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Atomic oxygen on the hexagonally close-packed Ru(001) surface forms a p(2X2) structure on
threefold-coordinated hcp sites. The critical behavior of the structural order-disorder phase transi-
tion was studied with low-energy electron diffraction at a relative coverage ©=0.25. Quantitative
profile analysis of superstructure beams together with measurements of integrated and peak intensi-
ties as a function of temperature in the reduced temperature range 0.004 <t <0.1 were used to
determine the exponents a, 3, ¥, and v. They agree within 3% to 10% with the values of the two-
dimensional four-state Potts universality class. Conditions and limitations of this determination are

discussed.

I. INTRODUCTION

Studies of thermodynamical properties of two-
dimensional systems have attracted much attention both
by experimentalists and theorists during recent years.!
Experiments mainly concentrate on static thermodynam-
ic properties such as phase diagrams and, in a few cases,
static critical behavior. The information contained in
such studies is twofold: First, phase diagrams are a main
source of information about lateral interactions. In the
simplest cases they can be described by lattice-gas mod-
els? with effective interactions at discrete sites. Chem-
isorbed adlayers provide a great variety of examples for
which this description is applicable.> Second, tests of
critical behavior of continuous phase transitions in two
dimensions (2D) are particularly interesting, as deviations
from classical mean-field behavior are expected to be
strongest in 2D.* Structural order-disorder phase transi-
tions of commensurate adlayers are easiest to control,
and appear to be the simplest test systems in strictly 2D,
if complications like dissolution of adatoms in the bulk
can be neglected. Continuous phase transitions depend
only on dimensionality and on the symmetry change be-
tween ordered and disordered phase.” Symmetry require-
ments for a phase transition to be continuous (or first or-
der otherwise) are summarized in the “Landau rules,”®
which for commensurate order-disorder transitions be-
come particularly simple in 2D.” The validity of the
“Landau rules” in 2D has not been extensively tested yet
by experiment.” Following the first and third Landau
rule, order-disorder transitions of adsorbed commensu-
rate layers are predicted to fall into only a small number
of universality classes.? The symmetry of the disordered
system and the symmetry change, described by the order
parameter, determines to which universality class a tran-
sition belongs. Therefore, the symmetry of the disordered
phase must be known as well as that of the ordered
phase. Whereas the latter can be determined reliably also
in 2D by well-established methods like dynamical low-

_energy electron diffraction (LEED)-IV analysis,” deter-
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mination of the former is more difficult. The p(2X2)
structure on a triangular or hexagonal surface is particu-
larly interesting because it has the largest unit cell which,
according to the “Landau rules,” can have a continuous
order-disorder transition in 2D.} If the adlayer is ad-
sorbed on a high-symmetry site, this order-disorder tran-
sition should fall into the four-state Potts universality
class.® We show in this paper for the case of atomic oxy-
gen on Ru(001) at a coverage of 0.25 (measured with
respect to the substrate density) that a continuous transi-
tion can actually occur for this type of unit cell and that
the measured exponents are, within the error limits, those
of the four-state Potts universality class.

Although the number of possible candidates for studies
of critical phenomena in 2D by simple order-disorder
phase transitions is huge,'° only a small number of quan-
titative experimental investigations of two-dimensional
critical phenomena has been reported so far. These
comprise clean reconstructed surfaces,!”'? chem-
isorbed'* ™17 as well as physisorbed adlayers.'®* "2 They
all fall into the universality classes of either the Ising, the
three-state Potts, or the XY model with cubic anisotropy.
No successful test in the four-state Potts class in 2D has
been reported so far.!” The many possible complications
of perfect 2D order, like defects and bulk dissolution or
the occurrence of first-order transitions, but also un-
known structural properties of the disordered phase,
might be reasons for this small number of investigations.

