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Density of states of quasi-one-dimensional charge-density and spin-density waves
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Making use of the quasi-two-dimensional model of charge-density waves, we analyze the elec-

tron density of states of NbSe3 observed by the electron tunneling technique. The model provides

an excellent description of both the observed density of states and the temperature dependence of
the energy gap.

In spite of the reasonable success of weak-coupling
mean-field theory' in describing the condensate density
and the increase in the sound velocity in charge-density
waves (CDW's) in NbSei and orthorhombic TaSi (Ref.
4) and in spin-density waves (SDW's) in (TMTSF)2PF6
(Ref. 5) (TMTSF tetramethyltetraselenafulvalene) and
more recently the temperature dependence of the thresh-
old field ET in NbSes (Ref. 7), there is one glaring
discrepancy between the theory and the experimental ob-
servation. The quasiparticle energy gap 6, of two CD&'s
in NbSez measured by the electron tunneling technique~ 9

is much larger than expected from the BCS theory; the
observed 2h/kttT, =11.4-14.4 instead of 3.52, where T,
is the corresponding transition temperature. However, the
optical absorption measurement of CDW's in NbSe3 ap-
pears to give an energy gap consistent with weak-coupling
theory. ' This discrepancy is usually attributed to the
strong Auctuation in the quasi-one-dimensional system. "
In particular, much broader structures than those expect-
ed from the BCS theory observed in the tunneling experi-
ments appeared to favor this possibility.

In this Brief Report we propose an alternative model.
%'e assume that the electron spectrum in NbSe3 is two or
three dimensional, though it is strongly anisotropic. For
definiteness we consider the quasiparticle spectrum given
by

E(p) —2t, cos(ap ~ ) —2tb cos(bp2) —2t, cos(cpq), (1)

with t, &&tb, t, .
Here we take the a direction as the chain direction (i.e.,

the most-conducting direction; in actual NbSes our a, b,
and c directions correspond to the b, a, and c axis). From
the observed anisotropy in the electric conductivity' and
the anisotropy in the upper critical field' in the supercon-
ducting region under high pressure (P )7 kbar), we may
take for NbSes t, :tt, .t, =5:I:0.5 for example. A similar
model has been considered by Yamaji' in order to inter-
pret the phase diagram of (TMTSF)2PF6, though the
most-conducting direction in the (TMTSF) salt is the a
direction and t, :tb.t, =10:I:0.03. The spin-density wave

G '(P, co.) =ito. —tl(P) —&(P)P3 —aP(,

where

(2)

and

&(p)

=v(ipse

i
—pF),

ri(p) =so(1+a) [cos(2bpq)+4acos(bp2)cos(cp3)

+ a cos(2cpi) —2a], (3)

eo(1+ a) = —
4 tt, cos(apF) [t, sin (apF)]

a t /tb,

and the p s are the usual Pauli 2x 2 matrices operating on
the spinor space formed by the right-going electron and
the left-going electron.

Then the gap equation which determines the tempera-
ture-dependent order parameter is given by

1 2tr %2' l
1 =XtrTQ ' dpi dy2 [(to„irl)2+A2—]

(2tr) '
(4)

with

ri so[2(1+a) (cosp~+ a cos&2) —1],
and the frequency sum is cut olf at ( to, ( -sF, the Fermi
energy and X is the dimensionless electron-phonon cou-
pling constant.

The electron density of states is given from Eq. (1) as

transition temperature decreases as the pressure increases
and disappears abruptly for P =6-7 kbar, then the super-
conductivity with T, =1.2 K appears for higher pres-
sure. ' A very similar phase diagram under pressure is
observed' in NbSe3, which strongly suggests that a simi-
lar quasi-two- or three-dimensional model applies to
CD%'s in NbSe3 as well.

