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We propose a unified field-theoretic path-integral treatment of the liquid-gas transition occurring
in simple neutral fluids, neutral monodisperse polymer solutions, and monodisperse neutral mi-

croemulsions. The theoretical results obtained indicate that all three systems belong to the same

Ising-type universality class, which is strongly supported by the most recent experimental results on

liquid-gas transitions.

I. INTRODUCTION

Since the work of Lee and Yang, ' it has become cus-
tomary to describe the liquid-gas transition in simple
Auids by using the isomorphism between the lattice-gas
model of Auids and the Ising model. Much less obvious
is that more complicated Auids like polymer solutions
also exhibit a liquid-gas transition that is characterized
by Ising-type critical exponents. ' Existing polymer-
magnet analogies suggest, however, that polymer solu-
tions must be described by the n —+0 limit of the classical
Heisenberg model. This then formally puts polymer solu-
tions in a universality class other than Ising. In order to
understand better the ~ature of the liquid-gas transition
in polymer solutions, it is essential to develop the theory
of this transition for polymers along the same lines as for
simple Auids. The necessity to develop the theory for po-
lymers along the same lines as that for Auids is dictated
by experimental observations, ' strongly indicating that
all neutral polymer solutions belong to the Ising univer-
sality class. The existing theories of liquid-gas phase
transitions for polymers so far have been unable to
produce Ising-type critical exponents, whereas the exist-
ing theories of liquid-gas transitions for simple Auids
are not well adopted for extension to the case of polymer
solutions. Here, we present a new field-theoretic formu-
lation of the liquid-gas phase transition for simple liquids
which allows a natural extension not only to the case of
polymer solutions, but also to microemulsions, where the
most recent experiments also indicate Ising-type critical
behavior. ' '

Our present treatment of the liquid-gas transition is the
contig. uation of our earlier efforts' ' aimed at the refor-
mulation of the classical statistical mechanics systems
into the field-theoretic form which is the most convenient
for treatments of possible phase transitions in the above
systems. A brief account of the presented below results is
given in Ref. 18.

This work is organized as follows. In Sec. II we pro-
vide a brief pedagogical account of the Landau-type
theories of liquid-gas transition for simple lattice models

of neutral Auids, polymer solutions and rnicroemulsions.
This mean-field treatment serves as a useful guideline to
the more sophisticated field-theoretic path integral treat-
ments of the above systems presented in Sec. III. We
construct the path integrals for simple Auids, polymers
and microemulsions in such a way that the saddle-point
method applied to these integrals brings us back the
mean-field results of Sec. II. The requirement to repro-
duce the mean-field results of Sec. II is imposed in accor-
dance with the similar requirement for the magnetic sys-
tems. ' The Auctuation corrections are discussed in Sec.
IV where we explicitly demonstrate that the above three
systems belong to the same Ising-type universality class.
This is supported by the recent experiments discussed in
Sec. V. We also discuss there the universal ratios ob-
tained from our analysis of the available experimental
data. Our theoretical findings are in excellent agreement
with the existing experimental data presented in this sec-
tion. Finally, Sec. VI is devoted to the discussion of the
obtained results and to some, yet unsolved, problems to
be considered in future works.

II. THE LANDAU-TYPE ANALYSIS
OF THE SIMPLE LATTICE MODELS

A. The case of simple fluids

Let No be the total number of lattice cells of some sim-
ple hypercubic d dimensional lattice. If we assume that
each lattice cell of size a" (in the subsequent, without loss
of generality, we put a = 1) can be occupied by just one
atom (molecule), and the binary interaction energy per
lattice site is Uo/Xo, the free energy is given by

F Uo 2

TNO 2T
n +nlnn+(1 —n )ln(1 —n ),

where n =N/No, N is the total number of atoms (mole-
cules). Without loss of generality, we can consider as
well a two component system for which the free energy
can be written as
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TNo
[n~Vii+2n(l —n ) Viz+(1 —n ) Vzz] (2.10)

+ +nlnn+(1 n—)ln(1 —n ) .
2T

(2.2)

n
( Vii —2Viz+ Vzz) —Tln(1 —n ) .

(2.3)

This then produces the equation for the spinodal

BP =0= 4T,n+—T[1/(1 —n )],
Bn

(2.4)

where we have introduced T, =
—,'( V» —2 V,~ + Vzz ). The

critical point is obtained now as the simultaneous solu-
tion of Eq. (2.4) and c) P/Bn =0, i.e.,

(1 n) =T—/T, . (2.5)

Then, if we choose V» = —V, z
= —

Vzz = Uo/2 we obtain
back Eq. (2.1). The sign "minus" in front of the interac-
tion term is chosen for future convenience, as well as an
extra term V22/2T which do not affect the thermo-
dynamics. Knowledge of the free energy permits us to
obtain the pressure of the system P as (a =1)

m +—3~m+3~=0 . (2.11)

If the cubic term in the expansion (2.9) could be ignored,
then we would obtain from Eq. (2.11) the result
mo=+&3( r). If, h—owever, we want to keep the cubic
term, then we obtain from Eq. (2.11) the following result

According to Landau and Lifshitz, the cubic term in Eq.
(2.9) can be dropped by means of redefining the order pa-
rameter m —+m +constr. Although at the mean-field lev-
el the above redefinition is completely harmless, inclusion
of fluctuation corrections makes the above simple re-
placement nontrivial. Furthermore, as it can be seen
from Eq. (2.9) the term of order m h, mentioned in Sec.
153 of Ref. 20, are not present in the expansion (2.9).
These terms according to the same reference are needed
in order to account for the asymmetry of the coexistence
curve. We would like to argue here that the terms of or-
der m h are not necessary in order to explain the asym-
metry of the coexistence curve. We shall demonstrate
under what conditions they might be actually included in
the expansion (2.9).

Begin with the equation of state (2.8). In the limit
h ~0 we obtain approximately

The solution of Eqs. (2.4) and (2.5) is found to be
n =n, =

—,', T= T, . Following Baxter, we introduce an
order parameter m via the equation

m =
—,'( —~)+[—,', r +3( r)]'~—

=mo+ —„'( —r), r~0 . (2.12)
n =

—,'(1+m )=—n, (1+m ) . (2.6) This expression can be also rewritten as
For sufficiently small m (i.e., near the critical point), we
can obtain the following expansion for the free energy

m =+~8 ~(
—r)~+c, ( —r)' (2.13)

T —ln2 —
( V„—V~~ )m

+—7m +—m +''
2 12 (2.7)

h=tm+ —tm +—m +—m +2 T 3 T 4

3 4
(2.8)

where the "magnetic field" h is defined by h =p —tln2.
Second, according to Landau, we should write for the
"free energy" functional the following result

V= V(r, m )
—km

where r=(T T, )/T. This expr—ession, although formal-
ly looks like the correct Landau expansion, cannot be
used for the investigation of the behavior in the vicinity
of the critical point. Indeed, following Landau and
Lifshitz we have to rewrite first the expression for the
pressure in terms of the order parameter m. Defining the
reduced variables p =P —P, and t = T—T, we obtain

where the exponents P and a are the usual mean-field ex-
ponents, i.e., /3= —,', a=0 and the constants 8 and c, are
given by Eq. (2.12). Using Eq. (2.6) and introducing
gl=n —n„q =n, —n as the relative densities of liquid
and gas phases, respectively, we obtain from Eq. (2.13)
the following results

9l 1g
( )i

+
ne

(2.14)

ne
=2 Bi( —)~ . (2.15)

Equations (2.14) and (2.15) coincide with that given in
Ref. 21 [see Eqs. (1.20) and (1.21), Chap. 3] and Ref. 22.
The above calculations have demonstrated that the Quid
diameter, ' Eq. (2.14), which is responsible for the asym-
metry of the liquid-vapor coexistence curve, originates
from the cubic term in the expansion (2.9). The cubic
term in the expansion (2.9) can be actually replaced with
the help of an extra term proportional to m h in the ex-
pansion (2.9). Indeed, if instead of Eq. (2.9) we write

