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We show that the critical behavior of disordered ferromagnets can be understood in terms of an
effective, translational invariant Hamiltonian with renormalized coupling parameters which exhibit
a tricritical as well as a critical point. The stable critical fixed point describes the critical behavior
of weakly disordered systems, whereas the tricritical fixed point is responsible for the critical behav-
ior of strongly disordered systems at least in the experimentally accessible range of temperature.
This necessitates a crossover theory to describe the crossover between these two fixed points and to
calculate critical properties as a function of concentration and temperature. In this paper we study
the symmetric phase. Susceptibility and specific heat are calculated in scaling form using nonlinear
scaling fields to verify that disordered ferromagnets exhibit universal critical behavior. The corre-
sponding effective exponents exhibit nonmonotonous concentration- and temperature-dependent be-
havior. According to our theory, Fisher-renormalized tricritical behavior dominates in the experi-
mentally accessible temperature range which leads to extreme values of the effective exponents

ff 2 and a,ff
= —1 in the limit of strong dilution. However, in accord with the Harris criterion

we verify that the asymptotic behavior (T—+ T, ) is not changed by dilution if the critical exponent of
the specific heat of the pure system ap„„,(0, independent of the value of the concentration.

I. INTRODUCTION

The critical behavior of ferromagnets has attracted
considerable experimental and theoretical interest over
the years. Related topics such as random-field systems,
random-axis models, and spin glasses have appeared and
are still of current interest. However, the original prob-
lem is not solved so far. The existing theories are partly
contradictory and do not suKciently explain the experi-
ments.

Early investigations of disordered ferromagnets were
performed on the basis of mean-field theories. High-
temperature and concentration expansions' led to sen-
sible results only for nonuniversal properties such as
phase diagrams but failed in the critical region. A break-
through to an understanding of the critical properties
was achieved by the renormalization-group (RG) method.
This method was first applied to systems with weak
quenched disorder. ' An important result was the
confirmation of Harris's heuristic argument" that the
critical behavior is unchanged by dilution if a„„„(0.
For systems with a „„)0, the critical exponents should
change due to a new random fixed point. The common
feature of these renormalization-group treatments is their
restriction to weak quenched disorder so that their re-
sults are hardly applicable to strongly disordered fer-
romagnets.

A conceptionally different approach, which may be
termed the quasiequilibrium method, has been proposed
by Sobotta and Wagner. '

The basic idea is to describe the state of quenched dis-
order in terms of forces of constraints in analogy to the
method of forces of constraints in classical mechanics.
This idea has been introduced by Morita. ' In this ap-

proach the quenched random ferromagnet is described in
an equilibrium ensemble characterized by temperature,
magnetic field, and generalized chemical potentials which
are conjugate to products of the occupation numbers,
which describe the quenched disordered state. In an in-
formation theoretical approach to statistical mechanics,
it has been shown' that this method is equivalent to the
commonly applied proposal of Brout, who defines the
true free energy of quenched disordered systems by
averaging the free energy over all configurations. The
quasiequilibrium method has been applied to dilute mag-
nets with short-ranged interactions up to O(e ) (Ref. 14)
as well as to dipolar and long-ranged isotropic interac-
tions to O(e). ' ' In all cases a new random tricritical
fixed point appears which shows distinctly different ex-
ponents compared to pure systems. A search for a ran-
dom tricritical point by other methods was inconclusive
so far. ' The tricritical fixed point found in Refs. 12, 14,
16, and 17 is unstable but his exponents should be
relevant for strongly diluted ferromagnets, because the
RG Aow drives these systems into the vicinity of this
fixed point. Weakly diluted systems are driven directly to
the stable random fixed point which governs the asymp-
totic behavior of ferromagnets with arbitrary concentra-
tion. A new stable fixed point appears only if a „„)0. It
is characterized by Fisher-renormalized critical ex-
ponents. ' ' Systems with o,

p
& 0, such as dipolar mag-

nets, do not show up a new stable random fixed point.
The fixed point of the pure system remains stable so that
the asymptotic behavior is not changed. ' To summarize,
the quasiequilibrium method supports the Harris cri-
terion even in the limit of low concentration of magnetic
atoms, but the values of the asymptotic critical exponents
are different from other works on the same subject. Even
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more important is the occurrence of the tricritical fixed
point which describes strongly diluted ferromagnets in-
dependent of the type of interaction.

In this paper we perform crossover calculations to in-
vestigate the crossover between the fixed points obtained
by the quasiequilibrium method. We discuss the range of
temperature and concentration, where one should ob-
serve the exponents of the tricritical fixed point and in-
vestigate the asymptotic temperature range, where the
exponents of the stable critical fixed point apply. For di-
lute ferromagnets of arbitrary concentration, we calculate
the crossover functions and effective critical exponents, '

as well as the equation of state in the critical region. For
the sake of clarity we split up the subject into two parts.
The first covers the symmetric phase above T, without a
magnetic field. This can be done within the frame of a S
theory. The symmetry-broken phase is treated in a forth-
coming paper, since one has to include a S operator to
calculate the equation of state of strongly diluted mag-
nets. This is necessary because the effective S" coupling
vanishes near the limiting concentration where fer-
romagnetism breaks down.

The outline of this paper is as follows. In Sec. II we

briefly introduce our model and the quasiequilibrium
method. In Sec. III we show that the disordered fer-
romagnet can be described by an effective spin Hamil-
tonian, which contains the same operators as the Hamil-
tonian of the corresponding pure ferromagnet. However,
the coupling parameters are renormalized by the condi-
tions of quenched randomness. Specifically, we point out
that the renormalized temperature is a nonanalytic func-
tion of the reduced temperature t=(T T, )/T, . This—
leads to a Fisher renormalization of the critical behavior
of disordered ferromagnets. We show that these results
are not changed in O(e ). In Sec. IV we work out in de-
tail the crossover of the effective spin Hamiltonian on the
basis of the trajectory integral method of Rudnick and
Nelson. ' Combining this with our results from Sec.
III we obtain in Sec. V the complete crossover of the
magnetic and caloric properties of disordered ferromag-
nets. The crossover functions of the susceptibility and
specific heat are calculated using nonlinear scaling fields.
We also evaluate the effective exponents in order to com-
pare our results with experiments.

