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A modified spin-wave theory for the Heisenberg antiferromagnet l&=J g&,,&S;.S, ) is formulated
under the assumption of zero sublattice magnetization in the same way with the Heisenberg fer-
romagnet. This theory gives self-consistent equations which are equivalent to those of Auerbach
and Arovas, but in our theory the factor of —in the correlation function does not appear. This
theory reproduces the main results of traditional spin-wave theory, as well as those of
renormalization-group theory, in a unified picture. For the square lattice at low temperature the
susceptibility behaves as a+bT and the correlation length as (c/T)exp(d/T). This correlation
length coincides very well with experimental results of La2Cu04 if we choose J =900 K. Calcula-
tion of self-consistent equations is done for the S = —' system and compared with the result of exact
diagonalization of a 4X4 system and high-temperature expansion. The quantitative agreement is
surprisingly good, especially at T ~ 0.6J.

I. INTRODUCTION

Recently properties of the Heisenberg antiferromagnet
on a square lattice have been investigated by many theor-
ists in connection with the mechanisms of high-T, super-
conductivity. In many models, high-T, superconductors
may be regarded as a Heisenberg antiferromagnet with
dopant holes. The undoped parent compound La2Cu04
(Ref. 3) is known to be an antiferromagnetic insulator.
Its behavior may then be described by a Heisenberg
Hamiltonian with S =

—,
' on the square lattice.

In previous papers we proposed a modified spin-wave
theory for a Heisenberg ferromagnet in zero magnetic
field. We introduced a chemical potential which is deter-
mined by the condition of zero magnetization. In one di-
mension, the results agree very well with those of the
thermodynamic Bethe-Ansatz integral equation for a 1D
ferromagnet. The results for the 2D classical Heisenberg
ferromagnet agree very well with Monte Carlo results for
this system at low temperature. For the analysis of low-
temperature properties, the spin-wave theory is very suc-
cessful even in the case of no long-range order. So in this
paper we try to apply the same method to the antiferro-
magnetic Heisenberg model, on the square lattice in par-
ticular.

In Sec. II Anderson and Kubo's spin-wave theory is
reformulated with the condition of zero sublattice magne-
tization and free energy minimum. Surprisingly we get
the Auerbach and Arovas (AA) equations which were
obtained by Schwinger boson formulation. In Sec. III the
square-lattice Heisenberg antiferromagnet is analyzed at
low temperature. For the ground-state energy, specific
heat, and elementary excitation, our theory reproduces
the results of conventional spin-wave theory. Moreover,
our theory determines correlation functions, susceptibili-
ty, and correlation length. The results are consistent
with one-loop renormalization-group theory. In Sec. IV
spin-wave results for energy and susceptibility are com-

pared with high-temperature expansion and exact diago-
nalization of the S = —,

' 4X4 system. Quantitative agree-
ment is good. The correlation length of spin-wave theory
is compared with experimental results of La2Cu04 and
we get excellent agreement. In the Appendix we analyze
the classical antiferromagnet and get almost the same
equation with classical ferromagnets.

II. FORMULATION OF ANTIFERROMAGNETIC
SPIN-WAVE THEORY AT H =0

We consider the following Hamiltonian:

~=J g (S;"S +S;SJ+SS,') HgS;, —
I

[St,S~]=is tsrSf5It, Si =S(S+1) .