The chemical, structural, and kinetic properties of the
system O/Ru(001) have been investigated by several au-
thors (Refs. 23-29). Oxygen is only dissociatively ad-
sorbed at and above room temperature’* and forms only
apparent (2X2) structures. During adsorption at room
temperature the LEED intensity of oxygen induced su-
perstructure beams exhibits two maxima, the first at half,
the second at saturation coverage.”’> From high-
resolution electron-energy-loss spectroscopy (HREELS)
measurements?® and LEED investigations on a stepped
Ru(001) surface,? there is strong evidence that the inten-
sity maximum at saturation corresponds to the formation
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of three domains of a p(2X1) structure instead of a
honeycomb structure which would also be possible from
the LEED pattern. A saturation coverage at room tem-
perature of ©=0.5 is also consistent with a comparison
of O 1s XPS intensities of a saturated oxygen layer with
that of a completed V'3 X V3R 30%-ordered layer of CO
on this surface.’® The first maximum at half-saturation
coverage then corresponds to © =0.25, where a p(2X2)
structure must be formed. The work function changes al-
most linearly up to this coverage with an abrupt change
of slope for higher ©, corresponding to an increase of
effective dipole moment per added atom by a factor of 3.

In this paper, we concentrate on the determination of
critical exponents. The phase diagram, a necessary prere-
quisite for the determination of critical exponents, was
published in Ref. 31. It shows two maxima at relative
coverages 0.5 and 1 with T, at 754 and 555 K, respective-
ly. They coincide with the maxima in LEED superstruc-
ture intensity and must therefore correspond to com-
pletion of the p(2X2) structure at ©=0.25 and of the
p(2X1) structure at ©=0.5. A detailed discussion of
phase diagram and effective lateral interactions is post-
poned to a planned forthcoming publication.’? Here we
describe the determination of critical exponents of the
p(2X2) order-disorder phase transition at ©=0.25. In
order to avoid Fisher renormalization,® critical ex-
ponents were determined for the completed p(2X2)
structure at ©=0.25, where T, is maximal and the
order-disorder phase transition can be shown to be con-
tinuous. From a profile analysis of several superstructure
beams, we show that these exponents are consistent with
exponents of the four-state Potts universality class. A
preliminary report of these results has been published re-
cently.?*

II. EXPERIMENTAL

Our experiments were carried out in an UHV chamber
at a base pressure of 2X107!! mbar with a four-grid
LEED system equipped with a Faraday cup, movable
both in polar and azimuthal directions. Primary electron
currents of 60—100 nA at normal incidence were used
and stabilized to 0.1%. Diffraction spot profiles and peak
intensities were measured in polar direction of the Fara-
day cup with a round aperture subtending a (polar) angle
of 0.5°, while for measurements of integrated intensities
an aperture of 3.4° was used. For profiles, the reproduci-
bility of FWHM was always better than 0.05°. A master-
slave combination of microcomputers controls both polar
and azimuthal motions of the Faraday cup, measures and
stores data. Data are then transferred to a uVAX system
for analysis.

The resistive sample heating, chopped alternately with
the LEED current at 12.5 Hz, is controlled by another
microcomputer. Temperature measurement is done via a
chromel-alumel thermocouple with a resolution of 0.025
K. The sample was mounted by a set of wires (one Ir,
two W-3 at. % Re, 0.5-mm diameter ¢, free length 4
mm) spot welded to the rear of the sample. These were
again spot welded to the sample holder. The manipulator
has two rotations, one around the surface normal, the

H. PFNUR AND P. PIERCY 40

other parallel to the surface, and allows adjustments of
the sample to line up the axes of rotation. The ruthenium
crystal was cut by spark erosion, oriented within 0.2°, and
polished with diamond pastes down to 0.25 pum grain
size. Cleaning was done by several hundred heating and
cooling cycles between 400 and 1500 K in 5X 10”7 mbar
oxygen. This extensive procedure also seems to improve
the quality of the clean surface, as seen by the LEED
reflectivity.

III. DATA EVALUATION AND RESULTS

A. Coverage calibration

Relative coverages at 400 K were determined by
measuring relative peak to peak Auger intensities of the
520-eV oxygen KLL Auger transition in dN /dE spectra
with the retarding field analyzer as a function of expo-
sure. The sample was dosed by a background pressure of
(1-3)X107% mbar. In agreement with findings by
Madey et al.,?® we found a constant sticking coefficient
up to 80% of saturation coverage. For the same temper-
ature we also measured LEED superstructure beam in-
tensities as a function of exposure. Coverage was now
calibrated versus exposure assuming that the first LEED
intensity maximum corresponds to exactly © =0.25. Ex-
posures were reproducible within 2%, as was explicitly
tested for the coverage of ©=0.25 by measuring the crit-
ical temperature 7, and adjusting it to be maximum (see
below). This coverage calibration assumes a defect-free
surface. The coverage averaged over the whole crystal
surface may deviate, therefore, though locally a perfect
p(2X2) structure exists. Steps, however, often assumed
to be the main limitation for long-range order, do not in-
terrupt the order of oxygen on this surface.>> The con-
centration of point defects, microfacets, etc. is unknown,
but should be far below the maximum concentration of
steps of 1.5% determined for a crystal surface prepared
in the same way as the one used here.!> Such defects can
be important for the determination of exponents, causing
ﬁnit3e6-size rounding of the phase transition and shifts in
T,.