II. THE MODEL AND METHOD

We study a quenched spin system with site disorder.
Starting from a regular lattice, we occupy each site i of
the lattice independently by a magnetic atom with proba-
bility p and by a nonmagnetic atom with probability
1 —p. We introduce occupation numbers K, which take
the value K, = 1 if a magnetic atom is at site i and K; =0
otherwise. The Harniltonian of the diluted spin system is
then given by' '

are determined in such a way that the configuration (,K; ]

and its moments j K . . K ), respectively, are keptJ) Jn

fixed. ' ' The Hamiltonian is then given by

(2.2)

and the partition function is

Z(T, H, tA, , })=Trsze (2.3)

The functions

; (T,H, [K). . .K~ ) )

are calculated from the conditions of quenched random-
ness:

&K, . . .K, &=K, .K, , . (2.4)

where

(2.5)( . )=—Tr -e
Z S,K

It has been proven in a previous paper' that the thermo-
dynamic properties calculated by this method should be
the same as by Brout's configurational average.

The advantage of our method is that one avoids
averaging the logarithm of the partition function. How-
ever, in principle, the Hamiltonian (2.2) contains
infinitely many chemical potentials. We introduce devia-
tion numbers K;=K;—p and Fourier-transformed vari-
ables (K ) and [Sq] to obtain a field-theoretic formula-
tion. '~'' The Hamiltonian, including the factor ( —p),
then reads

~=gK0 ——J K K ——J S S (r+q )
2 q 2 q

Sq Sq Sq S (q +q +q )

(2.6)

which can be written in short notation as

& as usual. A statistical description of a quenched spin
system has to take into account the fundamental physical
difference between spins and occupation numbers. The
spins tS;) are normal degrees of freedom. The occupa-
tion numbers jK; J are fixed by preparation and do not
fluctuate at all. In order to apply convenient statistical
mechanics to the complete system, we formally treat the
occupation numbers as normal degrees of freedom. How-
ever, the conjugate generalized chemical potentials

; (TH, [K, , . . . , KJ j)

&(K,S)= g J, K, S;K S, +H g K,S,' . (2.l)
&=gK ——K — S+RKS uS —+HS'+hKS—' .

2 o o.
In this paper, J," is a short-ranged interaction of spins

S,. and S of arbitrary dimension n. H is the magnetic
field in I direction. The factor p=(kT) ' is included in In Eq. (2.6) we have used the abbreviation

(2.7)
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I =„',.f,
where A is the cutoff'. Equation (2.6) contains the usual
spin operators S, So, and S known from the pure spin
system. The coupling parameters are r —t
=(T T,—)/T„H —H, , and u. There are two operators
KS and KS, which couple spins and occupation num-
bers. Their coupling parameters R and h depend on the
concentration. They obviously vanish for the pure sys-
tem and increase with dilution. As usual, the exact
dependence of the field-theoretic coupling parameters on
temperature, concentration, and on the nonuniversal
properties of the system is not known.

Only the first- and second-order terms in K, with the
coupling parameters g and B, are included in the Hamil-
tonian (2.6). K operators of higher order in K
(K,K, . . . ) or q dependence have been shown to be ir-
relevant in an E expansion to 0(e) using the same argu-
ments as in pure spin systems based on their scaling di-
mension and leading contributions in the RG equa-
tions. ' '" The RG is applied to the Hamiltonian (2.6)
similar to pure spin systems. In addition to the spin re-
scaling Sq =(Sq, we introduce the two-parameter trans-
formation K =~Kq +p5(q), where p and ~ are deter-
mined by the condition of fixed moments:

(K, ) =O,
(2.8)

(K~K ) =p(1 —p),
which leads to 1/B =p(1 —p) in 0(e). We refer to Refs.
12 and 14 for details of the calculation. Besides the
Gaussian and Heisenberg fixed point, one obtains two
new random fixed points: an unstable tricritical fixed
point and a new stable random fixed point. Both fixed
points are characterized by X=A /B=0(e). The RG
fIow shows that strongly disordered systems are charac-
terized by u ~X/2. These systems are driven first to the
tricritical fixed point before they approach the asymptoti-
cally stable fixed point. Weakly diluted systems are
driven directly to this fixed point.

Before starting crossover calculations, we want to
point out that the Hamiltonian (2.6) contains a redundant
operator which gave rise to some ambiguities in previous
papers. ' In analogy to the redundant operator 5&*/6So
of pure systems, ' it is easy to show that the operator

BKO — S-
5KO B

is redundant, where & is given by (2.6) (Ref. 22). Of
course, the RG is simplified if the redundant operator is
eliminated. The resulting recursion relations show that
only the coupling parameters r =r —2gR /B and
u =u —X/2 are physically relevant. The coupling pa-
rameter X=R /B enters the physically significant RG
transformation only via the effective coupling parameter
u =u —X/2 so that only two physically different fixed
points exist.

III. THE EFFECTIVE SPIN HAMILTONIAN

The reduction of the Hamiltonian &(K,S) [Eq. (2.6)]
to an effective spin Hamiltonian can be readily derived by

direct integration over the occupation numbers {K } in
Eq. (2.3). This procedure is always applicable if addition-
al nonordering degrees of freedom (phonons, impurities,
etc. ) are present which do not show critical ffuctuations.
Since we study quenched disorder, this condition is natu-
rally fulfilled by the occupation numbers in our
quasiequilibrium method [B=0(1)].' ' As the RG
transformation in K —S space in 0(e) has shown, the
Hamiltonian (2.6) contains only K —S operators linear in
K in our 0(e) calculation. Therefore, the integrations
over {K } in

Z= exp KS (3.1)

can be carried out exactly leading to

Z = exp, S exp —bF
S

with the effective Hamiltonian
= ——'rS —NS uS +H—SO .efF

(3.2)

(3.3)

The free energy is then given by

F=F+AF
with the singular part

F= —ln exp, S
S

(3.5)

(3.6)

and a regular part which results from the integrations
over E:

4F= — +— lnB .
2B 2 q

(3.7)

The eff'ective coupling parameters r and u (3.4) are ex-
actly those combinations of the original coupling parame-
ters which have been shown to be the only physically
relevant coupling parameters in &(K,S). r and H con-
tain additional quadratic terms h /B and gh /B, respec-
tively. Since g —r (see below) these terms are small in the
critical region (t, r «1, H, h «1) compared to terms
linear in r and H. The integrations over {K } have pro-
duced an operator ut. S S S' of 0(Rh /B ). This operator
can be neglected because of the fixed point value S *=0
and because it leads to terms of