(la)

(lb)

S' = —S+b~ b for m HB . (2b)

Commutation relations (lb) are satisfied by the following
relations:

[a, , a, , ]=5„,, [b,b . ]=5
and

Here (ij ) means that i and j sites are nearest neighbors.
We assume that the lattice is bipartite and divided into 3
and 8 sublattices. On the A (8) sublattice, the vacuum
state is the S'=S( —S) state. We introduce the antifer-
romagnetic Dyson-Maleev (ADM) transformation for
St+ =St"+iSi', —St =St" iSf and St' in—stead of Holstein-
Primakoff (HP) transformation,

St =att, St+ =(2S —anat�)at, St'=S —at at

for i& A, (2a)

S = b, S—+ = b(2S —b b )—,
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0=[a&,ai]=[b~, b ]=[a&,ai. ]=[b~', b ~ ]=[a&",b ]=[a&,b ]=[a, , b ]=[a&,b ] . (2c)

All spin operators are written in four kinds of Bose
operators: a, a, b, and b . Spin-pair operator S,. S are
written as follows:

I

&a&b ) =&aiba' ) =&a&tait) =&a&a& ) =&b b, )

b ~ )=0,

Si S~ = —S +S(a iai+b b a(~—bt aib—
)

+ ,'a,—~(bt—a, ) b

lei, meB

Si Si.=S —S(ai —ai )(ai —ai )

—-'a,'a,', (a, —a, )',
1

1 and 1'E A, ll',

S .S,=S'—S(b' —b', )(b b, )—

(3a)

(3b)

&alai & =f(rl rl ) 25t!

&b.'b. ) =f(..—.. ) ——,5... ,

&a/ b ) =&aib ) =g(ri —r ),
f (r) =—g' cosh(28&) exp( i—k r)(nk+ —,

' ),=2
k

g (r) =—g' sinh(28k) exp( —ik.r)(nk+ —,
' ),=2

n k = & +k+k &
=

& PkPk &
= [ exp( sk/T) —I ]

(Sa)

(Sb)

(5c)

(5d)

,'(bt —b —~) —b b (3c)
Using Wick's theorem we have the expectation value of
spin pairs in Eqs. (3a)—(3c),

&= —
—,'JzS N+J g S(aiai+b b

ahab

a—ib )—
(im)

+ ,'ai(b ——ai) b (3d)

m and m'EB, mAm' .

Then the Hamiltonian (la) at H =0 is written as follows:

&S, .S ) = —[S+ ,' f (0)+g(—,—— )]

lEA and mEB

&S,.S,. & =[S+—,
' —f (0)+f(,—,, )]',

1,1'C 3 or l, l'E8, 1%1' .

(6a)

(6b)

where z is the number of nearest neighbors and N is the
total number of sites. If we regard a, b and a, b~ as Her-
mitian conjugate operators, the Hamiltonian (3d) has an
infinite number of eigenstates. All eigenstates of (la) are
contained in (3d). It is expected that the ground state is
common for both Hamiltonians. We believe that the gap
between the lowest unphysical state and the physical
ground state is about JS . In ADM transformation there
is no term higher than fourth order and the Hamiltonian
is non-Hermitian. This is diferent from HP transforma-
tion. Next we introduce the ideal spin-wave density ma-
trix with Bogoliubov transformation,

At H =0 the magnetization of each site should be zero

0= & Sf ) =S + —,
' —f (0) . (7)

Energy is given by

(JN/2) g [—S+—,
' —f (0)+g (5)]

where 5's are vectors to the nearest neighbors. Entropy
1s

+=2/' ((+k+I)»(nk+I) nk»nk] .
k

We should minimize F =6 —TS under the condition (7).
Using

1
P "P T X Ek(~k~k+~ —k~ —k)

k
(4a)

and

B[FIN —Pf (0)]/88k=0

o'k= coshOk ak —sinhOk b

p k= —sinh8kak+ cosh8kb
(4b) d[F/N —Pf (0)]/BEk=0

we have

ak =v'2/N g ai exp( i k rt ), —
le A

b k&2/N g b exp( ik r~) . —
mEB

(4c)

For the density matrix (4) we have

Here gk means the sum of k over half of the first Bril-
louin zone, ak and b k are the Fourier transforms of a&

and b

tanh(28k) =gyk,
Ek= A[cosh(28k) —i)pk»nh(28k)1

A,
—=Jzg(5) —p, g —=Jzg (5) /A, ,

yk
——z ' +exp(ik 5) .