At adsorption temperatures below 350 K and at the
same pressures as above the adsorbed layer has to be an-
nealed to 600 K before perfect order is achieved, as obvi-
ous from the LEED superstructure beam intensities as a
function of temperature. After oxygen adsorption at 400
K and short heating to 600 K, LEED intensities of super-
structure beams are fully reversible as a function of tem-
perature. Explicit tests were carried out at constant cov-
erage ©=0.25 for heating rates between 0.2 K/s and 10
K/s in the temperature range 200-950 K, ramping tem-
perature both up and down. Differences in intensities
were below 1%, those of T, within the uncertainty of its
determination of 0.5 K. This contrasts with earlier re-
ports of slow oxygen diffusion into deeper layers at tem-
peratures above 700 K.2” We note, however, slow oxygen
removal from the surface which amounts to 1% of a
monolayer over 30 min. This effect is almost temperature
independent and was shown to be due to oxidation of CO
adsorbed from the background pressure.
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B. Data evaluation of critical exponents

As discussed by Bartelt et al., the specific-heat ex-
ponent a can be evaluated from a low-resolution
diffraction experiment, including all multiple diffraction
effects. A low-resolution instrument such as a Faraday
cup with large aperture is only sensitive to correlations of
limited range. The singular part of the interaction energy
depends on these finite as well as infinite range correla-
tions in a way which has the same mathematical form as
the LEED intensity integrated over a spot. Therefore,
close to T, [or, equivalently, at small reduced
t=(T—T,)/T.], the integrated intensity should decay
with the critical exponent of the interaction energy, 1 —a,

= o —
f|q_qc,<qmqu(q) B.ltl "tH(4—Ct+--). (D

A and C are positive constants, the amplitudes B, and
the exponents a, refer to situations with ¢z >0 and 7 <O,
respectively. In case of infinite, nondistorted lattices this
formula is valid, if for the integration radius in reciprocal
space, q,,, 4,,&>>1 holds. The integral is then taken
effectively over all correlations, which under the condi-
tions chosen extend out to the correlation length £. As
the correlation length £ decays ~ |¢| ~” this condition sets
an upper limit in ¢ for the applicability of Eq. (1). For a
finite system with a characteristic length L, deviations
from Eq. (1) [as well as from Eq. (2) below] must be ex-
pected when the correlation length approaches L, thus
limiting the applicability of Eq. (1) at small |tz to
[t| >>|toy | with E(2g4)=L.

The exponents B, ¥, and v can be extracted from the
measured superstructure profiles* 3! by parametrizing the
ideal, i.e., deconvoluted, profile in the following way:

S(q,0)=Iy()8(q—qo)+xo(t)[1+(q—qo)?EX()]™" (2

with the correlation length &~17|™%, I,~(—t)%, and
Xo~|t|”7. The first term of Eq. (2) describes the Bragg
peaks due to long-range order, whereas in the second the
effects of critical scattering due to correlations of short-
range order fluctuations are contained. This term is ex-
act only if the Fisher exponent 7 is zero.* However, this
parametrization has the proper scaling form for small
&(q —qo) and small ¢.%° Deviations should be expected
for large &(q —qq) [ie., &(g —gg)— o with t—0,
g —q,)70], depending on the size of exponent 7 (Ref.
39). The parametrization of Eq. (2) can be expected to
describe scaling of our data properly, as we use only data
with £(¢ —q,)<1 for the evaluation of exponents, in
agreement with our finding. In this limit unisotropies of
S can also be neglected.3® As the fit to the experimental
data shows (see Fig. 4), deviations from Lorentzian form
are typically small for small differences (¢ —q,) from the
Bragg peak position. Their consideration would in fact
exceed the accuracy of our fitting procedure.