(2.9)

+O ~ 1 h 2, 4nm+ —r+ —m +—'—m + .
T

"
2 2 12 (2.16)

where h =h/T Afunctional .V defined in this way is
designed to automatically reproduce the result (2.8) if we
use the equation

then the anticipated result, Eq. (2.12), can be obtained
from Eq. (2.16) with help of Eq. (2.10) and assuming f to
be weak.
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(2.17)

where v and p are known mean-field exponents,
p= —,', v= —,'. Notice, however, that Eq. (2.17) is formally
correct beyond the mean-field level and this observation is
essential for the subsequent development. Obtained re-
sults permit us to determine now the universal ratios and,
whence, the meaning of constants c, and ~B ~. We would
like to notice that, although the actual values of the
universal ratios in the theory which includes the Auctua-
tions are di6'erent from that obtained at the mean field
level, their universality is preserved. Following Aharony
and Hohenberg, all universal ratios needed for our pur-
poses can be constructed with the help of the universal
equation of state

f=m f(x), (2.18)

where x =r~m
~

' ~. Near the critical point we have

m =B( r)~, r(—0, 0=0,
C+r &, ~&0, f=0,

x=
C ( —r) ', «0 k=0,
(A+/a)r, r) 0, k=0,
(A /a)( —r), r(0, k=0,

f=am', r=o,

(2.19)

(2.20)

(2.21)

(2.22)

where g is the susceptibility and C, is the singular por-
tion of the specific heat. Aharony and Hohenberg show
how Eq. (2.18) can be used to obtain the critical ampli-
tudes defined above. The table of universal ratios is
given, for example, in the book by Amit or in the origi-
nal papers by Aharony and Hohenberg and by Bervill-
er. Notice, however, that Brezin et al. give a some-
what different definition of the ratio A+/A . Given
these ratios, we can construct an infinite number of other
universal ratios by considering the combinations of those
given in the above references. Using Eqs. (2.10), (2.12),
(2.16), and (2.17) we conclude that the presence of cubic
term in the expansion, Eq. (2.9), does not change the
value of the coefficient B, see Eq. (2.13). At the same
time, using Eqs. (2.12), (2.13), and (2.17) we conclude that
the coefficient c& =

—,
' is related to the coefficient A in

view of Eqs. (2.17) and (2.21). Using the fact that the
specific heat is given by C = —8 7/Br we obtain

/a= —,'(2 —a)(1—a) or

a(1 —a)(2 —a)
(2.23)

where A /a is not affected by the presence of the cubic
term in the expansion (2.9). Finally, we can rewrite Eq.
(2.14) in the following equivalent form:

To clarify the meaning of the constants ~B ~
and ci it is

instructive to rewrite V, Eq. (2.9), in the scaling form.
Below T, we have after a simple algebra

c'0 3, . 4P(r f)= ——(
—r) 1+ +

T 4 V'3 ( —r) ~&

n,
2A

( )i
a(1 —a)(2 —a)

(2.24)

The actual situation is somewhat more complicated than
that refiected in Eq. (2.24) as will become apparent from
Sec. V. The meaning of the constant ~B ~

in Eq. (2.15) is
the same as in Eq. (2.19). The above results are correct
only if the term of order m in Eq. (2.9) can be neglected.
We anticipate that this should be the case. In order to
test the above statement experimentally, the following
universal ratios may be studied:

A C+ 3 CRi= R2= (2.25)

These ratios are going to be further discussed below.
Given analysis can be easily extended now to the polymer
solutions.

B. The case of polymer solutions

Flory-Huggins lattice gas model can be defined as be-
fore on some d-dimensional hypercubic lattice. Assum-
ing that each lattice cell of size a" can be occupied by just
one atom (monomer or solvent molecule) and that only
the binary nearest-neighbor interactions are important,
the free energy of an assembly of N monomers can be
written just as in the case of the lattice-gas model dis-
cussed above, i.e.,

[n V»+2n(1 —n ) V,2+(1 n) V—22]
2

0

Vzz n n+ + —ln —+(1 n)ln(1 n—), —
2T N

(2.26)

1—T 1 ——n+ln(1 n)— (2.27)

The equation for spinodal now reads as BP/Bn =0, or
T/T, =( n)/[1 —1/N 1/—(1 n)], where T—, = V»—
—2V&2+ V22. The critical point is determined from the
simultaneous solution of Eq. (2.27) and d P/dn =0, i.e.,
(1 n) =T/T, . A lit—tle algebra shows that the critical
temperature is equal to T, and the critical density
n, =l/(&N+1). An order parameter m can now be
defined as in Eq. (2.6). For small m (i.e., near the critical
point) the free energy, Eq. (2.16), can be rewritten as

where n =N/NO, N is the length of the polymer chain.
The potentials V», V», and V22 represent the strength
of polymer-polymer, polymer-solvent, and solvent-solvent
interactions respectively. As before, the sign "—"in
front of the interaction term is chosen for further con-
venience as well as the term V22/2T. By analogy with
the case of simple Auids, we obtain the expression for
osmotic pressure as (a = 1)

BI'

aN,

2 ( V] i 2 Vi2 + V2$ )n
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F
TAO

( V12 V22 )
nc n, +n, ln2T' T

1 2 c+—1+ n, m
2 v'~ T

+—'nm+ —'nm+
3 C 12

(2.28)

(2.29)

As before, the above free energy cannot be used in the
liquid-gas calculations. By analogy with Eq. (2.8), we ob-
tain

C. The case of monodisyerse microemulsions

Recently, Widom have proposed a model of mi-
croemulsion which is the most suitable for the present
study. Here, we adopt his model in the form discussed by
Goldstein because of its connection with the above dis-
cussed Flory-Huggins model. For an assembly of mono-
disperse micelles with the mean aggregation number o.

(i.e., the average number of surfactants per micelle) we
have instead of Eq. (2.26) the following result

[n V +2n(1 n—) V +(1—n ) V ]
F 1 2

TX 12 22
0

where h =h/T and h =p+tn, . The Landau-Lifshitz
functional can now be written as

22+ nV

2T Mo. ln Mo.

+ (1 n—)ln(1 n),— (2.34)

7=V(r, m ) fm—

2 2 & Z—nm+ —n, m +—n, m
T 2 ' 6

+—'nm+ —'nm+.
12 20

(2.30)

The equation analogous to (2.13) can be obtained with
constants B and c, being replaced by B~ =++3/n, and
c, =(3/4)n, '. The cubic term in Eq. (2.30) can be el-
iminated, as in the case of simple liquids, with replace-
ment r +r+ —,'h/n, —so that Eq. (2.16) can be replaced
with

0 p 1 h—nm +—~+ nm+ —'nm+
2 c 12 c

n

(2.31)

—
—,'[Qn, ( —r)]

X 1+ 4
/rnv'3 [n, ( r)]"~— (2.32)

we obtain A /a =n,' '~
—,
' (2 —a )( 1 —a ) and C

=(2n, ) ', C+ =n, Using the. already obtained value
of Bp we obtain (at the mean-field level)

Rt =2R2= 2, (2.33)

which is the same as for simple fluids. This result can be
used in order to study the role of quintic interactions in
liquid-gas transition for polymers and will be further dis-
cussed in Sec. V.

Evidently, this replacement is possible only if the quintic
term ( —m ) is ignored which we shall assume unless the
otherwise is specified. In case of simple fluids we have
defined the universal ratios R, and 82. We would like
now to demonstrate that in case of polymers the above
universal ratios within the approximations made [i.e.,
without the quintic term in expansion (2.30)] are the same
as for simple fluids, at least at the mean-field level. To
this end using Eq. (2.29) and equation analogous to (2.17)
which is

where M is the average length of the surfactant molecule,
and V», V,2, Vzz are responsible for the surfactant-
surfactant, solvent-surfactant, and solvent-solvent in-
teractions, respectively. It is assumed that M «X and
that all surfactant molecules for a given micelle reside on
its surface. (For more details see Ref. 14.) Under such
assumption we can effectively put M - 1 and if the area of
the micelle is 2, then o = A /ao where ao is the area per
surfactant. Evidently, we can always choose the system
of units such that ao = 1 which we are going to assume in
the subsequent. It is evident that for such defined model
it is possible to repeat all calculations of the previous sub-
section without any change (except N~~/i ) so that we an-
ticipate that the liquid-gas transition for micelles should
also belong to the Ising universality class. This indeed
was decisively demonstrated recently in real experiments
by Dietler and Cannell' (see also Ref. 14).