5

(8a)

(8b)

Here p is a Lagrange multiplier, or the chemical poten-
tial. We assumed that all g(5)'s are the same. From Eq.
(8a) we have
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E„=k(1—
21 y„)'/, cosh(28„)=1/(1 —

21 y„)'/

sinh(20k) =gyi, /(1 —
21 yz)'

(8c)

Thus we have a set of self-consistent equations for g and
A, from (7) and (8),

III. INFINITE SQUARK I.ATTICK

We define state density function w (x)

2w(x}=—+5(x —yk), O~x ~1 .
k

(15&

1 2, 1 1S+—=—g'
&2y2)i/2 2

For a two-dimensional square lattice at X—+ oo we have

w(x)= — E((1—x )'/ )=—+O(1 —x), (1

X coth (1 —rI y )'
k

2, 'Oyk 1

Jz X k (1 &2y2)i/2 2

X coth (1—212y2, )'/2

(9a)

(9b)

where K (k) is a complete elliptic integral. of the first kind
with modulus k. As is well known w (x) has logarithmic
singularity at x =0.

At T=O, rI is 1 —O(N ') and ni, is zero. Then f(r)
in (5c) is written as follows:

f (r) —
( 1 ~2) i/2

X
One trivial solution of these is

21=g (5)=E =0, A, = T ln(1+S '),
I' = —TXln[(1+S)(1+S ') j .

(10)

Fourier transform S(q) of the two-point function (11) is
as follows:

S(q)= +exp(iq r)(S S )

1 2+ g' cosh(28i, +q
—28i, )

X(nk+ + —,')(ni, + —,') .

At high temperature this gives minimum free energy.
But at low temperature the solution of nonzero g has the
minimum free energy. At a certain temperature there
should be a jump from the q=O solution to the 21%0
solution. Of course this first-order phase transition is an
artifact of our approximation. For the S =

—,
' square lat-

tice, this transition occurs at T =0.91J.
From (8c) we find f (r) =0 for ( —1)'= —1 and g(r) =0

for ( —1)'=1. Then Eqs. (6a), (6b), and (7) yield

(S. S. ) =f (r, —ri) —
—,'5,

1
—g .(r; —rj ) .

+ i f f dl (1 2 —t/2 ik. r

o o (2~)
if ( —1)'=1 .

Equation (9a) yields

(17)

—(1—
21 )

' =m =—S+—' ——' (1—x )
' 2w(x)ds

1

X ' ' o

=S—0. 19660 .

Asymptotic behavior of (17) for large r at ( —1)'= 1 is

f(r)=m +(2m. ) f ™~dkk f dO e'"""'
0 0 k'

=m0+ (v'2rrr )

(18)

In the same way we have g(r)=mo+(&2mr) ' at
( —1)'= —l. Asymptotic behavior of the two-point func-
tion (11) is as follows:

(SO.S, ) =(—1)'[mo+(&2mr) ']

So mo is the spontaneous order of this system. This coin-
cides with Huse's argument" which states 1/r decay of
(
—I }'(SO.S, ) —mo at T=0. Equation (9b) becomes as

follows:

Static uniform susceptibility is given by S (0),

y= —g ( OS;) = S(0)= —g' (ni, +nk) .1,, 1 1 2

r k

=mo+ —,
' x (1—x )

'/ w(x)dx =m, ,

1

m,:—S+—,
' —

—,
' (1—x )'/ w(x)dx

0

=S+0.078 974 . (20)

(13) Ground-state energy per site is given by —2Jm, . Ele-
mentary excitation at T =0 given in (8c) is

S(K) is given by

1+7/S(K)=—g' (g„+ & )2
2y2 k 2 i4 (14)

E =4Jm (1—y )

and spin-wave velocity is

v =2+2Jm i (21)

Almost equivalent equations were obtained by AA. But
in their formulation the right hand side (rhs) of (11) is
multiplied by —,'. In a recent paper Hirsch and Tang' ob-
tained Eqs. (5)—(14) at T =0 ( n k

=0) using HP transfor-
mation.