As already mentioned, instead of numerical deconvolu-
tions we carried out fits to our experimental beam
profiles. This procedure proved to be numerically much
more stable and reliable than deconvolutions. In order to
obtain correct results, especially for the peak heights X,
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above T, it turned out to be necessary to properly simu-
late a two-dimensional deconvolution in the fitting rou-
tine. We approximated the instrument function by a
two-dimensional profile separable both in polar and az-
imuthal directions and assumed the deconvoluted
Lorentzian profile to be isotropic. Measured low-
temperature spot profiles in azimuthal and polar direc-
tions were taken as instrument functions. We adjusted
the beam focus to obtain a transfer width of 175 A in po-
lar direction for a second-order superstructure beam at a
primary energy of 65 eV, and accepted a 70% wider
profile in the direction perpendicular. The azimuthal
profile was approximated by a Gaussian of the measured
width, and the convolution in azimuthal direction carried
out with approximate analytic formulas tabulated in Ref.
40, whereas in polar direction the polar profile was
directly taken as numerical input into the fitting pro-
cedure.

C. Results

As already mentioned, critical exponents are defined
for constant chemical potential, u. For constant cover-
age, the condition we have to work with, p in general
changes as a function of temperature, and exponents will
be Fisher renormalized.’®> Renormalization is unimpor-
tant only at symmetry points of the phase diagram.
Therefore, all our measurements are carried out at
©=0.25, which corresponds to the maximum in T,.

As an example for measurements to determine the
specific-heat exponent «a, the intensity of a second-order
oxygen diffraction spot at E;,, =65 eV, integrated over
2.3% of the Brillouin zone, is shown in Fig. 1 as a func-
tion of temperature, together with a fit according to Eq.
(1). The experimental curve shown is already divided by

Integrated Intensity (arb.units)

[ S W W I I W A I

650 700

600
Temperature (K)
FIG. 1. Integrated intensity of an oxygen-induced (%,—é—) su-

perstructure beam as a function of temperature at a primary en-
ergy of 65 eV (dots). The solid line is a fit according to Eq. (1)
with T,=754 K, C =0, B, and B _ variable, a_=a ., result-
ing in «=0.64. Data above 780 K and between 750 and 758 K
were excluded from the fit.
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a Debye-Waller factor (in high-temperature approxima-
tion), which we determined from measurements down to
150 K so that the divided LEED intensity, extrapolated
to 0 K, has a horizontal tangent there. If we insert the
mass of a single Ru atom, the effective Debye tempera-
ture, ®p, under these conditions is 300 K. It would be
750 K, if the mass of a single O atom is used, much
higher than the Ru bulk Debye temperature of 420 K.*!
Though uncertainties in ® are of the order of £10%, it
is interesting to note, that the vibrational amplitudes of
oxygen, compared to those of the Ru atoms, are essential-
ly invisible in the Debye-Waller factor. This can be taken
as another indication for a steep, site-specific adsorption
potential with high activation barriers for diffusion, con-
sistent with the activation needed for perfect ordering. It
may be due to a slight reconstruction of the Ru surface
by oxygen at this coverage, as indicated by dynamical
LEED-IV analysis.*?

The inflection point of the graph corresponds to T, .,
of 754+0.5 K. As explained in Sec. III B, data very close
to T, and far away from T, have to be excluded from the
fit. Close to T, the fit deviates from the data in a range of
|t] <0.005, which we attribute, at least in part, to finite-
size rounding, as the normalized slope I ~'dI /dt =:51 at
T,, instead of infinity. Therefore, we excluded this data
range from the fitting procedure. At still higher tempera-
tures, the fit had to be limited to 25 K above T, as the
spot profile width approaches the size of the Faraday
cup. This limits the validity of Eq. (1) at large ¢, as the
Faraday cup is no longer effectively integrating over all
short-range correlations. As will be seen below, contribu-
tions to superstructure beam intensities of short-range
fluctuations below T, are very small so that the fit can be
extended to a larger ¢ range below T,.

