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We calculate correlation functions of a one-dimensional spin S =1 antiferromagnetic Heisenberg
model by the large-cluster-decomposition Monte Carlo method. We find that the correlation func-
tions are well approximated by modified Bessel functions. This result supports Haldane’s conjec-
ture, and the correlation length agrees with that obtained from spin-wave theory using elementary

excitation data.

I. INTRODUCTION

Since Haldane conjectured in 1983 (Ref. 1) that the in-
teger antiferromagnetic spin chain, in contrast with the
half-integer case, has an energy gap and its correlation
function decays exponentially, many numerical works
have been done. Botet et al.? carried out exact diagonali-
zation of finite-size systems (N =2-12). Their analysis
by the finite-size-scaling technique supports Haldane’s
prediction. But this result is criticized by Bonner and
Miiller,> and independently by Sélyom and Ziman.*
Bonner and Miiller applied the finite-size-scaling tech-
nique to the S =% case, and they concluded that the
finite-size result up to N=30 might be required to find
the true asymptotic behavior. Recently, Nightingale and
BlSte® calculated the energy gap up to N=32 using a
Green’s-function Monte Carlo method. They concluded
that the energy gap is 0.41J in the limit of N — o0.

As for the correlation functions, exact calculation was
done up to N=16 by Moreo,® and independently by
Natsume and Matsushita.” Kubo and Takada® applied a
quantum-transfer-matrix method for finite temperature
to this problem. Extrapolating their results to the ground
state, they obtained a finite correlation length and their
results are consistent with Haldane’s conjecture. Using a
checkerboard-decomposition Monte Carlo method, Sogo
and Uchinami® calculated spin-correlation functions for
N=40. They analyzed staggered magnetization of S=1
XXZ models, and obtained negative results for Haldane’s
conjecture. A similar calculation was done by
Takahashi,'® but he analyzed the correlation function
directly, and his result supports Haldane’s conjecture.
Recently, Uchinami'! extended their calculation of stag-
gered magnetization up to N=280, and this time his re-
sults support Haldane’s conjecture.

In this paper, we calculate spin-correlation functions of
the §=1 antiferromagnetic spin chain by a variant of the
checkerboard-decomposition Monte Carlo method.!?

II. METHOD

We write the antiferromagnetic Heisenberg Hamiltoni-
an as follows:

40

N—1
H= 3 h;, h;=S7S¥ +S8St,+SiS7,

=

' 2.1
Sy=S, .

Using the large-cluster decomposition,!* we get the fol-
lowing equation for the partition function Z:

Z~Tr[(V,V,)E],

Vi= I exp(—7H,),
k=odd

Vo= [1 exp(—7H}),

k =even

(2.2)

p—1
Hy=3 hpyjs
j=0

T=B/L ,

where p is cluster size (see Fig. 1). A Monte Carlo state is
represented by a set of NX2L classical spins S7;(i
=0,1,...,N—1, j=0,1,...,2L —1). The Boltzmann
weight is given by

1 1 '
[ '

L i
(LG L sy iy
. s Y
YOG o o L Y
012345678 i
0 1 2 k

FIG. 1. Graphical representation of the p-spin cluster
decomposition in the case p=4. Equivalent classical lattice is
represented by a checkerboardlike lattice; i denote sites on the
original 1—d lattice, k is a label of spin cluster p, and j is a label
along the Trotter direction. The shaded rectangles denote
where 2(p+1) local spins interact. The two spins on the sites
connected by dashed lines are equal.
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wsi= 11

k +j=even

<ak7j|exp(—'er)|ak’j+1) »

(2.3)

log ;) =185 jsSpic+1,j5 - - s SEke+11,5) -

In a Monte Carlo trial, we employ the two types of up-
dating processes, the inner-block process and corner pro-
cess. These processes must satisfy local-spin conserva-
tion,

P p
2 Spr+ij= 2 Spr+ij+1 (k+j=even), 2.4)
i=o i=o

and the following identity:

z p— z
Spk +i,j+1 =Spk +i,j+2

(k+j=even,i=12,...,p—1). (2.5)

These processes are illustrated in Fig. 2. In an inner-
block process, we choose new states {S;%} which satisfy

p—1 p—1
'z — z
2 Spk+ij= 2 Spk+ij o

i=1 i=1

Spk+ij+1=Spk+i; (=1L...,p—1), 2.6)
Spki =Spijs Spik+1,) =Spk+1),; (k+j=odd),

and we accept one of the states using the heat-bath
method. Similarly, in a left-corner process, we choose
new states {S;%} which satisfy

1z —Qz
Spk,j =Spk,j Tm

'z — z
Spkj+1=Spkj+1Tm,

'z oz —Qz —
Spk+1,5 =Spk+1,j+1 =Spk+1,; ~M »

NARN
(where k + j=o0dd, m=integer), and we accept one of the
states using the heat-bath method. Right-corner process
can be done in the same way.