These results were already obtained in the usual spin-
wave theory.

Next we analyze the low-temperature properties of
Eqs. (9). Using state density function (9a) and
(9a) —21(9b) are
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1S+—=—f (1—q x )
' coth (1—g x )' w(x)dx,

2 2 0 2T (22a)

A,
2

S+—— =— (1—g x )'i coth (1—g x )' w(x)dx .
2 4J 2 o 2T

At & I —g « T/A, « 1 these are as follows:

(22b)

S+—=w (1)— ln —ln
1 T 1 1+g 2A,

2 A, 2g 1 —ri T
+—f (1—x )

' ~w(x)dx+ 0( T ),
2 0

(23a)

3
A,

2

S+—— =—f (1—x')'~~w(x)dx+2w(1)g(3) — +0(T') .
2 4J 2 o

(23b)

From these we get
'2

1 T
1 I 2

2gA, [m, + 0( T )]
Tw (1)

I

This formula for g is consistent with Chakravarty,
Halperin, and Nelson (CHN). ' The values of

lim T in/=2m Jmpm,T~o

3

A, =4Jg m) —2w(1)g(3) — +0(T )

(24a)

(24b)

for S =
—,
' and 1 are 1.103 71J and 5.44656J. These coin-

cide with AA's numerical results 1.16J and 5.46J. This
g should be compared with that of ferromagnetic case

gF=v JS/T exp(2m JS /T)[1+0(T )] .

S(K) in (14) becomes

1 T
1 —g=—

2 4Jm)

4m Jmom
&

exp T
[1+0(T )],

A, =4J m) ——g(3)
4

4Jm )

Energy is given by

3

+0(T )

(25a)

(25b)

Using w (1)=2/m and iteration we have

S(K)=—exp(4mJmom&/T)[1+0(T )] .2
(28)

On the contrary, S(0) of square-lattice Heisenberg fer-
romagnet is

T(n JS) 'exp(4rrJS /T) .

Next we consider susceptibility y in Eq. (13),

E/N = —2J m, ——g(3)
4 T

4Jm )

3

+0(T ) (26) 12T 0
sinh (1—

71 x )'~
2T

—2

w (x)dx .

The low-temperature specific heat is 3$(3)T /(4mJm f ). .
1 —g is very small at low temperature. Substituting (25a)
and (8c) into (5c) we have asymptotic behavior of f (r) at
( —1)'=1, and g(r) at ( —1)'= —1 is

T exp(ik r)
2 2g k2+(2g) —2

(29)

We should note that this is obtained by operating—3 '8/M, to the right hand side of (22a).
Diff'erentiating the right hand side of (23a) with respect to
A, we have

where

g—= [8(7J ' —1)]

2T V'g/(m. r) exp
2g

o + w (1)T +0 (T3)3' 3A.2

+ +0(T ).
12Jm ) 24wJ m

&

At T~0 K., y is

(30)

&2Jm, 2m.Jm p m,
exp [ 1 +0( T ) ] (27a)

(S —0. 19660)/[12J(S+0.078974)] .
Correlation function (11) is

2

(S,.S,) =( —1)' 1 T 8 r
exp

4m. Jm, r
(27b)

Then g is the correlation length in the lattice space unit.