The fits were carried out with increasing numbers of
fitted parameters. With C set to zero and T, fixed,
B,=B_, and a, =a_, we obtain a=0.60+0.04. The
error bar is due to shifts in 7, by =1 K and to variations
of the excluded range from O to 0.01 7,. If under the
same conditions B, and B _ are fitted independently, a
ratio B, /B_=1%£0.05 is obtained. If the condition
o, =a_ is removed, they vary in the range between 0.58
and 0.65. A fixed positive value of C tends to increase a,
but worsens the fit. Allowing C as an additional fit pa-
rameter always drives C negative, and makes the fitted
curve more asymmetrical around T, with ratios B_ /B
up to 3. «a is then systematically shifted to lower values
by up to 10% of the average value. Changes in the fitted
temperature range, which can be done over a larger ¢
range only below T, also influence the value of a. Fits
without linear correction terms result in a decrease of
by as much as 10%, if the upper cutoff in |¢| is reduced
from 0.1 to 0.02, as can be directly seen from Fig. 2.

All values determined for a fall systematically below
the theoretical value for a of the four-state Potts model
(a=2%). This is also indicated in Fig. 2, where experi-
mental data are compared to a straight line with slope
(1—a)=1ina log-log plot. In addition, this figure clear-
ly shows deviations from a simple power law. As there is
no range in ¢t where the experimental curves are straight
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FIG. 2. The data of Fig. 1 plotted on double logarithmic
scale vs reduced temperature. Lower-data set corresponds to
T>T,, upper set to T<T,. The solid line indicates a power
law ~ |¢|'7® with (1—a)=1.

lines, these deviations cannot be caused by stretching the
validity of Eq. (1). It clearly demonstrates that correc-
tions to scaling are not negligible, though our fits seem to
describe the data reasonably well on a linear scale. From
the analysis above we have to conclude that higher-order
correction terms are required to describe the data ade-
quately. Our analysis, however, also shows that for our
experimental system the simple power-law fit can be used
as an indication that the phase transition observed be-
longs to the universality class of the four-state Potts mod-
el, to which the determined exponents are closest. Be-
cause of the large differences in the specific-heat ex-
ponents a between different universality classes, this
method may be generally useful to discriminate between
various universality classes.

A typical example of the peak intensity at ©=0.25,
measured with a small aperture in the Faraday cup,
which integrates only over 0.05% of the Brillouin zone,
versus reduced temperature ¢ is shown as a log-log plot in
Fig. 3 (the same Debye-Waller factor as above has been
divided out). Critical temperatures, as determined by the
inflection points with small and big apertures in the Fara-
day cup, coincide within 1 K, as expected, because very
close to T, the small aperture is also integrating over all
correlations and Eq. (1) should be applicable for the small
aperture as well. If not concealed by finite-size effects,
crossover to behavior according to Eq. (2) should be ob-
servable. From our data we conclude that this must
occur far below ¢t =107 % Using the T, measured with
the small aperture, we plotted in Fig. 3 the raw data, i.e.,
without deconvolution, thus neglecting the second term
of Eq. (2) below T, completely. From such plots we ob-
tain a slope 28=0.17+0.03/—0.01, which compares
well with the theoretical value of 1. The perfect fit to a
straight line also indicates very small critical scattering
for t <0, which we cannot even identify from our mea-
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FIG. 3. Peak intensity below T, of a second-order oxygen in-

duced spot as a function of reduced temperature after division
by a Debye-Waller factor. Slope of solid-straight line 23=0.17.

surements in the accessible ¢ range. The error limits are
again mainly due to uncertainties in fixing T,, with a
smaller contribution from fixing the diffuse background.
Above T,, the beam profiles broaden and decrease in
magnitude as critical scattering decays. These profiles
were fitted according to Eq. (2) with the convolution pro-
cedure described in the previous section. A typical
profile above T, together with the fit is shown in Fig. 4.
As a result of the fit, I, is nonzero for ¢t <0.004, which
can be partly due to finite-size rounding. The deconvo-
luted peak intensity and the inverse beam width at half
maximum (corresponding to the correlation length £) are
plotted in Fig. 5 as a function of reduced temperature for
different electron energies and beam orders, taking the
same values of T, as for the B determination. Note that
in Ref. 34, the scale for £ was erroneously a factor of 3
too large. It is corrected here, which, however, only
leads a parallel shift of the data and does not change ex-
ponents. On these log-log plots the data can again be
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FIG. 4. Comparison of a second-order superstructure beam
profile at a primary energy of 65 eV for reduced r=0.008
(T'=760 K) after subtraction of a linear background with the
result of the fitting procedure convoluting Eq. (2) with the in-
strument function (solid line), as described in the text.
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FIG. 5. Deconvoluted peak height of critical scattering X,
and inverse full widths at half maximum (correlation lengths &)
above T,. Different symbols correspond to different energies
and diffraction orders: first order at 52 eV (squares), second or-
der at 36.5 eV (circles) and at 65 eV (triangles). Amplitudes in
the upper figure are normalized with respect to the data set at
65 eV.