R h0 w
B B

The effective coupling parameters are related to the origi-
nal coupling parameters by

gR h

B B '

RhM=
B

(3.4)
R
2B '

II=a+ gh

B
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O(uS, S ),

H'=g(H —3@A,}, (3.8)

is affected linearly by S, but this does not change the
magnetic exponent yH. One therefore recovers the well-

known recursion relations of the S - model:

r'=g b "[r+4(n+2)K4uA, ],
u'=Pb "[u+4(n +8)K4u A2],
H'=gH,

with
RI'=P' 2 g B

RQ=Q
2B

(3.9)

respectively, in the recursion relations for r and u. The
recursion relation for H,

which is the exact equation of state for the concentration.
Starting from the Hamiltonian (2.6) one can alternatively
derive this equation using g as a source term [see (2.6)].

F
Br H„-~g

and again to (3.15). Similarly, the equation of state for
the variance ( K K ) can be calculated. The
Feynman-graph expansion can be summed up to give

(3.17)

(3.18)

where

&K, )=- BI'
(3.16)

ag

where F is the free energy of &(K,S) in terms of
r,g, u, . . . given by F= —lnZ (3.1). Applying the rela-
tions (3.5)—(3.7) between F and F and the dependence of r
on g (3.10), leads to

Sq.S qSq" q (3.19)

Thus, the renormalization of %(K,S) (2.6) (Refs. 12 and
22) and of &,g S) (3.8) lead to identical results in terms of
the renormalized parameters r, u, and H.

The conditions of quenched disorder (2.8) relate the
effective spin Hamiltonian (3.9) to the diluted ferromag-
net we want to describe. The concentration (Ka) or
more precisely the deviation from concentration p can be
calculated by a Feynman-graph expansion of &(K,S)
with respect to the K0, ES, and S operator:

is the four-point function I'"'(r, u, q). Equation (3.19)
represents the energy density fluctuation, which for q=0
is the specific heat

BF '

C(t, u, H)=
Bt

(3.20)

of the effective spin system (3.3). Equations (3.18)—(3.20)
lead to the equation of state of the variance

(K,K, ) = +—, C(t, u, H),1 R
2B' (3.21)

(3.11)

This series can be summed up exactly due to the linearity
of the Ko and KS operator in K. One obtains

+ X--~- (3.12)

where the double contraction represents the expectation
value

f (S, S,), =
q

(3.13)
This can be written as the energy in terms of the effective
spin system. &(S) (3.3):

where we neglected the q dependence of the right-hand
side of (3.21) because the q dependence of I ' ' and B, re-

spectively, was shown to be irrelevant in O(e}.' Equa-
tion (3.21) as well as the equations of state for higher mo-

ments (if necessary) could be derived starting from
%(K,S) (2.6) supplemented by some source terms in the
way described above [Eqs. (3.16) and (3.17}].

Throughout this paper a tilde indicates that physical
quantities are expressed in terms of the effective spin sys-
tem (3.3) with the coupling parameters r, u (3.4). We
reserve the original notation for the K —S system (2.6)
with the coupling parameters r, u, and X. Equations
(3.15) and (3.21) yield the necessary relations between the
chemical potentials g and B and their corresponding mo-
ments which are fixed due to quenched randomness [Eq.
(2.8)]. Using the constraint ( KD ) =0 and Eq. (3.15), g is

eliminated in the relation between r and r (3.10) leading
to

r =r 4XE(r, u, H)— (3.22)

E = = = —
—,
' S S, , 3.14

a~ 0 Or

where F is given by (3.6). We have used the scaling field'
t =r+ 2K&(n +2)u in (3.14), which is the temperature of
the effective spin system. Inserting (3.14) into (3.12) gives

with X=R /B. The consequences of this relation are
easily recognized if one looks at the critical behavior near
the fixed points. The energy E behaves as t ', where a
is the exponent of the effective spin system (3.3). Equa-
tion (3.22) then leads to

(KD ) =—+2 E(t, u, H ), — (3.15) t =t+q(X, u )t ' (3.23)
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where we neglect the O(u) difference between r and t
q(X, u) depends on the concentration p of the diluted fer-
romagnet. Without going into details, it is easy to see
from (3.23) that the physical quantities of the quenched
disordered system are Fisher renormalized with respect
to those of the corresponding pure system if o. )0:

The term cri/B is of O(e ) and gRo)/B and g o)/B
are of O(e ). They do not enter the O(e ) calculation.
The term cr)/B is of O(e ), but it does not depend on g.
Therefore, it cannot modify the O(e) results via (3.15).
The equation for the concentration (3.15) is modified by
O(e ) terms:

+ ~ ~ ~ (3.28)

Inserting this equation into (3.27) leads only to terms of
O(e ). Qualitative changes of the O(e) results would
only occur if there were terms of O(e ) in the equation
for the variance (3.21) with a singularity stronger than
that of the energy E.

IV. CROSSOVER THEORY

We have seen in Sec. III that the disordered ferromag-
net can be described by the effective spin Hamiltonian
(3.3) with modified coupling parameters. Combining Eqs.
(3.10), which relate the effective coupling parameters
r, u, H to the original ones r, u, X, H, and h, with the con-
ditions of quenched randomness [Eqs. (3.15) and (3.21)],
we are led to a Fisher renormalization of the critical ex-
ponents. However, the full treatment of the problem
aiming at a complete description makes a double cross-
over calculation necessary. The first results from the
crossover between the tricritical and the critical fixed
point of the effective spin Hamiltonian (3.3). The second
crossover results from the renormalization of the cou-
pling parameters.

We use the well-known trajectory integral method pro-
posed by Nelson and Rudnick, ' who first calculated
the crossover in the S model. The method has been ap-
plied to various other problems, like the compressible
magnet, to bicritical points and to the coexistence be-
havior in isotropic ferromagnets.