Here we would like to prove, guided by the above
analysis, that the liquid-gas transition is to a large extent
universal phenomenon for liquids, polymers, and mi-
croemulsions.

III. PATH INTEGRAL FIELD-THEORETIC
FORMULATION OF THE PARTITION FUNCTION

FOR LIQUIDS, POLYMERS, AND MICROEMULSIONS.
GENERAL REQUIREMENTS AND

THE MEAN-FIELD RESULTS

Statistical mechanics for pointlike particles is by now a
well developed discipline. Much more dificult is the
study of statistical mechanics of extended objects using
the standard formalism. The general problem can be for-
mulated as follows. '

(1) Begin with an assembly of pointlike particles.
(2) Consider then an assembly of extended particles of

fixed topology and having rigid surfaces.
(3) The same as above, but the particles having a frexi

hie surfaces.
(4) Finally, the same as above but the particles, in addi-

tion, have a different topology.
The statistical mechanics of the first level of problems

is by now a well developed subject. The second level of
problems requires already the use of integral equation
methods. The third and fourth levels cannot be solved



PATH-INTEGRAL TREATMENT OF THE LIQUID-GAS. . . 2481

with the use of traditional methods of statistical mechan-
ics and the field-theoretic methods become indispensable
for this task. Previously one of us, AI.K, has applied
field-theoretic methods to the problem of phase transition
in symmetric' and asymmetric' electrolytes (see also
Ref. 18). Presented below formalism can be considered,
in part, as an extension of the above ideas.

n n

Q„=f g d"r exp —P g V(r, —r, ) —P g U(r, )
(? (J)

A. is related to the chemical potential in a usual way and
P= T '. In order to convert Eq. (3.1) into the field-

'

theoretic form, we introduce the collective variable p(r)
which represents the local density of fiuid (or gas)

A. The case of simple Auids p(r)= +5(r —r, ) . (3.2)

Begin with the grand partition function for a classical
gas with two-body interaction potential placed in the
external auxiliary field U(r). We have

Following Negele and Orland' it is convenient also to
use the identity

(3.1)
fdp(r)5 'p(r) —+5(r —r;)

' =1 (3.3)

where

n=0
valid for any r. Using Eq. (3.3) the grand partition func-
tion can be rewritten as

oo gnZ= g, f2)[p(r)]f2)[P(r)]exp f d"rP(r) p(r) —f d—"rfd"r'p(r')V(r' —r)p(r)

n

Pf—d "r U(r)p(r) f g d"r;exp —g P(r;)
'

=Wf2)[P(r )]exp ——f d "rf d r'(P U) V '(P ——U)+I,f d r exp( —PP)
2

(3.4)

Here, the integral representation of the 6 function was
used along with the rotation to the imaginary axis and re-
scaling of the field P. The normalization factor JV ap-
pears as a result of Gaussian-type integration over p-
variable. As already was noticed in Ref. 19, there is a
close analogy between the partition function presented
earlier and the partition function for the Ising model in
external magnetic field H; which can be written as

one hand, from the combinatorial arguments similar to
that which lead to Eq. (2.1). On the other hand, it can
be easily obtained from the path integral, Eq. (3.5), by a
saddle-point method, as described in Ref. 19. Applica-
tion of the same saddle procedure as for the Ising model
to the functional integral, Eq. (3.4), produces the follow-
ing result

Z„;„=JVf2)[P]exp( —PS[/, H ]), (3.5)

F Uo
n +n inn

To 2T
(3.7)

where

S[P,H]= —,
' g (P; H, )8," '(P) H~—)—

?,J

——g ln[2cosh(PP;)]
1

(3.6)

with cP;J. being the usual nearest-neighbor coupling con-
stant. Because of this analogy, we expect that the treat-
ments of both models should follow the same steps. In
particular, we will require that the Bragg-Williams ap-
proximation for the Ising model should correspond to
Eq. (2.1) for the lattice gas. Indeed, the Bragg-Williams
approximation for the Ising model can be obtained, on

to be compared with Eq. (2.1). To reproduce the impor-
tant missing term ( 1 n)ln( 1——n ) we are forced to
somehow modify the functional integral, Eq. (3.4), in
such a way that the connection with Eq. (3.1) remains in-
tact.

Some time ago Hubbard and Schofield had proposed a
field-theoretic formulation which implicitly accounts for
the above missing term. Their treatment, however, is
dificult to extend to polymers and microemulsions and,
whence, we develop here an alternative formalism which
automatically explicitly reproduces Eq. (2.1) and is easily
extendable to the case of polymers and microemulsions.
Moreover, should we use Eq. (3.4) in order to compute
the Auctuation corrections to the mean-field result, Eq.
(3.7), we would obtain totally wrong answer. Reformula-
tion of the result (3.4) not only restores the missing term
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(1 —n )ln(l —n ) but also produces the correct result for
the fluctuation corrections to be discussed in Sec. IV.

Begin with observation that Eq. (2.1) can be written in
the equivalent form, Eq. (2.2), characteristic for the
binary system. Therefore we can, without loss of general-
ity, consider from the outset the binary system. For such
system we can write the grand partition function, by
analogy with Eq. (3.4), as

1 g 2

Z=X X
N)=0 N2 0 1' 2

X f2)[A]f, 2)[p]f2)[P]exp( S[A,p, P]),
(3.8)

where

S[~,p, q ]=—fd'r X(r)[1 p, (—r) p, (—r)]+ f d r P p . —f—d"r f d r'pT(r)V '(r r')p(—r')

P—f d r U p+» f d r exp[ —P,(r)]
' f d r exp[ —Pz(r)] (3.9)

and p P=p, P, +p&Pz, etc. The matrix V(r r')—is given

by

V(r —r') = ~12
~12 = ~21

21 22

Z= f2)[k]exp —f d r k(r) X[X(r)] (3.10)

with obvious spatial dependence for potentials V;-,i,j
=1,2. The auxiliary fields U, 2 and the extra constraint
on densities which introduces a new field A, (r) are abso-
lutely essential for the subsequent development. The
summation over Xi and X2, the Gaussian integration
over p, and pz, the trivial rescaling and shifts for fields P,
and Pz produce the final result for Z as

where the overbars for Pi, Pz, and A, indicate that these
are the mean fields so that, in general, P; =P;+5/;, etc. ;
on another hand, using Eqs. (3.8) and (3.9) we obtain

1 6(p)= —— -lnZ
P 5U(r)

(3.14)

P;=exp[ —/3($; —X)] .