well fitted to straight lines which yield the exponents
y=1.08+0.07 and v=0.68%0.03. They both are in
close agreement with the theoretical four-state Potts ex-
ponents. The accuracy for determining these exponents,
especially at small ¢, is mainly limited by instrument reso-
lution, i.e., by small variations of the low-temperature
profile shape corresponding to variations in halfwidth of
Ak =1.5X 1073 AL They affect our determination of
the “‘instrument function,” which also contains contribu-
tions from crystal imperfections such as mosaic spread,
etc. The upper limit in ¢ is due to small signals and beam
profiles so broad that the atomic structure of the surface
becomes more and more important, and deviations from
isotropically round profiles have to be expected.® Thus
for the determination of exponents, we are limited to
roughly 1.5 orders of magnitude in reduced ¢. Finite-size
effects, though clearly visible in Fig. 1, cannot be discrim-
inated in Fig. 5 within the uncertainties indicated. The

-.exponents are summarized in Table I, together with

theoretical values of various n-state Potts universality
classes.*> Agreement with the values of the four-state
Potts universality class within 3—10 % is obtained.

IV. DISCUSSION

The characterization of a phase transition as continu-
ous under the condition of constant coverage is not al-
ways reliable if simply based on the continuous disap-
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TABLE I. Summary of experimental and comparison with theoretical (Ref. 44) critical exponents of

two-dimensional universality classes.

Experiment four-state Potts three-state Potts Ising
a 0.60 +0.04 0.667 () 0.333 (1) 0 (log)
B 0.08578:043 0.083 (L) 0.111 ($) 0.125 (1)
y 1.08 +0.07 1.167 () 1.444 (1) 1.75 (1)
v 0.68 =+0.03 0.667 (%) 0.833 (2) 1

pearance of superstructure beam intensities as a function
of temperature and on the lack of hysteresis effects. Hys-
teresis can be suppressed by finite-size effects,** a problem
one always has to cope with in 2D, as discussed below.
For constant coverage, i.e., for constant number of parti-
cles on the surface, melting of islands in a mixed phase of
islands and lattice gas is a continuous process. This was
demonstrated experimentally for several examples, one of
them being CO/Ru(001) (Ref. 13), and a distinction be-
tween first and higher-order phase transitions based sole-
ly on such measurements is doubtful. For the case inves-
tigated here, however, the determination of critical ex-
ponents and their good agreement with one of the possi-
ble universality classes is a clear indication of a continu-
ous phase transition.

As mentioned in the Introduction, we not only need
knowledge about the ordered, but also the disorder phase
in order to characterize the symmetry change during the
phase transition. For our system to belong to the four-
state Potts universality class, it is necessary that the oxy-
gen atoms occupy the same high-symmetry site (on top or
threefold site) in ordered and disordered phase. This as-
sumption of a lattice gas needs to be checked, however.
Cluster calculations by Anderson and Awad*® for oxygen
on Ru(001) favor the threefold-coordinated fcc site (no
atom below in the second Ru layer) by 0.3 eV over the
hep site. This contradicts our structural investigation by
LEED-IV analysis for the ordered p(2X2) phase, which
favors the hcp site,*? as mentioned. Clear experimental
evidence for a lattice gas also in the disordered phase
comes from very-low-energy electron diffraction
(VLEED).* For electron incidence close to the surface
normal the (00) beam intensity as a function of electron
energy reacts very sensitively to adsorbates and their site
symmetry, but only sightly to the environment in the ad-
layer, as tested by model calculations.*’” Especially for
the case of O/Ru(001), we find no change of the I-V curve
of the (00) beam in the range 7-32 eV when going
through the phase transition of the p(2X2) structure.*®
From that we conclude that also in the disordered phase
oxygen occupies the same site as in the ordered phase
with high preference which, according to our LEED-IV
analysis, is the hcp site. Therefore, the geometrical
preconditions for the observation of exponents within the
four-state Potts universality class seem to be fulfilled.