This value coincides with CHN's spin-wave calculation'
(1 —0.552/2S)/(12J) up to the first term of the 1/S ex-
pansion. In the classical limit it is —, times of classical
perpendicular susceptibility 1/(8J). Then it is expected
that
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mo/(12Jm, )= lim lim y(T, H)
T—+0 H —+0

& lim lim y(T, H)=yi .
H~O T~O

(31)

lim lim y(T, H)= lim lim y(T, H)0—+0 T~O T—+0 H~O

(32)

Point T=H =0 is a very singular point of free energy.
Moreover, the second term of (30) seems to violate the
third law of thermodynamics. Probably the H =0 line on
the ( T,H) plane is a special region and we have
By/BT=0 at HXO. On the contrary for the 1D S =

—,
'

antiferromagnet' we have

lim By/BT=0 .
T~O

AA (Ref 6) have already investigated the subject of this
section. But for 1 —g and susceptibility they only gave
numerical results of their equation at low temperature.
So (27a), (27b), (28), and (30) are our new results.

IV. NUMERICAL RESULTS FGR S =
2 SQUARE LATTICE AND La2CuG4

In Table I we show the value of parameter q for the square lattice at S =
—,
' at a given temperature. This is deter-

mined by Eqs. (9a) and (9b). The values of energy per site and magnetic susceptibility are shown. Spin-wave ground-
state energy of the 4X4 system is slightly bigger than true value. This is because the theory is based on variational
principle. We find that the coincidence is very good at 0 ~ T ~ 0.6J.

In Fig. I we give energy per site by various methods. Lines 1 and 2 are spin-wave results for the 64X64 and 4X4 lat-
tices. Line 3 is the high-temperature expansion up to ninth order, '

E/X = —0.5J(1.5x +0.75x —0.875x —1.5625x +0.40625x +2.705 208x

+0.713 764 9x —4. 179204x —3.315 586x ), x =J/(2T) . (33)

Small circles are results of exact diagonalization for the 4 X4 lattice.
In Fig. 2 we give susceptibility per site by various methods. Lines 1 and 2 are our spin-wave results for the 64X64

and 4 X4 lattices. Line 3 is the result of high-temperature expansion up to tenth order, '

y =0.25/T ( 1 —2x +2x —1.333 33x + 1.083 333x —1.1 83 333 3x +0.509 722 2x 6

+0.3218254x +0.4073909x —1.06728x —0.6928188x' ) .

A similar figure was also given by Okabe et al. ' who cal-
culated y of the 12 X 12 and 8 X 8 lattices using the quan-
tum Monte Carlo method.

Next we analyze the experiments of LazCu04 using our
0

theory. The nearest-neighbor distance is 3.79 A. From
formula (27a) we have

g=3.79 AX0. 8186 —' (35)

The best fit with results of Endoh and co-worker's neu-
tron scattering experiments of g

' is obtained at
J=900 K=0.0776 eV=626 cm '. Neutron data and

TABLE I. Spin-wave calculation of g, energy and susceptibility as functions of temperature for the
S =—4X4 and 64 X 64 lattices. The former is compared with an exact diagonalization calculation.

0
0.1

0.2
0.3
0.4
0.5
0.6

0.9929
0.9916
0.9871
0.9822
0.9769
0.9710
0.9638

4X4
—E/X (exact)

0.701 53(0.701 78 }
0.699 79{0.701 45)
0.694 27(0.696 52)
0.686 96(0.688 52)
0.673 99(0.674 72)
0.650 68(0.648 91)
0.61376{0.609 30)

y (exact)

0.0{0.0)
0.020 388{0.003 803)
0.042 351(0.030 216)
0.052 433(0.047 305 )

0.059 879(0.057 724)
0.067 503(0.066 822)
0.076 160(0.075 149)

0
0.1

0.2
0.3
0.4
0.5
0.6

3.E —7
3.45E —5
7.84E —5
1.46E —4
2.78E —4
6.52E —4
2.17E —3

64X64
—E/X

0.670 43
0.670 16
0.668 01
0.660 86
0.643 45
0.61047
0.557 28

0.0
0.047 672
0.051 954
0.057 199
0.064 257
0.073 600
0.085 808
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0.0
E/NJ

-0.1-

0.5 1.0 )5 T/J
g '(A')