From here, we obtain as well

(3.16)

which in the saddle-point approximation produces

(p) = f d rV '(P —'M) . (3.15)

Combining Eq. (3.15) with Eqs. (3.13) and (3.16) produces

where
P;= ——1np;+A, . (3.17)

/[A(r)] = f2)[P]exp( —/3S[Q, A, ])

and

(3.11) The obtained results should now be supplemented by
the saddle-point equation for A, field. Using Eqs.
(3.10)—(3.12), we easily obtain

S[P,A, ]=—f d"r fd "r'(P '5) V —'(P fl)—
2

——f d "r exp[ —P(P, —
A, )]

1 =exp[ /3(P, —A, )]+e—xp[ —P(gz —X)]

or, in view of Eq. (3.16),

P1+P2 (3.18)

——f d r exp[ —/3(gz —
A, )] . (3.12) The saddle-point approximation for the thermodynamic

potential 0 can now be written as

Also, A;= U, —p; with p, being a chemical potential for
ith component, A, =a expPp, , a =1 and all normali-
zation factors are adsorbed into the functional integral
measure. Following Ref. 19 we shall use a saddle-point
method in order to evaluate Z. Minimization of S[P,k]
produces after a little algebra

Vl, (r)

Rz(r)

1
0, = ——lnZ

=S[P,A, ]+—f d r X(r) . (3.19)

F=S[P,A, ]+—f d"r A(r) —f d~r ll p, (3.20)

Using the known connection between Q and the free en-
ergy F, F=IJt, N+0, we can write for the free energy F
the following result:

exp[ —P(P, —
A, )]

exp[ —P(Pz —
A, )]

(3.13)

where we took into account that for U=O, R= —p, and

fp d "r=N The combine. d use of Eqs. (3.13)—(3.19) pro-
duces
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F= ——f d r f d "r'p Vp+ f d "r PlnP

+ f d r(1 —p)ln(1 —p), (3.21)

B. The case of polymer solutions

In case of polymers we have a complication, compared
to the simple liquids case, which comes from the necessi-
ty to account for the connectivity effects. The monomer
units along the polymer chain are no longer free to move
independently, as in the simple fluids: they are connected
with each other by means of chemical bond. Microscopi-
cally, polymers can be described by a variety of models
but, as was pointed out by DeGennes, beyond a certain
length scale -t' their properties become very much in-
dependent of the nature of chemical composition and at
such scales and beyond polymers can be modeled by ran-
dom walks on some lattices. The random walk model is
further complicated by the necessity to consider an ex-
cluded volume problem: the walk is not allowed to inter-
sect itself. Such random walk model with excluded
volume constraint cannot be solved exactly and the treat-
ment of the model resembles very much that known in
quantum many-body theory. For a simple polymer
chain, the partition function can be written as '

Z =JVf2)[r(~)]exp ——f d~d & dr

where, in view of Eq. (3.18), we put p=p&. In the case
when Eq. (3.13) admits homogeneous solution Eq. (3.21)
is reduced to Eq. (2.2) as required (recall a"=1). The
developed formalism now can be extended to the case of
polymer solutions rather straightforwardly.

Zp exp —— d "r d "r'p r V r —r' p r1

(3.23)

where we have introduced, by analogy with Eq. (3.2), the
polymer density

p(r)= f d~5(r —r(r)) .
0

(3.24)

Extension to the many chains case can be accomplished
now rather straightforwardly so that instead of Eqs.
(3.10) and (3.11) we now obtain, in the grand canonical
formalism, the following result for the partition function
of the monodisperse (the same N for all chains} solution
of polymers

where the variable r(7.) represents the spatial position of
the polymer segment which has the contour position ~
along the chain, 0 ~ ~ & X. The first term in the exponent
of the functional integral represents just a simple random
walk in d dimensions, whereas the second term accounts
for the excluded volume effects. Usually, the potential is
taken to be equal to v5(r(v ) —r(~') ) (Ref. 31) with v being
the excluded volume adjustable parameter. The normali-
zation conditions for the above path integral we choose in
such a way that when the excluded volume is being put
equal to zero Z = V where V is the volume of the system.
This convention is commonly used in the literature. '

Equation (3.22) can be conveniently rewritten in the fol-
lowing equivalent, symbolic form:

—f d rf d 'Vr(r( ) —rr(~') )
0 0

(3.22) where (3.25)

%[A(r)]= fg)[p]exp( —pS[Q, A, ]),
S[p,g]= —f d"r f d r'(p U) V '(p——0)——f d r exp[ —p(&2 —A, )]

2

f2)[r(w)]exp ——f d~ p f d—~[/, (r(~))—A(r(~))] (3.26)

and the matrix V has the same form as in the case of sim-
ple fluids with V», V,2, V22 being polymer-polymer,
polymer-solvent, and solvent-solvent interaction poten-
tials, respectively. The application of saddle-point
method to Eqs. (3.25) and (3.26) proceeds along the same
lines as for the case of simple Auids. Therefore, we pro-
vide here only few important new details. In particular,
instead of Eq. (3.13) we now obtain

Nexp[ —NP(P, —A, )]

exp[ —p(pz —
A, )]

(3.27)

and instead of Eq. (3.16) we now have

p, =Nexp[ Np(p, —X}], p2=—exp[ —p(pz —
A, }],

(3.28)
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where the obvious spatial dependence was suppressed.
The rest of the calculation proceeds in the same fashion
as before thus producing the final result

Pr= —f—fp'Vp+ f ~ ln ~
+ f (1—P)ln(1 —p) (3.29)

to be compared with Eq. (2.26) for homogeneous densi-
ties. Above we used p, =p, p2=1 —p. This accomplishes
our mean-field (saddle-point) treatment for the case of
monodisperse polymer solutions.

C. The case of microemulsions

Xexp —— d xVr Trk
2

——f d x f d x'5"(r(x) —r(x')}
2

(3.30)

where r(x) is the spatial position of some segment of the
surface which can be described by the coordinate x in the
internal space of surface (which is D dimensional) just
like r(~) for the polymer segment which has the contour
position ~ along the chain [see Eq. (3.22)]. In this model,
it is assumed that the space of internal coordinates
x= Ix„xz, . . . , xD I represents a bounded domain
~DR and that the shape of the domain should be as-
signed by hand in advance.

For the case of microemulsions we actually have only
one restriction that the area A of the droplet remains the
same. This then makes unnecessary to assign the
domain ~ in advance, instead, it should be determined
self-consistently as we shall demonstrate below in Sec. IV.
With these remarks, we arrive at the following generali-
zation of the model given by Eq. (3.30):

Z =IVf2)[g;r(g)]5'

In Sec. II, we have described in some detail the Flory-
Huggins-type model of the monodisperse (the same ag-
gregation number for all micelles) microemulsion. We
have specified there that the surfactant molecules are lo-
cated on the surfaces of droplets (micelles) all of which
having the same area A. These droplets are not assumed
to be rigid. By analogy with polymers, we have now to
consider first the path integral for a single micelle which
should come as a direct generalization of the Z given by
Eq. (3.22). This can be accomplished by generalization of
the model of crumpled manifolds (or tethered surfaces)
proposed some time ago by Kardar and Nelson and
subsequently considered by other authors. ' By analo-
gy with polymers, they write the following partition func-
tion for the self-avoiding tethered surface:

ZCM =%f2)[r('x)]

S[r(g');g]= f d g&gg ~d r d&r

+—f d P g f d g'&g 5 (r(g') —r(g')) .
2

(3.32)

For locally Oat surfaces we have g ~=g &=5 &
and we

obtain back Eq. (3.30}. Here g is the determinant of the
matrix 8 r"B&r„representing the induced metric of sur-
face (in terminology taken from the mathematical litera-
ture ), a,P=1,2, r&=r„(g), @=1—d, the summation
over the repeated indices is assumed,
represents the internal space of the surface imbedded in d
dimensional external space, yo is the bare surface tension.
Functional integral (3.31) has been considered some time
ago by Zamolodchikov (without the self-interaction
term) who considered only the surface of genus zero (i.e.,
spheres) as solutions of the minimization problem which
determines the metric g ~ self-consistently as it will be
explained below. Extension of his results to surfaces of
higher genus (e.g. , torus, etc. ) is presented in Ref. 40.
The model based on Eqs. (3.31) and (3.32) can be compli-
cated by inclusion of the rigidity terms in addition to the
elastic term given by the first term in the right-hand side
of Eq. (3.32). The inclusion of the rigidity terms may or
may not play any significant role as will become apparent
from the subsequent. Moreover, it can be shown ' that,
at least for the case of spherical geometry, there is no
need to impose in addition to the constraint of area con-
servation the constraint of volume conservation because
the last constraint is satisfied automatically if the first is
imposed. The extension of the results (3.31) and (3.32) to
the case of many surfaces now can be accomplished in ex-
actly the same way as for polymers. Following Ref. 42,
introduce the covariant density

p(r)= f d P~g5"(r —r(g)} (3.33)

to be compared with Eq. (3.24). Use of Eq. (3.33) permits
us to write, instead of Eqs. (3.25) and (3.26), the following
result for the grand partition function for the mono-
disperse solution of interacting droplets:

Z= f2)[X]f2)[$]exp( PS[/, A, ]), —
where

(3.34)

and

X expI —PS[r(g), g;P&, A, ]]
——f d "r exp[ —P($2 —A, )],

S[r(g),g;P„A.]= f d gVgg ~d r B&r

(3.35)

+ fd'P g [P,(r(g')) —k(r(g)}] .