In the case of the pair-decomposition Monte Carlo
method, it is difficult to take 7 small enough to include
sufficient quantum effects.!* Using large-cluster decom-
position, one can take account of quantum effects for fair-
ly large 7.

The correlation function of the quantum system is
given by

pPIN=N""3 (SiS7, ) =(2NL)"' 3, (S;870,;) -
i ij
(2.8)

In order to calculate the correlation function, following
Takahashi,'® we use the structure factor S(q):

2L —1
S(g=Fep(D=02L)"" 3 (ISZ;*),
l Jj=0
(2.9)
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FIG. 2. (a) Inner-block process; (b) corner process. The
encircled spins are flipped.

In the sequence of the Monte Carlo simulation we calcu-
late S(g) by the fast Fourier transformation. After
Monte Carlo calculation of S'(q), we calculate p(/) by the
inverse Fourier transformation. Using this method, the
speed of calculation is faster than the conventional
method (N log,N versus N?).
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FIG. 3. Spin-correlation function (—1)/(S2S7,,) is plotted
as a function / in semilog plot. Crosses are for 7=1.0 and cir-
cles are for 7=0.5. N means system size. Apparently, the
N=64 data are nearly on a straight line.
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TABLE 1. Correlation functions (—1)p(!) and energy for
N=16.

1 7=1.0 7=0.5 Exact
0 0.6694(6) 0.6692(9) 0.6667
1 0.4786(10) 0.4739(15) 0.4673
2 0.2709(11) 0.2628(16) 0.2538
3 0.2155(10) 0.2083(15) 0.1997
4 0.1670(10) 0.1596(16) 0.1511
5 0.1442(9) 0.1365(14) 0.1273
6 0.1264(8) 0.1184(14) 0.1093
7 0.1186(7) 0.1105(13) 0.1013
8 0.1152(7) 0.1068(14) 0.0973
E, 22.750(2) 22.543(3) 22.4468

III. RESULTS

We have dealt with the cases N =16-64, 7=0.5-1.0,
and S=32-64, which can be regarded practically as zero
temperature. We set the cluster size p=4. The ratio of
inner-block and corner processes is chosen as 4:1. After
2X10° Monte Carlo steps for thermalization, we did

TABLE II. Correlation functions (—1)/p(/) and energy for
N=64.

l 7=1.0 7=0.5
0 0.6667(1) 0.6671(1)
1 0.4736(1) 0.4701(1)
2 0.2611(2) 0.2549(1)
3 0.2014(2) 0.1963(1)
4 0.1479(2) 0.1427(1)
5 0.1188(2) 0.1135(1)
6 0.0936(2) 0.0883(1)
7 0.0762(2) 0.0713(1)
8 0.0610(2) 0.0567(1)
9 0.0497(2) 0.0461(2)
10 0.0402(2) 0.0373(2)
11 0.0330(2) 0.0306(2)
12 0.0270(2) 0.0249(2)
13 0.0225(2) 0.0206(2)
14 : 0.0186(2) 0.0170(2)
15 0.0156(2) 0.0142(3)
16 0.0128(2) 0.0116(3)
17 0.0106(2) 0.0096(3)
18 0.0088(3) 0.0080(3)
19 0.0074(3) 0.0067(3)
20 0.0062(3) 0.0055(4)
21 0.0053(3) 0.0047(4)
22 0.0044(3) 0.0039(4)
23 0.0038(4) 0.0033(4)
24 0.0032(3) 0.0027(5)
25 0.0028(3) 0.0023(5)
26 0.0024(3) 0.0019(5)
27 0.0021(3) 0.0017(5)
28 0.0018(4) 0.0015(5)
29 0.0017(4) 0.0013(6)
30 0.0016(4) 0.0012(6)
31 0.0015(4) 0.0011(6)
32 0.0016(4) 0.0011(6)
E, 90.941(1) 90.119(3)
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eight runs with 10° Monte Carlo steps. We investigate
only the 3 M5! S7; =0 subspace, because we are mainly
interested in the ground state. In Tables I and II we
show the energy and correlation functions for N=16 and
64 obtained with the Monte Carlo method. Comparing
this result with the exact result,®” the agreement is good.
The correlation functions p(/) are plotted as a function /
in Fig. 3. From Fig. 3 we see that spin-correlation decays
almost exponentially, but a semilog plot of (—1)p(])
shows a slightly upward curvature. As is well known, the
1—d quantum system can be mapped onto a 2—d classi-
cal system.!> If the original system has an energy gap, its
correlation function becomes of the 2 —d Orstein-Zernike
form, that is, the modified Bessel function K (|!| /&)