The mean-field theory by Lee, Rice, and Anderson
(LRA) ' is easily generalized for the present model. For
example, the electron Green's function is given by '

p 2x %2' IE-
N(E)I/NO- dy& dy2 Re4 0 & 0 (2~)2 [(E )2 g2]1/2
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where

F(a,x) =
[2/x(1+a)](1 —x ) '~ IC (1 —x) ', for —1 &x & —a(2 —a),I+a

r

[242/x (I+a)Wa](1+x) ' E (1 —x)', for —a(2 —a) &x & 1.
2JZa

(7a)

(7b)

Here K(z) is the complete elliptic integral.
In the two-dimensional system (i.e., a =0), Eq. (6) further simplifies as

N(E)/Np= '

—(w~) '" (lE l+a+~)11 lE l

—a+so
2h , r —AK(r), for 5 —co & lE l &6+so, (8a)

—[E' —(~ —~)'] '" (lE+~+~)11 ——,r, ~So(r,), for lE l
& ~+~, (8b)IEl+~-~' '

where

E' (a —so)'—
2 h,~

and II(n, z) is the complete elliptic integral of the third
kind.

We numerically evaluate Eq. (6) for so/hop=0. 92 (hop
is the gap at T=O K) and for several values of a
(0~ a~0.2) and plot the results in Fig. l. Unlike the
two-dimensional limit (a =0, as shown in Fig. 2), the den-
sity of states is not symmetric about E =0. In particular
the density of states has a logarithmic singularity at
E = —(d, +so) and cusps at E = —[6—boa(2 —a)],—(5 —so), 6 —boa(2 —a), and 5+an, and a finite jump
at F. 5, —eg.

Comparing this with the tunneling density of states ob-
served by Ekino and Akimitsu in the CDW state of
Nbse3, we may conclude the following. (1) The observed

density of states is quite consistent with the two-
dimensional model (a=O). For the three-dimensional
model the parameter a has to be less than 0.2. (2) The
eA'ective energy gap associated with the peak in the densi-
ty of states should be h, +op, but not h, as originally as-
sumed. Indeed, as shown in Fig. 3, the observed tempera-
ture dependence of the energy gap of the CDW with
T, -149 K is described very well by d (T)+ so, with b, (T)
obtained from Eq. (4), and hop=157 meV =(1821 K)ks
and so 0.92doo for the two-dimensional model (a=0).
%'e obtain a similar agreement for the energy gap of the
CDW with T, 59 K, where we have to take boo=70
meV. (3) Further, the above choice is consistent with the
observed pressure dependence of the CD%' transition tem-
perature T,.

Within the same model we calculate the tunneling con-
ductance between two CD%"s,

tTcnw-cow = t)Jcnw-cow/t)E,

where

) 4-

O
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FIG. l. Electron densities of states N(E) of quasi-one-
dimensional COW are shown as functions of quasi-particle ener-

gy E and a t, /tb. In the two-dimensional limit (a =0), N(E)
is symmetric IN( —E) =N(E)l at the origin, while an asym-
metry develops for a~O.
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FIG. 2. Electron density of states N(E) in the two-dimen-
sional limit. We have shown only for E &0, since N( —E)
=N(E) in the present limit.
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FIG. 3. We calculate the position of the logarithmic singular-
ity (i.e., the eff'ective energy gap [A(T)+ so]/Aoo) in the density
of states as a function of reduced temperature T/T„which is

compared to the tunneling experiment by Ekino and Akimitsu
(Ref. 9) (circles).

FIG. 4. The tunneling conductance between two CDW's in

the two-dimensional limit is shown as a function of applied volt-

age V. Again the conductance is symmetric in V.

Jcow cow =
~
T

~
dE'N(E')N(E E') tanh —~E' —tanh (E' E)— (lo)

N(E ) is the density of states defined in Eq. (6).
We show in Fig. 4 the tunneling conductance at T=0

K, since the temperature dependence is rather
insignificant for T ~ O. 1 boo/ks. Unlike the experimental
results, which has a broader peak around E =2(A+so),
the numerical result exhibits a logarithmic singularity at
E =2h, and a jump with a weaker singularity at E
=2(A+so). However, the present result appears to be
still more consistent than that expected from the BCS
theory.

In summary, making use of the quasi-two-dimensional
model of CDW's, we analyzed the electron tunneling data.
The present model describes consistently both the ob-

l

served feature of the tunneling electron density of states
and the temperature dependence of the energy gap. Fur-
ther, the present model is consistent with the observed
pressure dependence of T, . Finally, the discrepancy be-
tween the optical measurement and the tunneling experi-
ment is easily resolved since the former experiment mea-
sures 25(T), while the latter is most sensitive to h(T)+ so

as we have shown here.
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