S[P,A. ]=—f d r A(r)+ —f f (P U) V '(P U—)—
P 2

f2)[g;r(g)]5 fd'g&g —A

where
f d gV'g —A exp[ —pS[r(k);g]], (3.31)

(3.36)
Application of the saddle-point method to the path in-
tegral, Eq. (3.34), proceeds in complete analogy with case
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of polymers thus producing the final mean-field result
analogous to Eq. (3.29) with N being replaced by A,
(soine additional details are given in Sec. IV). In case of
homogenous solution of the Eq. (3.27) (modified accord-
ingly for the present case) we arrive at the result (2.34), as
expected. We do not include the irrelevant finite (or
infinite) constants in the final answer because they are not
affecting the thermodynamics. Presented results accom-
plish our mean-field treatment.

P
22 T (4.2)

Actual use of the Ising-type action, Eq. (3.12), produces
for the matrix llMll the following result (the obvious spa-
tial dependence is suppressed):

IV. COMPUTATION OF THE FLUCTUATION
CORRECTIONS TO THE MEAN-FIELD RESULTS

Use of the functional integral, Eqs. (3.11)—(3.13) along
with substitution of the fields P; =P, +5$;, i = 1,2, and
A, =A, +5k produces with accuracy up to quadratic terms
the following fiuctuation matrix llM ll defined as

5S 5S
5P,5/2 5$,M,

5S
5/2

5S
5425i

5S
M,5$,

5S
5/2M,

5S
5A,

5S
5/2

5S
M.5/2

(4.1)

Inclusion of fluctuations in the computation of path in-
tegrals is absolutely necessary for several reasons. First,
as in the saddle-point theory for ordinary integrals, not
all saddle-point solutions should be accepted but only
those which maximize the function in the exponent of the
integral. Second, in the case of quantum field theory, ac-
counting for fluctuation corrections permits us to distin-
guish between the different universality classes. In our
case we have strong experimenta1 evidence, discussed
briefly in the Introduction and further discussed in Sec.
V, that the simple fluids, polymers, and microemulsions
all belong to the same Ising-type universality class. Al-
though this is rather obvious for the simple liquids be-
cause of Lee's and Yang's work on the subject, ' it is
much less obvious for polymers and microemulsions. In
the last case the conAicting results were reported quite re-
cently. ' Here we would like to demonstrate that,
indeed, all three systems belong to the Ising model
universality class. This, however, does not exclude some
differences between these systems which might be seen if
the crossover regime is studied as it will become apparent
from our derivations, which we plan to present in a forth-
coming publication. See also Sec. V.

A. The case of simple Auids

It is convenient to write Eq. (4.2) in the alternative form
as

(4.3)

where the matrix ll A ll
is given by

(4.4)

0 0

and the matrix llB ll
is defined by

—(1—p)
0

(4.5)

In arriving at the result (3.10)—(3.12) p integration was
performed which produced the infinite normalization fac-
tor which has been absorbed in the normalization of mea-
sure as it was explained after Eq. (3.12). Now we can
eliminate this factor by using the properties of the func-
tional determinants (retention of the quadratic in 5$; and
5A, terms in the exponent leads us to the consideration of
the functional determinants ). The infinite factor com-
ing from p integration is, in fact, the functional deter-
minant which cancels the functional determinant coming
from the matrix

ll
A ll. Whence we are left with the com-

putation of the functional determinant of the matrix llg ll

defined by

~»c
1 ——

T

1 i 12P
llgll=I ——A ' 8=

T T

Vi2(1 —P)
T

—(1—p)

ViiP+ Vi2(1 —p)
T

V2,P+ V22(1 P)—
T

(4.6)
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detllQ lll
=

T, (k)
(4.7)

The determinant of the matrix llQ ll
can be easily comput-

ed by using the Fourier transform and known formula
lndetllQll=trlnllQll. In terms of order parameter m
defined by Eq. (2.6) the final result for the fixed wave vec-
tor k is given by (omitting an unimportant overall con-
stant)

F @0 2 4 dk+—'rm +—'m +—' ln(k +r+I )T~ T 2 12 2 (2 )d

(4.9)
to be compared with the standard result of the P (Ising)
field theory given in the book by Amit [see his Eq.
(6.25)]. Comparison with his book suggests that his
A, /4! =

—,', , which produces A. /2 = 1 in the fiuctuation
correction term, as anticipated. This concludes the for-
mal treatment of Auctuations for Auids.

detllQllk=(k +r+m ), (4.8)

with r is being defined after Eq. (2.7). Combining Eq.
(2.7) with the results of computation of the fiuctuation
corrections, Eq. (4.8), we finally obtain

where T, (k) =
—,'( V&i

—2V&2+ V22)(k). Making usual ex-

pansion T, (k) = T, (0) ak —where a can be put equal to
one by proper rescaling we obtain

B. The case of polymers

Although the treatment of Auctuation corrections for
polymers proceeds formally along the same lines as that
for simple Quids, there are some important di6'erences be-
tween these two cases. As before, we start with the Auc-
tuation matrix (4.1). This time, however, we decompose
the fields P; and A, as follows: P;=P;+(I/&N )5$, ,
A, =l+(I/&N )5A,. In view of Eqs. (3.26) and (4.1) we
can write the following result: '

fXl[r(r)]exp ——f dr Pf—dr[/, (r(r) }—A(r(z))]

=exp [
—PN[P, (r) —X(r)] [ Xo — f d r [5&,(r) —M(r)]T

+ f ddr f d~r'[5&, (r) —M(r)]SO(r —r', X)[5&,(r') —51(r')]+ (4.10)

V1,
' — 2Sop

where [see Eq. (4.20)] we used the conventions Z = V=Xoa; a"=1 and also

So= f dr f dr'Go(r r', r r'), — — (4.11)

where Go is usual Gaussian propagator. ' The combined use of Eqs. (3.26), (4.10), and (4.11) ultimately produces the
following result for the fiuctuation matrix llM ll (the explicit spatial dependence is omitted as before):

2S0
12 NT

V
—1

2So

XT

1 —p
22 T

1 —p
T

2S0
1 —p+ pT N

(4.12)

to be compared with Eq. (4.2). Here P was defined after Eq. (3.21). Following the same steps as before, we arrive at the
matrix llQll, which in polymer's case can be written (for the case of homogeneous d ncist py=n ) as

2So V&2( 1 n )
1 — V11n 2S V —+V (1 n)—1 n

0 11 N 12

2S0 V22 1 n
llQll

= —
V&2n 1 — (1 n) —2S—0Vi2 —+ V»(1 —n ) (4.13}

2So

1 —n N
2So1+
1 —n N

Use of Fourier transform methods permits us to calculate the determinant of the matrix llQll in a straightforward
way. For the fixed wave vector k we obtain, with accuracy up to an overall unimportant multiplicative constant, the
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following result:

T, (k) T, (k)
det[~Q(~= +&, 1 — +ri m 1 — +ri (I+2m)+6

2SQ(k)
(4.14)

where we have used Eq. (2.6) which defines the order pa-
rameter m and defined T, (k) = ( V» + V2z

—2 Viz )(k)
—T, —ak with a being chosen to be equal to one by the
proper choice of system of units. Using a known result
for So(k),