The basic idea of the trajectory integral method is to
renormalize the critical system until the fluctuations be-
come small. Then the renormalized temperature t(l*) is
of O(1) and Landau theory with first-order fiuctuation
corrections can be applied. According to this idea, the
free energy and the susceptibility are given by

F(r, u, H) =J G()(r(l), u(l))e "'dl
0

+e "' F[r(l*),u(l*),H(l*)], (4.1)

C t a t o./'(1 —a) (3.24)

and the q dependence of the four-point function I '"' in
terms of &(K,S) is given by

I (4) ta/(1 a)f ( t
—v/(1 ——a)) ~ a/v

0
(3.25)

The temperature and momentum-dependence of B result-
ing from (3.21) should be taken into account in O(e ).
This will lead to different quantitative critical behavior
compared to annealed magnets where the variance and
higher moments are not constrained.

We also checked that the exponent renormalization is
not changed in an O(e ) calculation. Three additional
operators appear in &(K,S) in O(e ):

&=gKO —'BK 'r—S +R—KS uS "+HS—o—
2 2

+hKS0+o. &E S +o.2K +o.3K (3.26)

o'1 is of O(uX)=O(e ), o2 is of O(R )=O(e ), and cr3
is of O(X )=O(e ). The integrations over [K ] in Z
then lead to an effective S Hamiltonian with the cou-
pling parameters

(4.2)

where F(l*) and X(l*) have to be calculated by Landau
theory. We use the differential notation of the RCx
method which results from the discrete formulation as
the infinitesimal limit b =e, 6~0. Go(l) in [Eq. (4.1)] is
the integration kernel which is the integrated free energy
of an infinitesimal RG transformation:

gR
7" =r 2 +C +B B

(3.27)
R2

+C2 2 +C3 2 +C42B2 B2 B2 B2

If cz (0 the critical behavior near the fixed points is not
changed by dilution.

Before we start the crossover calculations, we have to
discuss the equation for the variance, Eq. (3.21). Besides
the first term, which is of O(l) (3.21) contains a correc-
tion of O(R /B ) proportional to the specific heat C(t, u )

of the effective spin Hamiltonian. The specific heat
C(t, u) diverges as t and the q dependence of the
four-point function I ' ' of the effective spin system
which occurred originally in (3.21) is proportional to
q

/ . Both divergences can be ignored in this O(e) cal-
culation because they are of O(e ) due to the O(e) prefac-
tor in (3.21). This fact was already used from the start in
the Hamiltonian assuming a q independent chemical po-
tential B. Actually, the same considerations were applied

'

to the rescaling factor ~ of Kq in the renormalization of
&(K,S), ' which led to marginality of B in O(e). How-
ever, even in O(e ) these divergences present no severe
problem since the effective temperature t is related to the
real reduced temperature t by the Fisher-renormalization
(3.23): The specific heat as a function of t does not
diverge but shows a finite cusp

where the c; contain combinatorial factors and integrals. Go(l) = ,' nK~ [In[1+r(l )]——,
' —I, (4.3)
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where E4 is the integral over the four-dimensional
momentum sphere. In fact (4.3) is only the zero-order
term in the O[e, u(l)] expansion of the integrated free en-
ergy. The perturbation corrections, which are present in
the discrete formulation of the RG (b @1), are lost in the
infinitesimal limit (b~1), which is an unsatisfactory
feature of this formulation. ' ' In a rather pragmatic
way, Nelson and Rudnick replaced (4.3) by the correct
kernel

where various regular terms of O(1) have been neglect-
ed. pi=t=r+(2/2)u and pz=Bu/e are the linear
tricritical scaling fields, ' which transform like

p, (l)=pie " with y„=2 and pz(l)=pze " with yz, =e
near the tricritical fixed point. The transformation of the
critical scaling fields is characterized by y„=2—3/Be
and y2c = —e. a, and a, are the exponents of the specific
heat at the critical and the tricritical fixed point, respec-
tively, given by

Go(l) = ,'nK~ I ln—[1+t (l)]——,
' I,

where

t(l)=r(l)+ u(l)
2

(4.4) 2P 1c

2/ 1~
—d

CXt
=

2
'

—+O(e ),n+8 2
(4.9)

is the l-dependent linear temperature scaling field.
We have shown in Ref. 30 that the kernel (4.4) can be de-
rived in a more systematic way.

In order to calculate the free energy F(r, u ) and the
susceptibility y(r, u ) of the effective spin Hamiltonian
(3.3), one has to integrate the differential recursion rela-
tions of the well-known S model, but with the renor-
malized coupling parameters of the effective Hamiltonian yz, l

g~, (1)=g~,e ' =[1—p~(I)]p~(I) '

(4.10)

For the complete description of the crossover regime it is
sensible to introduce nonlinear scaling fields, which
reduce to the linear scaling fields near the fixed points.
They are given by'

g„(l)=g„e ' =p, ,(l)p.,(I)

=2r+ A
dl 1+r

(4.5)

(4.6)

gi (I)=gi, e " =pi(I)[1—p~(I)]

gz, (l) =g„e'" = [1—pz(l)]-'pz(l),

with the usual abbreviations

21* (4.7)

with A =4(n +2)K4 and B =4(n +2)E4. In the critical
region [r(l) &(1],Eqs. (4.5) and (4.6) reduce to the cross-
over equations first studied by Riedel and Wegner. ' We
discuss the solutions of (4.5) and (4.6) given by Rudnick
and Nelson in the Appendix, where we point out that
the matching procedure leads to cutoff-dependent terms.
These nonuniversal terms are expected to occur naturally
in the crossover regime to mean-field behavior. However,
in the trajectory integral method they are an artifact of
the imperfect matching of the critical theory valid for
r(1) &(1 with the Landau theory valid for r(l)=O(1).
These cutoff-dependent terms must either be discarded or
the solutions of (4.5) and (4.6) must be chosen appropri-
ately in the way Nelson and Rudnick did.

The free energy F(l*) in (4.1) and the susceptibility
y(l" ) in (4.2) in the Landau regime have been evaluated
by Rudnick and Nelson. They used the matching con-
dition t(l*)= 1, which simplifies the results since various
logt(l*) terms vanish. However, it has been proved that
the results do not depend on this specific choice of the
matching condition.