; 2
[eiaDd’y ook 1176y .
g +&

The large-separation correlation becomes, as Haldane
suggested, (—1)I|7'%exp(—|I|/€). Figure 4 shows
[1172p(1)| as a function [ in semilog plot. The linearity of
the curve is very much improved. In Fig. 5 we compare
the fitting of the correlation function in the form
AK (1| 7&) with A exp(—|I| /&) and A|l|~%exp(—|I|/
£). Apparently the fitting in the form AK,(]I| /&) is best.
The estimated inverse correlation lengths 1/& for the

cases N=64 and 7=1.0,0.5 are

(3.1

0.156 for r=1.0,
176=10.159 for 7=0.5 .

Using a 72 correction law,'® we extrapolate from these re-
sults to the 7—0 limit,
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FIG. 4. (—1)1'*(S?S?.,) is plotted as a function of / in
semilog plot. We set here 7=0.5 and N=64. Comparing with
Fig. 3, the linearity of curve is improved.
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FIG. 5. Comparison of the fittings of the correlation function \ , . ,
in the form AK(]l|/£) with Aexp(—|l|/E) and 16 32 64

A|ll"V2%exp(—|1| /E). Apparently the fitting in the form
AK, (|11 7€) is best. O, AKo(1/E)/p(1); A\, Al 2exp(—1/E)/
pl); X, A exp(—1/8)/p(]).

1/£=0.160 . (3.2)

This value is near the results of Takahashi'® (1/£=0.18)
and Takada® (1/£=0.12).

According to spin-wave theory,” " the elementary ex-
citation of the antiferromagnetic Heisenberg chain is ap-
proximated by

e(q)?=c?(sin’q +£72?),

1,10

(3.3)

where g is the wave number and c is the so-called light
velocity of the system. Parkinson and Bonner!” have cal-
culated the elementary excitation up to N=14 by the
Lanczos method, and independently Takahashi'® has cal-
culated the elementary excitation for N=32 by the pro-
jector Monte Carlo method. From their results in the
neighborhood of ¢ =7 and Eq. (3.3), we estimate that

40 r o
o o
301
S(Q) o o
2.0 o o
o o
o o
1.0 0°
o°°
00
o?oooooooooo
0000 1 1 1
q /2 n

FIG. 6. Structure factor S(q) as a function of g.

N

FIG. 7. S(a) as a function of system size N. X, 7=1.0; O,
7=0.5; V, extrapolated data; /\, exact results.

1/£=0.165, ¢ =2.57, e(7)=0.425. (3.4)
This value is very close to our result and Nightingale and
Blote’s® calculation of the energy gap [e(7)=0.41].
Figure 6 shows the structure factor S(g). In the case
of § =1, S(q) diverges logarithmically at ¢ =7. But for
the S=1 case, it has a Lorentzian-type peak at ¢ =,
S(q)e (g —m)*+E72 712, (3.5)
In Fig. 7 we show S (7) as a function of N. We find that
S () tends to a constant in the limit of N — o,

S(m)—3.9 (N—>ow). (3.6)

IV. CONCLUSION

In this paper we have investigated the spin S=1 anti-
ferromagnetic Heisenberg model. We used the large-
cluster decomposition Monte Carlo method. We find
that the correlation function decays almost exponentially.
More precisely, correlation functions are well described
with the 2—d classical Orstein-Zernike form, that is, the
modified Bessel function. Our results support Haldane’s
conjecture.
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