2S (k) N(1 kR—/d), R ~k~ ((I
2N/k'R, ', R, ~k~))1,

where R =Nl /2d and, in view of Eq. (2.28), we con-
clude that, in order for the polymer solutions to belong to
the same universality class as simple fluids, the following
additional steps should be made. First, the order parame-
ter should be redefined as m ~Qn, m =p; second, only
the long-wavelength limit for So(k), Eq. (4.15), should be
used in order to achieve the correct renormalization
scheme in view of Eq. (2.28); third, a new critical temper-
ature T,*= T, /( I +2/&N ) should be introduced; fourth,
to eliminate the linear (in m ) terms in Eq. (4.14) the shift-
ed order parameter variable m should be introduced via
equation m =m/2+c, where c= rln„r=—(T T,")/—
T. This shift, accordingly, should be made in Eq. (2.28}.
After these steps are made the expression for the free en-
ergy functional, Eq. (2.28), which includes the fiuctuation
corrections can be written as

iments described in more detail in Sec. V. Here we pro-
vide only a sketch of the proof of the conjecture made
above. The complete treatment will be presented in the
forthcoming papers. A close analogy between polymers
and microemulsions suggests that in computation of Auc-
tuation corrections the only difference between these two
cases will emerge from the difference in the actual form
of the expansion (for microemulsions) analogous to Eq.
(4.10). for polymers. We would now like to demonstrate
that, in spite of this difference, the computation essential-
ly proceeds along the same steps in both cases. In Sec.
III we have already noticed the close similarity between
the models of tethered surfaces, Eq. (3.30), and mi-
croemulsions, Eqs. (3.31) and (3.32). The model based on
Eqs. (3.31) and (3.32) is reduced to (3.30) for g ~=5 P.

In turn, the development of the model (3.30) proceeds in
close analogy with the development of the analogous
model for polymers. ' In both cases we can define the
zeroth order distribution function Go via

Go(r(ri) —r(rz))=(5 (r(r, )
—r(r2) —r) }~~~), (4.17)

where, for the case of polymers, we have

2

( . }~=SfXl[r(r)]exp ——f drd & dr
2l o d~

F—Fo
,'rn, p + —p +—

d ln(k +n, r+n, p )TN, ' ' 12 2 (2~)" and for the case of surfaces
(4.18)

(4.16)

and in Landau's style the terms -p ~, etc. , were ignored
at the mean-field level. Evidently, this expression belongs
to the Ising universality class by virtue of the same argu-
ments as were made for Auids. This concludes the treat-
ment of the polymer solutions case.

C. The case of monodisperse microemulsions

Because the model microemulsion described by Eq.
(2.34) can be treated in exactly the same way as the
Flory-Huggins model for polymers, we expect that the
computation of fluctuation corrections for this model
should also demonstrate that the uncharged (neutral) mi-
croemulsions belong to the Ising-type universality class.
This conjecture is strongly supported by the recent exper-

=Wf n[g;r(g)]5 f d'gv'g —~

X exp t
—I3S[r( g'), g; 0,0] ) (4.19)

Z = f d R, f d R2GO(Ri —R2;N)= V=NO, (4.20)

where we have used the property of translational invari-
ance and the normalization of Go. Expansion, Eq. (4.10),
can be written now in the following equivalent form: '

with ri and r2 for polymers being replaced by g, and (2
for microemulsions. The last case is reduced to that for
tethered surfaces when g ~=6 ~. For ~]=N we have
r(N)—=Ri, and for &2=0 we have r(0)=R2. The parti-
tion function Z, defined in comments preceeding Eq.
(3.23), can be redefined now as (a"=1)

Eq. (4. 10) =exp[ /3N(P, —A,)]—
X No — —fd"R, f d R2 f dr f d"rGO(R, —r;N —r)M&(r(r))GO(r —R2, r)

0

+ f d Ri f d R2 f

deaf

dr'f d r f d r'Go(Ri —r;N —r)5@(r(r))G0(r —r', w —r')
0 0
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where 5&5=5/, —5A, . This form is ideally suited for the generalization to the case of surfaces. In the case of surfaces
we need only to replace f o dr . by fd g&g . . . and make the expansion for P; and A, fields as

P,. =P+ (I/& 2 )5P, , A, =A, + ( I/v'2 )5A, . Instead of So(k) for polymers we now have to consider its analogue for sur-
faces. To do so, it is useful to consider first more general k-space n-point function:

G(k„. . . , k„)= Q f d g;Qg;e
i=1

(4.22)

This function was calculated some time ago by Polyakov with the result (for the case of sphere and with the use of
conformal gauge g &

=5 @xp[P(z)],z= (g» gz),

G(k„. . . , k„)=JVf2)[P]exp — SL [P]

n l
X f Q d g;exp P(z;) — gk; kiG(z;, zj. , g) 5 f d (exp[/(z)]

1'o;,~

(4.23)

where the Green's function 6 can be written as

In~z —z'~', zWz'
4~

G(z, z', P) =-

4m

(4.24) R(e~g)=e ~R(g)+e ~b, P, (4.30)

Now, if V' —=6 is the Rat-space Laplacian and 6 is the
Laplacian in the curved space with metric tensor g &,
then it can be shown that

with e being some cutoff, just like a in Eq. (A9) of Ref. 36.
Function G(ki, . . . , k„) is nonzero only for X,k; =0 as in
the case of tethered surfaces which is just the conse-
quence of transitional invariance. For d =26 and for the
points I g; I which belong to the surface of area 3 the re-
sult (4.23) coincides exactly with Eq. (A10) of Ref. 26 for
tethered surfaces (in case of their D =2). The difference
with the present case lies in the fact that the restriction of
constant surface area for the microemulsions automati-
cally selects the shape of the surface self consistently un--

like the case of tethered surfaces where the domain
~HR is chosen in advance, see Eq. (3.30). To determine
the shape self-consistently, we have to solve the variation-
al problem ' of finding an extremal solution of the
equation

e~R(e~)=bg . (4.31)

Combining Eqs. (4.28) and (4.29) with (4.31), we obtain

f d g[R(e~)+A]e~5$=0, (4.32)

where A, is usual Lagrange multiplier (perhaps rescaled).
Equation (4.32) implies

—R(e~)=A, =const= —R . (4.33)

Combining Eqs. (4.31) and (4.33) produces famous Liou-
ville equation

with R (g) being the scalar curvature ' ' of the above
curved space. For the Rat space g &=5 &=g so that
R (g ) =0. Use of this property in Eq. (4.30) produces

5St.[P]
5

=0 (4.25)
b,/+Re~=0, (4.34)

which for R being constant immediately admits solution

subjected to constraint

f d /exp[/(z)]=A, (4.26)

4r4
P, (z) =ln [r+z ]

(4.35)

where the action Sz [P] is defined by

SL[4 I=
2 fd'4[~4'(z)]'-

Variation of SL produces

5SL = f d g( —V p)5p,

while the variation of the constraint produces

fd g ~e$5.