Using the results of Rudnick and Nelson and the
matching condition t(l*)=1 for the effective spin Hamil-
tonian, the susceptibility y(r, u) and the free energy
F(r, u ) of the effective Hamiltonian are given by

3'2 3'1 3'1
Oc

11c 11c
(4. 1 1)

The matching parameter e' in Eq. (4.8) is obtained from
the matching condition p, ,(l*)=1. This condition may
be evaluated using the solution of the recursion relations
(4.5) and (4.6) (Refs. 19 and 24)

p, (l*)=p,e " 1+ e "P2 V2t I

1 —
P2

(4.12)

g„e " =(I+g~, e "
)

' (4.13)

One easily verifies that L(g „,gz, ) =e' shows the scahng
behavior

L(g„,g~, )=bL(b "g„,b "gq, ) . (4.14)
—1/y

1We choose b =g „"in (4.14) in order to extract the
leading temperature dependence:

To obtain results in explicit scaling form for the whole
crossover region, it is preferable to express p, (l*)=1 in
terms of the nonlinear scaling fields (4.10) as

and
—1/

L(gi„gz, )=g i, "L(g~,g i, ') . (4.15)

[[I+p~(e" —1)] ' ' —1I,
8a, P2

(4.8) This leads to the implicit equation for the critical scaling
function L(c, )
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L&(c (1+—L)'2c )~c~&c (4.16) C t ~Ct (Ct &&1)
(4.25)

I, depends only on the scaling variable c, =gz, g &,
'. Al-

ternatively, it is possible to express )MI(l*)=1 in terms of
the tricritical scaling fields g»(l) and g2, (l). With

where we have used

—] /y]
L(glt g2t ) g it (g2tg It (4.17) 1 —ot =(1 c—r, )

one obtains the equation for the tricritical scaling func-
tion L(c, ),

L "=(1+ L ") ' (4.18)

We use the same notation I. for both scaling functions in-
dicating the critical and the tricritical case by means of
the argument if ambiguities could arise. Inserting the
solution for e', Eqs. (4.15) and (4.16) into Eq. (4.7), gives
the susceptibility in scaling form

(4.26)

which reduces to

The local critical scaling variable c, reduces to c, in the
critical limit (c, « 1) and to the inverse tricritical scaling
variable c, in the tricritical limit. The same applies to
the local tricritical scaling variable e, .

The critical crossover function g0 (4.20) can be written
in terms of the local scaling variable as

(1+n)ccc

g=g I +0(C ) (4.19) y0=(1+c, ) (4.27)

with

y, = =1+2 n+2 e+O(e ) .y„2(n +8) X=@„'(1+c,) (4.28)

for c, (&1. The tricritical regime (c, ))I) follows from
Eqs. (4.19), (4.24), and (4.26) as

(4.20)

depends only on the critical scaling variable c, . It de-
scribes the variation of the singular behavior of g in the
whole p, —

pz space. Alternatively, one may choose tri-
critical scaling fields to obtain

X=g „'X (c, )

with the crossover function

(4.21)

(c )
—(1+.c L &t) t t t (I+c L)2t)n 2/+(n 8)+

(4.22)

Equation (4.19) with Eq. (4.20), and Eq. (4.21) with Eq.
(4.22), are equivalent descriptions of the susceptibility
since both scaling functions L(c, ) (4.16) and L(c, ) (4.18),
respectively, describe the crossover including both
asymptotic regimes. However, the implicit equations for
1. necessitate a numerical solution if one is interested in
the complete crossover.

An analytic discussion of the asymptotic behavior is
possible in terms of the local crossover variable
c *=cL '. From (4.16) and (4.18), respectively, we ob-
tain

The crossover function of the susceptibility

(c )
—(1+c L)2c) c c c —(1+c L 2c)n +/2(n+8)

j=g „'(1+c,*) (4.29)

In an analogous way one verifies that (4.21) and (4.22) in-
clude both types of critical behavior.

Using (4.15) and (4.16) or (4.17) and (4.18), the free en-
ergy can now be written in scaling form with nonlinear
scaling fields. However, the free energy given by (4.8)
still contains a regular part AF, which has to be separat-
ed from the singular part F, : F=F,+ AF, . AF„ is
identified from the condition that the residual singular
part F, can be written in scaling form. Splitting F into

F, =—n+4 pi a /a,(1—
I 2)

'
8a, p~

a /a,

1 —
pz

(4.30)

nK4 p ( (I —(1—P2)
'

8u, p
(4.31)

where we have used the relation
—»3], —i/3], , /37,

g te

Equation (4.28) is the asymptotic form of the susceptibili-
ty in tricritical scaling fields:

c *=c(1+c*) (4.23)
leads after some algebra to the free energy in scaling form

c,*~c, (c, &(1),
(4.24)

and

with the corresponding o., and o, The asymptotic be-
havior in both regimes is easily obtained since

nK4 p )

8a, p
nK4 2 —a, —

g „'F0(c,*)
8o.,

with the crossover function

(4.32)

7

(1 .

)
c t[( I—+ I CLE) c t I]
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(4.34)

where we neglected the prefactor in (4.33) since its ex-
ponent is an O(e) smaller than the terms retained in
(4.34). In terms of tricritical scaling fields, the calcula-
tion leads in O(e) to

F, =—nK4
g „'Fo(c t )

8a,
(4.35)

with the tricritical crossover function

F (
—

) L c t
2t[ ( 1 +—L 2c

)
c t

(
—L 2c

)
c t ]

(4.33)
This result explicitly shows the scale invariance of the
free energy F, . In terms of the local scaling variable
(4.23) the crossover function of the free energy reads

(1+ 4) c t

Fp(c t')=
(a, /a, )c,*

(4.36)

where we have used (4.17) and (4.18) and the equality
Pt =a, . The asymptotic behavior is recovered again for
both descriptions using (4.24) and (4.25). Both represen-
tations, critical as well as tricritical, describe the cross-
over in an equivalent way. Moreover, it is the same scal-
ing function L(c, ) and L(ct ), respectively, which appears
in both physical quantities g and F. This is the reason
why one experimentally observes scaling behavior at all,
even if the system is not at its fixed point.

