed in Figs. 1-3 support the
use of the CAFA to characterize the harmonic spin dy-
namics in a lattice model of a random-axis ferromagnet in
a high magnetic field. Having established the validity of
the alloy analogy, one is in a position to apply various con-
cepts and mathematical techniques developed for the alloy
problem to the random-axis model. '
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