(4.28)

(4.29)

which is an equation for the metric of the sphere of ra-
dius r=R '. Here, the complex z plane coordinates
were introduced via stereographic projection with z be-
ing a complex conjugate of z so that ~z

~

= ~z z ~. The use
of Eq. (4.35) now produces

d ze '=2, (4.36)

which determines the Lagrange multiplier k in view of
Eq. (4.33). Whence, the variational problem is solved
completely and, if it is necessary, we can also consider the
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fluctuations around the spherical shape. Given above
formalism can be extended to the case of more complicat-
ed surfaces, in principle. Here we shall restrict ourself
only with the case of sphere. Going back to Eq. (4.22)
and using the obtained results we have

G(k, ) = A 5(k, ), (4.37)

which produces essentially the same first two terms as in
the square brackets of Eq. (4.10) with &X being replaced
by &3 . Instead of 2So(k)/% we now have

1 1 2S(k)G(k„k2) = G(k, —k) —=

k k kf d z, f d z2exp P, (z, )+P&(z2) — P, (z, )
— P, (z2) — ln~z, —

zz~(4'�)' 4m'Pyo 4' yo 2~ yo
(4.38)

where we have introduced the metric P, (z) instead of
P, (z). The metric P, (z) is the metric of the sphere of
unit radius so that P, =P, +ln(A/4~) as can be easily
seen by the direct substitution of the last equation into
Eq. (4.36). When the actual computations of Eq. (4.38)
are made, we have to remember that z, &z2 for the loga-
rithmic term in view of Eq. (4.24). These computations
are rather lengthy so that we present here only the final
result leaving the details of this and other computations,
which we mention in Sec. VI, for the forthcoming papers.
As in the case of polymers, the final result is rather
cumbersome and can be well approximated by the follow-
ing interpolation formula:

2S(k)
(4.39)

(1+@ /2Py )'

to be compared with the analogous interpolation formula,
Eq. (2.83) of Ref. 45, for polymers valid for all k's. The
rest of the calculations proceed exactly in the same
fashion as for polymers, see Eqs. (4.12)—(4.16) with X be-
ing replaced by A. This calculation assumes, of course,
that the surface tension of the single droplet interface is
nonzero. Inclusion of the effects of rigidity will
effectively change the surface tension and might cause the
surface transitions ' in which case the whole above pic-
ture becomes invalid. This situation requires separate
study to be considered in the future, whence we conclude
that inclusion of the density fluctuations in the case
of microemulsions produces the same result as Eq. (4.16)
with n, —1/&N for polymers being replaced by
n, —I/&A for monodisperse microemulsions. There-
fore, the liquid-gas transition for microemulsions also be-
longs to the Ising universality class. This conclusion is
strongly supported by the recent experiments on mi-
croemulsions to be considered next.

V. COMPARISON WITH EXPERIMENT

Up to date analysis of the experimental data for the
case of simple Auids can be found in the recent paper by
Goldstein and Parola. These authors acknowledge that
in case of simple neutral fluids the effects of cubic and
quintic terms (see our Sec. II) which exhibit themselves
through the singularity in fiuid diameter, Eq. (2.14), are

rather weak and require sophisticated equipment to be re-
liably detected. There is an entirely different situation for
the polymers where the asymmetry of the coexistence
curve is very pronounced.

In Sec. II we provided a mean-field analysis for the
simple fluids, polymers and microemulsions. The results
of the mean-field analysis suggested to us that, although
the cubic and quintic terms might be important, almost
all experimentally measurable results can be with good
accuracy be explained solely on the basis of standard P
field theory. ' This statement remained a plausible
conjecture until Sec. IV where the Auctuation corrections
were explicitly computed. This computation revealed the
correctness of our conjecture as far as the Ising-type criti-
cal exponents are of interest. For the case of simple
fluids, these were known for some time. ' For the case of
polymers these exponents were determined in the accu-
rate experiments by Dobashi et al." to be discussed in
some detail. More recent data for other polymer systems
can be found in Ref. 3. For the case of microemulsions a
much less clear situation existed only quite recently.
The authors of Ref. 43 found critical exponents y and v
which vary continuously from the Ising to much smaller
values. This observation, in turn, initiated the theoretical
investigation aimed to explain why the exponents are
continuously varying. The most recent independent ex-
periments' ' indicate, however, that the critical ex-
ponents do belong to the three-dimensional Ising univer-
sality class which is in full agreement with the results of
our findings. Because the actual experimental methods of
measurements for the polymers and the microemulsions
are very similar, we shall spend most of the remainder of
this section on the discussion of the polymer solutions
case. For' the system polystyrene in methylcyclohexane
Dobashi et al. experimentally found the functional
dependence of the critical concentration (volume frac-
tion) P, =n, on the molecular weight M„(M ~X). As-
suming the simple dependence P, ~ M, based on their
Table I, it is easy to find co- —0.38+0.01. Similar re-
sults were subsequently obtained in Refs. 48 and 49. The
exponent cu cannot be predicted from the theory of criti-
cal phenomena for the same reason as the critical temper-
ature T, which is also not universal quantity. The
discrepancy with the Flory-type result, n, -N ', can
be attributed, for example, to the presence of the extra
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TABLE I. The experimental data taken from the work by Dobashi et al.

System MX10

1.02
1.61
1.73
2.02
3.49
4.64

10.9
18.1
71.9

lnM

9.23
9.69
9.76
9.91

10.46
10.75
11.60
12.11
13.49

1.44+0.05
1.29+0.02
1.27+0.05
1.25+0.02
1.10+0.01
1.09+0.01
0.99+0.001
0.84+0.02
0.75+0.03

lnB

0.365
0.255
0.239
0.223
0.104
0.086

—0.010
—0.150
—0.288

1.41+0.22
1.19+0.21
1.22+0.07
0.91+0.10
1.08+0.09
1.14+0.06
1.22+0.04
1.29+0.06
1.59+0.09

lnA

0.33+0.19
0.16+0.18
0.20+0.05

—0.10+0.10
0.07+0.08
0.13+0.05
0.20+0.03
0.25+0.05
0.47+0.06

. higher-body interactions terms absent in the model based
on Eq. (2.26). This was already suggested by Muthuku-
mar. We would like to demonstrate here that the pres-
ence of these extra higher-body terms will not aA'ect the
quantities which are universal, e.g. , the critical exponents
and the universal ratios, (see Sec. II). Dobashi et al.
measured the concentration diff'erence P+ —

P and con-
centration sum P++P of two coexisting phases. They
conjectured that

(5.1)

and

choice, it is sufhcient to consider the experimental data
for the correlation length g. From Ref. 49 we obtain
g=gor with $0~M ' +—' and v=0. 63. Using the re-
sults of Ref. 26 and the above identification we obtain

g~ (rn, ) =n,

According to Ref. 49 n, ~M —,which produces
go ~ M„' +— . This result is in excellent agreement with
experimentally observed data. Third, using the relation
between the correlation length and the static magnetic
susceptibility ' (osmotic compressibility) we have

"' which in our case gives

—,'(P++P ) —P, = A ri' (5.2) (~n, ) -(rn, )

with A, B, p, and p being adjustable parameters. The
results of their measurements are presented in Table II of
their work. Analysis of their results for the exponents P
and p strongly indicates the Ising-type values associated
normally with the Ising exponents p and 1 —a, respec-
tively. In Sec. II we have introduced the universal ratios
R, and R2 defined by Eq. (2.25), while in Eq. (2.33) we
have demonstrated at the mean field level tha-t these ra-
tios are just pure numbers independent of the molecular
weight of the chain Now we .are ready to demonstrate
that this remains true in the real experiments. To this
end, in addition to the results of Table II we need to use
the results for the osmotic compressibility y=C —

~r~

[See Eq. (2.20).] The osmotic compressibility (and hence
the exponent y ) can be obtained from the light scattering
experiments on the basis of Eq. (3) of Ref. 49. From the
same light scattering experiments the exponent v and the
correlation length can be obtained [see Eq. (2) of Ref. 49].
The results presented in that paper suggest that
C —~M„— . Given this result, we reanalyzed the re-
sults of Table II of Ref. 4, reproduced here as Table I, in
order to obtain the molecular weight exponents for A
and 8 defined by Eqs. (5.1) and (5.2). Our results are
presented in Figs. 1 and 2. We found A a= M ',
g ~ M

—0. 150
W

To understand the meaning of these numbers the fol-
lowing observations are helpful. First, in accordance
with Eq. (4.16) we must choose the appropriate set of
variables to achieve the correspondence with standard

field theory These ar. e r ~~rn„m ~~m Qn„
A/4!+~n, /12., Second, to check the correctness of this

This produces

g+ ~ M0.4v(2 —g) M0.488
W w

dna

0.4

0$

0.2

O. I

0.0

-0 I

-02

-0.3

IO

I

l2
I

l4 I AM

FIG. 1. Log-log plot for the coefFicient B, defined in Eq. (5.1),
based on data taken from Table I.
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0.5

0.4

ture that the result A —/a~n, ' is also not going to
change. To be consistent, we must require finally that the
amplitude B defined earlier remains the same as at the
mean-field level, i.e., B ~ n, ' . With these assumptions,
the universal ratios R, (or R2 ) are given by

03 R 1,2

1 —a —1 —yn, n, ~ pure number,
n

0.2

O. l

0.0

-O. I

lo l2 l4 lnM

which provides strong support to our conjecture. Anoth-
er support is obtained from experiment. Dividing both
sides of Eq. (5.1) by P„we obtain B~ ~M (in view of
our estimate 8 ~M ' ). Using our conjectured value
for 8, B oc n, ', we easily obtain B ~M, which is in
good agreement with experiment.