The energy (3.14) and the specific heat (3.20) can be
calculated either as derivatives of (4.1) or directly from
the results (4.32) and (4.34) or (4.35) and (4.36). Ignoring
terms of O(e) compared to O(1), one obtains

BF,
E =

S
Bp]

2 cx

g it p —~ dFp= At+(2 —a, ) Fp(ct )+ At+g i,
dc,' c, F,

( —p, )
Pi Pi

(4.37)

where At = —nK4/8at is the tricritical amplitude. We

have used that gj, is linear in p& and that c, -p,
&

' with
the crossover exponent Pt being of O(e). The specific
heat is easily calculated from (4.37) as

C =
S

BE, F, E, F, E,
2 —2 — —2p — 2 +2 —2

Bp( P& P& Pi Pi
(4.38)

'Yea =

B lnC
(4.40)efF

8 lnpi p,
We use the notation cz,z and y,z for the derivatives with
respect to p, in order to preserve o.,~ and y,z for the
derivative with respect to the real reduced temperature

p& —t of the disordered ferromagnet. Inserting the result
for the susceptibility in critical scaling fields (4.19) and
(4.26) we obtain

Thus, the energy and the specific heat are characterized
by the same crossover functions (4.34) and (4.36), respec-
tively, as the free energy. One gets an impression of the
crossover between the tricritical and the critical point of
the effective spin Hamiltonian, if one studies the effective
exponents introduced by Riedel and Wegner. The
universal effective exponents are defined as

B lny (4.39)
B lnp) p,

where we used Eq. (4.23). y,s (4.41) reduces to y, in the
critical regime (c, « 1) and to y, in the tricritical region
(cc))1) since y, /(1 —o, )=yt. The equivalent tricriti-
cal representation of X [Eqs. (4.21) and (4.22)] leads to

(4.42)

which is equivalent to the tricritical form, resulting from
(4.36):

(4.44)

V. FISHER RKNQRMAI. IZATIGN

We now turn to the second crossover phenomenon in
disordered ferromagnets, the Fisher renormalization. In
Sec. III we have already discussed the Fisher renormal-
ization near the fixed points in a qualitative way. In this
section we analyze this additional crossover in detail.

The relation (3.22) between r and r leads to the relation

p, =p, 4XE(p„p,z)— (5.1)

From (4.34) and (4.38) we calculate a, ir according to
(4.40). In critical scaling fields we obtain in O(e) after
some algebra

(4.43)

Blnya Blnc,
Tea Xc

B inc, B lnpj p,

=y, +,y,
ac cc 1

1+c,* 1 —a, (c,'/I+c,*)

Xc

1 cr, (c,*/I +c,* )—
(4.41)

between the real reduced temperature t =iu, =r+( A /2)u
of the disordered ferromagnet and the temperature scal-
ing field p, =r+( A /2)u of the effective spin Hamiltoni-
an. We neglected the difference u —u = —X/2 in (5.1)
because it is only a temperature-independent constant of
O(e) which represents the difference between the critical
temperatures of the disordered and the pure system. In-
serting the energy E(p„p~) [Eq. (4.37)] of the effective
spin system including the leading regular term arising
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Pi Pi
nE~X 1 —(1—p2) '

2 cx

nK4X g „+ Fo(c, )
4at Pi

in tricritical and

Pi =Pi 1
nK4X 1 —(1—p~)

'

2 cx

nK4X g i,+ Fo(c, )
c Pi

from b,F„, (4.31) into (5.1), gives

(5.2)

(5.3)

where we have introduced the scaling field P =nK4X/a,
and the scaling variable

P~ =PxP i

Equation (5.5) shows that the tricritical regime (c, «1),
which is a large P, interval in the case of strongly diluted
systems [P2 « 1,p~ =0(1)], is described by renormalized
behavior since p, ))1. Only a small part of the tricritical
regime far away from the critical temperature is governed
by unrenormalized behavior (p, «1). The actual width
of the unrenormalized interval obviously depends on P .

Since the critical fixed point of the effective Hamiltoni-
an is the stable one, the asymptotic temperature range is
governed by the critical behavior (c, (& 1) of the effective
spin Hamiltonian. With p =nK4Xla, and

—a
pc pxp]

8 X
p2 — u

2
(5.4)

which follows from (3.10). The concentration depen-
dence of P2 via u and X is not known in our field-
theoretic Hamiltonian. However, we know that the pure
ferromagnet is characterized by X =0 and P2=P2=Bu /e
[Eq. (5.4)]. In this case, the temperature transformation
(5.2) reduces to P&=p, &. Extremely diluted ferromagnets
near the limiting concentration of ferromagnetism p, are
characterized by P2=0 since for P2 &0 there is obviously
no second-order phase transition in our effective spin sys-
tem. It is therefore sensible to assume that P2 and X are
monotonous functions of the concentration p and that pz
vanishes at the limiting concentration p, below which no
ferromagnetism occurs.

The crossover between the temperature scales Pi and

Pi is governed by the coupling parameter X. Its role in
the complete crossover is more easily discussed if one
studies the tricritical behavior (c, &(1) separately from
the critical behavior (c, « 1) of the effective spin system.

Tricritical behavior mainly occurs in the experimental-
ly accessible temperature range. In this case (5.2) reduces
to

nK4X
P& Pi + nK4X

I 1 FO(C& )
n&

in critical scaling fields with the crossover functions
(4.36) and (4.34), respectively. This temperature transfor-
mation is the important link between the critical proper-
ties of the effective spin system and the disordered fer-
romagnet. Given the reduced temperature t —=P, and the
concentration-dependent coupling parameters u and X,
(5.2) and (5.3), respectively, give the effective temperature
P, which enters the crossover results for the susceptibility
X(p&,pz) [Eqs. (4.21) and (4.22) or (4.19) and (4.20)] and
the specific heat C(p&, P2) [Eq. (4.38)]. The effective cou-
pling parameter P2 depends on the coupling parameters u

and X of the original Hamiltonian (3.9) as

(5.3) simplifies to
r

nK4X
Pi P]

C

nK4+ i —a+ Pi Fo(c )
CX

=@1[1 I +P FO(C )] (5.6)

Equation (5.6) implies that the asymptotic behavior
(p, ,~O, p, )) I ), which is critical for weakly (Pz=p, ) as
well as strongly diluted (p2) 0) systems, is governed by
Fisher-renormalized exponents.

The actual behavior of a dilute magnet with given u

and X at some temperature t depends on the values of the
scaling variables c, or c„and p, or p, . A numerical solu-
tion of the temperature transformation [Eqs. (5.2) and
(5.3)] together with the iteration [Eq. (4.23)] gives the pre-
cise variation of the critical behavior as function of tem-
perature and concentration.