Our experiments are a clear example of the feasibility
of a moderately accurate determination of critical ex-
ponents for two-dimensional systems, which is limited by
finite-size effects and, in our case, also by instrument

resolution. The latter does not allow us to give precise
limits where finite-size rounding sets in. Nevertheless,
the good power-law behavior over 1.5-2 orders of magni-
tude in reduced temperature, though restricted to a range
t>1073, gives confidence in the determination of the
critical exponents 3, ¥, and v within 10% of the average
value. Towards the small-¢ side it demonstrates that we
are outside the ¢ range where finite-size effects are impor-
tant. The good agreement with the theoretical four-state
Potts values can be taken as evidence that we have found
a two-dimensional system which belongs to this univer-
sality class. Smaller ¢ ranges, used in most other deter-
minations of two-dimensional critical exponents reported
in the literature, consequently increase the uncertainty of
determination and might not even allow one to separate
out contributions due to imperfections.

The influence of strong multiple-scattering effects on
reliable determinations of critical exponents was a matter
of recent discussion in the literature.*>® Multiple
scattering cannot influence determinations of exponents
a (multiple-scattering effects included, see above) and 8. >
As multiple scattering is short ranged, it also will not pre-
clude scaling of short-range order correlations if the
correlation length is much larger than the typical range
of multiple scattering.’® Our experimental findings corro-
borate this argument, though multiple-scattering contri-
butions within the adsorbate layer are minimized in our
experiments because they are carried out at normal in-
cidence.

The restricted range in reduced temperature ¢ > 1073
also raises the question of corrections to scaling. In the
four-state Potts universality class these should be particu-
larly important, because power-law corrections for the
order parameter are expected to have a logarithmic lead-
ing term.’! Such nonuniversal corrections are clearly
seen in model calculations.*® Critical scattering of short-
range fluctuations should also contribute to the measured
intensity below T,. From the perfect fit of the raw data
to a power law below T, in our experiment, we conclude
that both contributions do not vary by more than a few
percent over the measured ¢ range. Compared especially
with the Monte Carlo simulations carried out in Ref. 38,
nonlinear corrections to scaling are vanishingly small,
thus emphasizing their nonuniversal character. As am-
plitude ratios are universal,’ it is also not surprising to
find no contributions of critical scattering below T, in the
measured 7 range: In Ref. 38 these ratios for £, /§_ and
Xo+/Xo— were determined as 3.9%0.9 and 39%15, re-
spectively. Taking the ratio for the amplitudes we expect
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a contribution of 7% at ¢t =0.002, the data point closest
to T, in Fig. 4. Above T,, small corrections to scaling
cannot be excluded, especially for the critical exponent y,
as we can, strictly speaking, only determine effective ex-
ponents>38 over a limited ¢ range, which also depend on
the exact value of 7,. The systematically too small
values for ¥ may be an indication. Such corrections
would also change 7, within the uncertainties of its
determination.

The use of integrated intensities to determine the ex-
ponent a, where the largest deviations from simple
power-law behavior were observed, was not only suggest-
ed but also extensively simulated for conditions similar to
our experiment by Bartelt et al.3” Very similarly to our
experiment, they find exponents systematically 10%
below the theoretical value for simple power-law form.
In agreement with our findings a linear term increases the
discrepancy. The calculated behavior of internal energy,
however, exactly follows the calculated intensity. There-
fore, the discrepancy to simple power-law form must be
due to higher-order corrections, neglected both in the
model calculations and in our data analysis. Even with a
power-law fit, however, we can conclude from our data
that a discrimination between different universality
classes is clearly feasible, if the existence of a continuous
phase transition can be proven otherwise. The method it-
self certainly contains valuable additional information,
which needs further systematic investigations.
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V. CONCLUSIONS

We have shown that fairly reliable determinations of
critical exponents in 2D are possible, if adsorption sites of
the ordered as well as the disordered phase are known.
For the system O/Ru(001), which orders in a p(2X2)
structure on hcp threefold sites, we determined the ex-
ponents a, B, ¥, and v independently in the temperature
range 4X1073<¢ <0.1. They agree within 3—10 % with
the exponents of the four-state Potts universality class.
Corrections to scaling were shown to be small for this
system so that they affect exponent determinations in the
t range accessible very little. This property, however, is
nonuniversal, so that in general a closer approach to T, is
desirable. The integrated intensity exhibits fairly large
deviations from power-law behavior, but still can be used
as a first test of the universality class.
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