To test the role of terms ~ m we need to recall Eqs.
(2.31) and (2.32) to be considered in the limit h ~0. At
the mean-field level we have demonstrated that these
terms can be reproduced (within the standard P field
theory) by making a shift in the reduced temperature

FIG. 2. Log-log plot for the coefficient A, defined in Eq.
(S.2), based on data taken from Table I.

which is in perfect agreement with the already-cited re-
sult. Fourth, using Eq. (2.19) and the variables just deter-
mined, we obtain m =(n, )

' 8(n, r)~, where the ampli-
tude 8 [not to be confused with that given in Eq. (5.1)]
may or may not depend on n, . To check if B really de-
pends on n, it is sufficient to use the mean-field result [see
the discussion following Eq. (2.30)], which is 8 ~ n, '~

This gives us two options for B, B ~ n, ~ and B ~ n, '

in order to reach an accord with the mean-Geld results.
To decide which of these two options is actually correct,
the universal ratios, Eqs. (2.25) and (2.33), are of some
help. In order to utilize them, several further steps are
necessary. The reader should remember, that in Eqs.
(2.19)—(2.22) the reduced temperature r should be re-
placed by ~n, = T and that y, C„etc., are given as deriva-
tives of the free energy with respect to the rescaled vari-
ables, i.e., p and T, while the universal ratios R, and R2
are given in terms of original, i.e., nonrescaled, variables.
In terms of these variables we actually have

y=n, '"C'+(n r) r

and

2A-
C, =n, (n, r)a

(to be compared with the previous expression for m ).
Using Eq. (2.32) and the following discussion, we obtain
that at the mean-field level C' +—defined earlier are equal
to n, ', while 3 —/a~n, '. Notice that the experimen-
tal results for C +—discussed earlier are actually related to
the combination yn, . It is this quantity which the au-
thors of Ref. 49 identify with the osmotic compressibility.
Notice also that the result C —~I " +— just quoted in-
dicates that C' — remains the same even beyond the
mean-field level. Because of this observation, we conjec-

1~~w+—
71

If the Auctuation corrections are included, we conjec-
ture that this replacement should be modified to
r~r+ ,' h ln, +—~,where the exponent g should refiect the
importance of the Auctuation corrections. Because Eq.
(2.32) is expected to be correct beyond the mean-field lev-
el, we can make this replacement for ~ in order to obtain

ar(ili+g )/n,
Bh

h~0
Actual calculation produces

(g&+rj )In, ~n, '

which is in agreement with what we have already ob-
tained at the mean-field level [see the discussion following
Eq. (2.30)]. Dividing both sides of Eq. (5.2) by P, we ob-
tain, on the other hand,

(il, +il ) jn, M

where we have used our result for A. If a-0. 12, then we
obtain

—1 —a/4 —g ~ gg 0.3914+0.38$n, W

which, in view of our previous result, produces $-0.417.
The obtained result clearly indicates the importance of
cubic terms for polymer solutions and poses for the
theory the problem of explaining the value of the ex-
ponent g.

For the case of microemulsions' ' the obtained exper-
imental values for y and v practically coincide with that
for polymers. More data are needed to test the corre-
sponding universal ratios.

VI. DISCUSSION

We have presented here a new unified field-theoretic
treatment of liquid-gas transition which, we think, is the
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most natural extension of the phenomenological Landau
mean-field theory of such transition. Being guided, on
one hand, by the experimental data and, on the other, by
the consistency with the previously known theoretical re-
sults our treatment is able to explain why such supposed-
ly difT'erent systems as simple liquids, polymers and mi-
croemulsions exhibit the same kind of critical behavior.
In spite of already good agreement with experiment for
the above systems, many questions still need to be
clarified. First, we would like to understand better the
role of the higher-body interactions on nonuniversal criti-
cal parameters. Muthukumar already have noticed that
inclusion of the three-body interaction term in the Flory-
Huggins theory changes the critical concentration from
n, ~N ' to n, ~X ' to be compared with the experi-
mentally observed n, ~X . The theoretical problem
lies in explaining why the explicit inclusion of higher-
body terms into Hamiltonian does not afFect the critical
behavior observed experimentally (i.e., it is necessary to
demonstrate that these higher-order terms are irrelevant
in the renormalization group sense). This problem is
closely related to the problem of the choice of renormal-
ization scheme for our already developed theoretical for-
malism. Indeed, on one hand, comparison between Eqs.
(4.9) [or (4.16)] and that given in the book by Amit [see
Eq. (6.25) in Amit's book] suggests that the renormaliza-
tion should proceed exactly as in the standard P field
theory; on another hand, the free energy (4.9) [or (4.16)]
is not the free energy of Landau theory of liquid-gas tran-
sition as it was explained in Sec. III. If we follow the
same steps as in this section starting with Eqs. (4.9) [or
(4.16)] then we will arrive at the renormalization scheme
close to that which was discussed by Nicoll and Zia. "
The detailed study of the above situations are already un-
derway and will be presented in the forthcoming publica-
tions. The renormalization scheme of Nicoll and Zia
does not afFect the leading critical exponents or universal
ratios. It aA'ects, however, the description of the cross-
over regime to the noncritical behavior. More data are
needed from the experimentalists in order to distinguish
between the above described possibilities.

For the case of microemulsions we need not only to
provide the detailed derivation of the result (4.39) but
also to study how the rigidity may alter this result. Help-
ful experimental and theoretical information in this re-

gard can be found in the paper by Meunier (see also
Ref. 51). Finally, it is necessary to account for the effects
of polydispersity (in case of polymers and microemul-
sions) and, in addition, of different topology (in case of
microemulsions).

Note added. After this work was completed we be-
came aware of some recent works on Polyakov's bosonic
string in noncritical dimensions (i.e., below d =26). Khi-
zhnik, Polyakov, and Zamolodchikov (KPZ) have
reanalyzed the earlier result of Zamolodchikov, Ref. 39.
Their new results were independently rederived by Da-
vid ' and Diestler and Kawai. According to these au-
thors, the results presented in our Sec. IV correspond to
the semiclassical approximation (d = —ao ), while for
finite d Polyakov s bosonic string with area constraint,
Ref. 39, exist only for d ~ 1 and d ~ 25. For 1 ~ d + 25 re-
sults of KPZ are not in agreement with the corresponding
Monte Carlo simulations by Kazakov and Migdal
which, on another hand, do support their findings for
d ~ 1. The above authors earlier found that in d =3 the
same Monte Carlo algorithm produces meaningful results
for Polyakov-Zamolodchikov model, Ref. 39. Because of
this observation, authors of Ref. 57 concluded that the
correct description of the model in the region 1(d (25
is still missing. Our semiclassical results presented in
Sec. IV represent only the leading contribution which is
in agreement with both Refs. 39 and 53. The current
problem lies in the computation of systematic corrections
to the above semiclassical results. The most recent
Monte Carlo simulations on bosonic strings with rigidity
in noncritical dimensions indicate that, just as in the
case of polymers, the rigidity e6'ects are not important at
distances considerably larger than the persistence length
so that the nonrigid Zamolodchikov model is quite ade-
quate at such distances.
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