The concept of effective exponents' is seemingly the
only possible way to get an impression about the cross-
over in disordered ferromagnets. The effective exponent

ff which is defined as the derivative with respect to the
real reduced temperature p, , follows from X(p, ,p2, X)
=X(p„p2,X) and (4.39) as

a lnp,
0 ].ny 0 lnpi

g lnP, p 8 lnP i

(5.7)

~ is defined as the logarithmic derivative of the real tem-
perature P& with respect to the temperature P, of the
effective spin system:

3 lnpi

8 lnpi ,
'p. ,p

=:1—r(Pi P~ V. ) . (5.8)

Straightforward calculation of r using (5.2) and (4.23) for
the derivative of the crossover function Fo(c, ) [Eq. (4.35)]
with respect to c, leads to

=I i[1 1.+I FO(c )]— (5.5)
~=a,

1 p„b, , +b,p, FD(c,*)— (5.9)
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with the abbreviations

1 —(1—p2)
'

log t

q, =
CXc

P2 -2-

and

Alternatively, one may use critical scaling fields to calcu-
late r. Comparison of r [Eq. (5.9)] with a,s. [Eq. (4.44)]
shows that in the disordered regime p, »1: ~—+ca,&. Fig-
ure 1 contains a plot of r as a function of log to( t) for di-
luted systems with different concentrations and coupling
parameters p,z, px, respectively. Strongly diluted systems
[P,z «1, pz =0(1)] exhibit a broad temperature range
with renormalized behavior [r=O(u, )]. Asymptotically,
one observes ~~a, for strongly as well as weakly diluted
systems. This applies to all spin dimensions since a, &0
in O(e) for all n In Fi.g. 2 we show a plot of log&utt,
versus logtutt, according to (5.2) or (5.3). It shows that
for strongly diluted systems there is a temperature region
[r=0(u, )] where the eff'ective temperature scale logPt is
contracted by a factor r '=O(2} compared to the real
reduced temperature log&ys]. Figure 3 shows the result
for y,a [Eq. (5.7)] with y,s(p, „P,z) given by (4.42) and r
[Eq. (5.9)]. y,a is a nonmonotonous function of the tem-
perature. In the experimentally accessible critical tem-
perature range 10 & t & 10 ', y,& rises up to
concentration-dependent maximum values. Extremely
diluted systems near the limiting concentration of fer-
romagnetism even reach values up to y,&=2, which is the
Fisher-renormalized (FR) tricritical exponent y", =y, /

-8-

-10-

I

-4 0 log~o

FIG. 2. Log, o of the effective temperature t [Eqs. {5.2) and
(5.3)] vs the log~o of the reduced temperature t for systems with
the same concentrations as in Fig. 1.

(1—a, ). The behavior of y,a(t) for t ) 10 ' should not
be taken seriously since the RG method is not applicable
in this temperature range. y,z should approach the
mean-field value yM„=1 for t) 10 ' in a nonuniversal
manner. Actually, y,z drops down to y, =1, the un-
renormalized tricritical exponent, which incidentally has
the same value as yM„. In the asymptotic temperature
region t & 10 y,z gradually approaches the Fisher-
renormalized critical exponent y," =y, /(1 —a, ), in-
dependent of the degree of disorder.

The specific heat of the disordered ferromagnet is easi-
ly calculated from the free energy of the effective spin
system using

F(p, ,p2, X)=F[@,(p), p2, X),p2(p2, X)]

0.5

0.4-

05-

0.2-

BF
C(p ut, X)=

u, X

t)~P t+«Pt P2)
t)P

& ux

(5.10}

O. I
. ==

Using E=ptC [Eq. (4.38)] and the definition of r [Eq.
(5.8)], one obtains

-6 I

-L 0 log~o
(5.11)

1+vC(p„u, X)=C(p„p, )
p& (1 r)—

FICx. 1. ~ (5.9) as function of the log&o of the reduced temper-
ature t=(T —T, )/T, for diluted ferromagnets with different
concentrations and coupling parameters respectively
(P 2

=B& le, px =nK4X/e, ): —"—p2 = 10 px = 1;
p2=10, px =0.5; —

—.
— p2=10, px =0.05;

p2 = 10, px =10; —- —- pz =0.1, px =0. The last set of
coupling parameters corresponds to a pure system with un-
renormalized behavior (~=0).

P&
C(p, „u,X)=C(pt~p2) 2Pj

(5.12)

if one neglects terms which are small in the critical region
IM„p, «1. ~ is a smooth function of the temperature so
that the singular behavior of C dominates in (5.11).
Therefore, the specific heat C of the disordered ferromag-
net simplifies to
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jeff
0.5

-0.5

O Iog,

FIG. 3. Effective exponent y,~ [Eq. (5.7)] given by (4.42) and
(5.9) for diluted ferromagnets with the same concentrations as in

Fig. 1.

FICx. 4. Effective exponent a,~ [Eq. (5.13)] given by (4.44) and

(5.9}for systems with the same concentrations as in Fig. 1.

where one has to insert the temperature transformation
(5.2) or (5.3). The efFective exponent a,s defined with
respect to the real reduced temperature p, is readily de-
rived from (5.12) and (5.8) as

aeff
8 lnC o'eff

8 in@, 1 —r
2 &eff+2=——7. 1 —7.

(5.13)

y= Ct

with some averaged effective exponent y', ff, which charac-

Figure 4 contains plots of e,ff for systems with the
same coupling parameters as in Fig. 3 for the susceptibili-
ty. There is a broad temperature range where a,ff

changes drastically. For extremely diluted systems even
a,ff reaches the value of —1, which is the value of
the Fisher-renormalized tricritical exponent a",
= —a, /(1 —a, ). This corresponds to systems with a
rounded specific heat; it simply has a maximum va1ue at
T„but no sharp cusp or stronger singularity. Neverthe-
less, the phase transition is well defined and exhibits
universal critical behavior as we have shown above. The
asymptotic behavior of the specific heat is characterized
by the Fisher-renormalized critical exponent
a," = —a, /(1 —a, ). This corresponds to the asymptotic
critical behavior we found for y,s (Fig. 3).