0.03-

-0.3-
0.02-

-0.5-
0.01-

-0.7 ==—

FIG. 1. Energy per site calculated by spin-wave theory for
4X4 and 64X 64 lattices. Small circles are results of exact diag-
onalization of the 4X4 lattice. Agreement is very good in the
region 0& T&0.7J. Line 1, spin-wave result of the 64X64 lat-
tice; line 2, spin-wave result of the 4X4 lattice; and line 3, high-
temperature expansion.

t I

0 100 200 300 400 500 600
T(K)

FIG. 3. Inverse of correlation length. Dots with error bars
are results of neutron experiment of La2Cu04 taken from Ref. 3.
The solid line is Eq. (27a) at J=900 K.

Eq. (35) are compared in Fig. 3. The formula of spin-
wave velocity (21) gives 1.6376JX3.79 A=0.48 eV A.
These values are not far from the results of Raman
scattering16 J =1100cm-1, U =0.74 CV A. Then we can
conclude that the magnetism of La2Cu04 is well de-
scribed by the Hamiltonian (1) and our theory.

At S =
—,
' Eq. (30) yields

y=(12J) '[0.52403+0.47479(T/J)+O(T )] .

As p&=8.62X10 ' ergcm, k =1.38X10 ' erg K

0.10

0.05

0.5
l

1.0
I

5 TIJ

FIG. 2. Susceptibilities per site for uniform magnetic field

calculated by spin-wave theory for the S =
2 Heisenberg anti-

ferromagnet on the 4X4 and 64X64 lattices. Small circles are
results of exact diagonalization for the 4X4 lattice. Lines 1, 2,
and 3 are defined in the caption of Fig. 1.

and X = 1.062 X 10 cm, susceptibjhty of La2Cu04
should be

y=2. 457X10 X[0.52403+0.47479(T/900 K)

+O(T )]. (36)

V. SUMMARY AND DISCUSSIGN

At finite temperature and in the limit of infinite system
the equations in Sec. II coincide with AA's equations ex-
cept for the factor of —,

' for correlation function (11). So
Schwinger boson formulation is not necessary to derive
equations in Sec. II for antiferromagnets. Hirsch and
Tang got T =0 case of our equations using the condition
of zero sublattice magnetization. They compared the
solution of their equations at T=-0 with known Monte
Carlo results and exact diagonalization. They got very
good quantitative coincidence. We obtain a formula of
the correlation length which has the same form with
CHN. ' In CHN theory the formula contains two adjust-
able parameters. But our theory contains only one pa-
rameter J and agreement is excellent. According to CHN
the formula (35) is the result of one-loop order in
renormalization-group theory. In the two-loop —order
calculation the preexponential factor may change.

Generally speaking antiferromagnetic spin-wave
theory developed in this paper is successful for quantita-
tive calculations of low-temperature properties of
square-lattice antiferromagnets. For the two-dimensional
square lattice it is known that the ground state has a
long-range order at S 1.' In the S =—,

' case our theory
gives long-range order at the ground state. Presumably
this is correct and the value of spontaneous magnetiza-
tion is not far from the spin-wave value 0.3034.

The case H&0 of Hamiltonian (la) may be completely
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diff'erent from the case H =0. It is expected that the sys-
tem has an easy plane if 2JzS &H )0. The system may
have a Kosterlitz-Thouless phase and phase transition.
So di6'erent spin-wave treatment is necessary for this re-
gion.