The results obtained above for the susceptibility and
the specific heat in the symmetric phase allow a direct
comparison with experimental data. It goes without say-
ing that one should not fit the data to the effective ex-
ponents which mould necessitate error-increasing numeri-
cal derivatives; we have calculated the effective exponents
to get a rough idea of the crossover. Instead, one should
fit experimental data to the crossover scaling functions yo
and I'0 and to the explicit temperature transformation
(5.2) and (5.3). The subject of such an investigation
would be first to verify the crossover scaling functions
and second to identify the coupling parameters u and I
as a function of the concentration. A comparison of ex-
perimental data to a power law such as

terizes the singularity in the observed temperature inter-
val, is only a preliminary step towards the complete un-
derstanding of the subject.

There are many experimental investigations of the crit-
ical behavior of disordered ferromagnets. Reference 31
contains a summary of the experimental results for many
different substances covering the whole range of concen-
trations between the pure and the extremely diluted fer-
romagnet. The measured critical exponents, which
characterize the critical singularities in the experimental
temperature range 10 &t &10 ', are found to be in
very good agreement with our theory. Moreover, the 1at-
est Monte Carlo simulations of the site-diluted Ising
model also show concentration-dependent critical ex-
ponents.

The calculations in this paper were done in O(e). This
may raise the question in what way the results are
changed by terms of 0 ( e ). It is well known that tricriti-
cal exponents are not changed by higher-order terms.
We have shown that apart from very weakly diluted sys-
tems the experimental temperature range is characterized
by tricritical behavior. Therefore, we do not expect
significant changes of the crossover results in that tem-
perature range. The asymptotic behavior wi11 be changed
in O(e ) because the numerical value of the exponents of
the critical fixed point depend on O(e ) terms.

It is well known that one needs the equation of state in
order to verify scaling behavior. We will publish the
equation of state in exponentiated scaling form for disor-
dered ferromagnets in a forthcoming paper. This will be
done in the framework of 5 theory since the effective 5
coupling vanishes for extremely diluted systems.

APPENDIX

Before applying the trajectory-integral method of Rud-
nick and Nelson ' " to a crossover problem, one has to
solve the differential recursion relations. In their study of
the crossover between the tricritical and the critical point
of the S model, Rudnick and Nelson claim to have
solved the equations (4.5) and (4.6) in the region
r(l) &O(1) and u(l)=O(e).

They rewrote (4.5) and (4.6) as
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=2r(l)+ Au(l) —Au(l)r(l)+ A, (Al)
dl 1+r( I )

du
I q I + u (l)[2r(l)+r (I)]

[1+r (I) ]2

They first studied the truncated set of equations without
the last terms in (Al) and (A2) as an approximation to
(4.5) and (4.6) valid in the critical region r(l) &(1. The
resulting equations are identical to the model equations
studied by Riedel and Wegner' if one uses
t (l)=r(l)+( A /2)u (I) instead of r(l). Nelson and Rud-
nick estimated the effect of the last terms in (Al, A2);
they claim that the solution for u (I) is not changed in
O(e) and that the scaling field

t ( I ) =r( I ) + ( A /2)u ( I )

These considerations lead to a second aspect of the tra-
jectory integral method which has to be taken care of.
The S model is designed to give a sensible description of
universal properties only. In contrast, Landau theory
naturally includes nonuniversal properties like cutoff
dependencies, etc. It is for that reason one cannot expect
a perfect match of the S model with Landau theory. To
exemplify this, we calculate the susceptibility with an ar-
bitrary cutoff A. The Feynman-graph expansion for

'(I*) with the Hamiltonian

&(I*)= —
—,'r(l*)S —u(l')S

leads to

A q'(l*)=r(1*)+Au(l*)f dqr(l*)+q
changes to

t (I) = r(l)+ u (I)— u (l)r(l) ln[1+r (I)], (A3)
2 2

+O(u (l*),eu(l*))

in O(e, u (I*)). Evaluating the integral, gives

(A5)

which leads to a marginal change for r(l). Our numeri-
cal analysis of (4.5) and (4.6) does not support this conjec-
ture. We find that the solutions given by Rudnick and
Nelson deviate strongly from our numerical solutions of
the correct recursion relations (4.5) and (4.6) for
r(I))0. 1. The deviations are more pronounced in the
critical region than in the tricritica1 region. This is easily
understood since for u (I) «u, =e/8 the first terms in

(A 1}and (A2) dominate.
The effort of Rudnick and Nelson to solve the correct

recursion relations up to r(l}=O(1) was motivated by
the matching procedure of the trajectory integral
method. Matching the critical theory with Landau
theory at r(l*)=O(1) seemed to make it necessary to
work out the correct solutions in this region. However,
the approximate solutions valid for r (I) &(1 are absolute-

ly sufficient for the calculation if one is interested in the
critical behavior only. This becomes clear from the fol-
lowing argument: The last terms in (Al) and (A2) lead to
deviations only outside the critical region r(l) &(1. Ac-
tually, the same kind of deviations would occur if one
would supplement the S" model by additional irrelevant
operators. These operators would not change the l
dependence of the scaling fields p, (l) and p, z(1) in the crit-
ical region p, ,(I) « 1; deviations would only occur in the
region p, (I)=O(1). That is, the last terms in (Al) and
(A2) are unimportant for the critical behavior in very
much the same way as irrelevant operators are. The
corrections induced by the last terms in (Al) and (A2) as
well as irrelevant operators become important if one is in-
terested in the true crossover from critical behavior to
nonuniversal mean-field behavior.

X Ilnt(I*) —in[A +t(1*)]]
+O(eu(l*), u (I*)) .

Using the matching condition t(l*)=1, the susceptibility
(4.2) follows as

y=e 1+ u(l*) ln(1+A )
2

(A8)

Equation (A8) shows that the imperfect matching of the
S model with Landau theory leads to artificial cutoff-
dependent terms in the critical theory. However, if one
inserts the scaling field t(l} [Eq. (A3)] with general A into
(A6), then the cutoff-dependent term is canceled and one
recovers y=e with I* given by t(l*)=1. Thus, one
may either use the approximate solutions (4.10) given by
Riedel and Wegner' and neglect these artificial terms or
one may use the solutions of Rudnick and Nelson,
where these terms are absorbed into the scaling fields.

'(I*)=r(1' )+ u (I")
2

X [A +r(l~) lnr(l*) —in[A +r(l*)]I.
(A6)

In terms of the scaling field t(l)=r(1)+(A/2)A u(l)
with arbitrary cutoff, one obtains
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