For one-dimensional systems the ground state of quan-
tum antiferromagnets has no long-range order. So naive
application of spin-wave theory formulated in this paper
is dangerous. If one applies our theory, the system has
finite 1 —q and the two-point function decays exponen-
tially at T=O. Elementary excitation has energy gap.
These facts qualitatively coincide with Haldane s predic-
tion for integer S systems but strongly contradicts with
known algebraic decay of correlation function and gap-
lessness of the S =

—,
' system. So further improvement of

spin-wave theory is necessary for the 1D antiferromag-
net.
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t 2

exp
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1 2

2 4
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8&2e /' exp
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8
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g (so.s, ) = + +O(t3)1 1 t

At T =0 and Ho&0 total energy of (Al) is given by

F. = —Jo2X cos(2$) —%Ho cosP,

(A9)

(A10)

APPENDIX A: CLASSICAL LIMIT

In the Hamiltonian (la) we try to take the limit of
S—+ ~ putting J =JpS H =Hp/S. Then we have
classical Heisenberg Hamiltonian,

where P is the angle of the spin relative to the z axis. The
minimum is given by Ho sin$=4JO sin(2$). So we have
cosP=Ho/8Jo, g(T=0, HO)=1/8JO at ~Ho~ (8JO and
cosg= 1, y=0 at ~HO~

~ 8JO. We have the following rela-
tion for y( T,HO):

&=Jo g s,'s +sfs~+s,'s' Hogs, s—;=1 . (Al)

In the case JS ((T ((JS and HO=0, Eqs. (9a) and (9b)
become as follows:

= lim lim y(T, HO)
1

12Jp T~p Ho~p

2
lim lim y( T,Ho ) .

3 HO~P T~P
(Al 1)

zx =2
N

I g
1 '9 Xk

'9 'Vk

k 1 —yak

(A2)

(A3)

APPENDIX 8: DERIVATION OF (23a) AND (28)

Use the following transformation

( 1
2 2)1/2 (B1)

t:—T/J11, x —= A,2)/(JSz) . (A4) We put 2)' —= ( 1 —
2) )'/ . Equation (22a) becomes

Energy per site e is —Jpx z/2. These equations are
equivalent to those for the classical Heisenberg ferromag-
net given in Ref. 18. The energy in the 1D and 2D cases
are given in the same formulation. The two-point func-
tion in (6) is

x=' f'
2n

Tw (1) 1 du

~ u(1 —u')'" '

(1 —u )' A, Q
coth

2T

(s, s, )=
2

2 +, exp(ik r) f ( 1)
Np k 1 —2)2@2k

2Tw (1)
kQ

dQ

( 1 2)1/2
(B3)

(so.s, ) =— 21yk exp(ik r) 2

Xp k 1 —2)2y~q

(A6)

As the integrand of (B3) is finite near u =0 we have

I=O(2)')+ —I w((l —u )'/ ) coth2 i/2 A, Q

2 p 2T

with P—=zx/(2)t). So we find (so s, )~„
=( —1)'(so s, )F. Then yo in Ref. 18 corresponds to
S(K) in the antiferromagnet. For the square lattice we
have

2Tw (1)
A, Q

This integral is divided as follows:

dQ

( 1 2)1/2
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t

X=0(&1—tl)+ — J w((1 —u2)'/z) " + J
'1

2 0 (1 „2)t/2
gu w(( 1 u 2)1/2)

coth —1 —w (1) .d„2T (1—u')'/'

+w(1) J0

A, Q

2T
2T—1— dQ

Au(1 —u )'

The first integral is

f w(x)(1 —x )
'/ dx .

0

The third integral is

1 & 2 —u

4g g' u

A, Q
coth

By transformation (Bl) this becomes

(2T/A, ) ln[ T[1—exp( —
A, /T)]/(2A, ) I .

The second integral is O[(T/A, ) ] because [ I is O(u ).
Then we get for Eq. (B2)

( 1 u 2)1/2
Xw

7f

du 1

( 1 u 2)1/2

w(1)T Taking the most singular part near u =0 we have for Eq.
(14)

Thus Eq. (23a) is derived.
Using state density function we have for Eq. (14)

2w(l)T y& du +O(1, )
w(l)T +O(1

g' u tlat, (I —tl )

4m Jm0m
&=w(l) exp [I+O(Tz)],

coth 1 —g x1 & 1+gx
1 —q'x' 2T

1
w (x)dx ——.

which equals Eq. (28).
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