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Spin correlation function of the S= 1 antiferromagnetic Heisenberg chain
by the large-cluster-decomposition Monte Carlo method
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We calculate correlation functions of a one-dimensional spin S =1 antiferromagnetic Heisenberg
model by the large-cluster-decomposition Monte Carlo method. We find that the correlation func-
tions are well approximated by modified Bessel functions. This result supports Haldane s conjec-
ture, and the correlation length agrees with that obtained from spin-wave theory using elementary
excitation data.

I. INTRODUCTION

Since Haldane conjectured in 1983 (Ref. 1) that the in-
teger antiferromagnetic spin chain, in contrast with the
half-integer case, has an energy gap and its correlation
function decays exponentially, many numerical works
have been done. Botet et al. carried out exact diagonali-
zation of finite-size systems (X =2—12). Their analysis
by the finite-size-scaling technique supports Haldane's
prediction. But this result is criticized by Bonner and
Muller, and independently by Solyom and Ziman.
Bonner and Miiller applied the finite-size-scaling tech-
nique to the S =

—,
' case, and they concluded that the

finite-size result up to N=30 might be required to find
the true asymptotic behavior. Recently, Nightingale and
Blote calculated the energy gap up to N=32 using a
Green's-function Monte Carlo method. They concluded
that the energy gap is 0.41J in the limit of N ~~.

As for the correlation functions, exact calculation was
done up to N=16 by Moreo, and independently by
Natsume and Matsushita. Kubo and Takada applied a
quantum-transfer-matrix method for finite temperature
to this problem. Extrapolating their results to the ground
state, they obtained a finite correlation length and their
results are consistent with Haldane's conjecture. Using a
checkerboard-decomposition Monte Carlo method, Sogo
and Uchinami calculated spin-correlation functions for
N=40. They analyzed staggered magnetization of S=1
XXZ models, and obtained negative results for Haldane's
conjecture. A similar calculation was done by
Takahashi, ' but he analyzed the correlation function
directly, and his result supports Haldane's conjecture.
Recently, Uchinami" extended their calculation of stag-
gered magnetization up to N=80, and this time his re-
sults support Haldane's conjecture.

In this paper, we calculate spin-correlation functions of
the S= 1 antiferromagnetic spin chain by a variant of the
checkerboard-decomposition Monte Carlo method. '

II. METHOD

We write the antiferromagnetic Heisenberg Hamiltoni-
an as follows:

N —1

h; =S;S +I +SOS(+, +S,'S,'+, ,
i =0

SN —So ~

(2.1)

Using the large-cluster decomposition, ' we get the fol-
lowing equation for the partition function Z:

Z=Tr[( V, V~) ],
V, = g exp( rH„), —

k =odd

V2 = g exp( rHk ), —
k =even

p —1

Hk = g h~k+
j=0

r =I3IL,

(2.2)

where p is cluster size (see Fig. 1). A Monte Carlo state is
represented by a set of N X2L classical spins S (i
=0, 1, . . . , X —1, j=0, 1, . . . , 2L —1). The Boltzmann
weight is given by
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FIG. 1. Graphical representation of the p-spin cluster
decomposition in the case p=4. Equivalent classical lattice is
represented by a checkerboardlike lattice; i denote sites on the
original 1 —d lattice, k is a label of spin cluster p, and j is a label
along the Trotter direction. The shaded rectangles denote
where 2(p+1) local spins interact. The two spins on the sites
connected by dashed lines are equal.
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(ak jIe p( k)I

(2.3)

W(IS,', I ) =
k+j =even

!
C'Z C'Z ~Z

k j = k j Spk+)j ' ' (k+()j)
In a Monte Carlo trial, we employ the two types of up-

dating processes, the inner-block process and corner pro-
cess. These processes must satisfy local-spin conserva-
tion,

rp~

wx/X/8

p p

g Spk+; J
= g Spk+;, +, (k +j =even),

i=0

and the following identity:

+Z +Z
~pk +i,j + 1 ~pk +i,j +2

(k +j =even, i =1,2, . . . , p —1) .

(2.4)

(2.5) ~~5Ãgd~.
WEEP, ~i.'::WXEEP~

pk+ij +) p +i j
Is,",

I
~s,

pk j pk j p(k+)) j p(k+)) j ( +j =odd»

(2.6)

and we accept one of the states using the heat-bath
method. Similarly, in a left-corner process, we choose
new states Is '

I which satisfy

These processes are illustrated in Fig. 2. In an inner-
block process, we choose new states IS '

I which satisfy

p —1 p —1

Spk+i,j X Spk+ij,
i=1 i=1

FIG. 2. (a) Inner-block process; (b) corner process. The
encircled spins are Qipped.

In the sequence of the Monte Carlo simulation we calcu-
late S (q) by the fast Fourier transformation. After
Monte Carlo calculation of S(q), we calculate p(l) by the
inverse Fourier transformation. Using this method, the
speed of calculation is faster than the conventional
method (N logzN versus N ).

pk, J pk, J

+1 —
~pk J+1 +I

~ pz ~~z ~z
pk+1 j pk+1 j +1 pk+1 J ™'

Is,',;I &s

(2.7) (-»Lp«)
1

0

(where k +j=odd, m = integer), and we accept one of the
states using the heat-bath method. Right-corner process
can be done in the same way.

In the case of the pair-decomposition Monte Carlo
method, it is difFicult to take ~ small enough to include
sufFicient quantum effects. ' Using large-cluster decom-
position, one can take account of quantum effects for fair-
ly large ~.

The correlation function of the quantum system is
given by

p(l)—=N 'g (S,'S;+i)=(2NL) 'g (S,' S,'+i,. ) .

(2.8)

In order to calculate the correlation function, following
Takahashi, ' we use the structure factor S(q):

2L —1

S ( q ) = g e '~'p(1) = ( 2L )

0.]
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j =0
(2.9)

FIG. 3. Spin-correlation function {—1)'(S S+, ) is plotted
as a function I in semilog plot. Crosses are for ~=1.0 and cir-
cles are for &=0.5. N means system size. Apparently, the
N=64 data are nearly on a straight line.
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0
1

2
3
4
5

6
7
8

Eo

0.6694(6)
0.4786( 10)
0.2709(11)
0.2155( 10)
0.1670( 10)
0.1442(9)
0.1264( 8 )

0.1186(7)
0.1152(7)

22.750(2)

&=0.5

0.6692(9)
0.4739( 15 )

0.2628( 16}
0.2083( 15 )

0.1596( 16}
0.1365( 14)
0.1184(14)
0.1105{13 )

0.1068( 14)
22.543( 3 )

Exact

0.6667
0.4673
0.2538
0.1997
0.1511
0.1273
0.1093
0.1013
0.0973

22.4468

TABLE I. Correlation functions (
—1)'p(l) and energy for

N= 16.
eight runs with 10 Monte Carlo steps. We investigate
only the g+:o'S

1
=0 subspace, because we are mainly

interested in the ground state. In Tables I and II we
show the energy and correlation functions for ¹ 16 and
64 obtained with the Monte Carlo method. Comparing
this result with the exact result, ' the agreement is good.
The correlation functions p(l) are plotted as a function 'l

in Fig. 3. From Fig. 3 we see that spin-correlation decays
almost exponentially, but a semilog plot of ( —1)'p(l)
shows a slightly upward curvature. As is well known, the
1 —d quantum system can be mapped onto a 2 —d classi-
cal system. ' If the original system has an energy gap, its
correlation function becomes of the 2 —d Orstein-Zernike
form, that is, the modified Bessel function Ko( ~

I
~ /g)

III. RESULTS

We have dealt with the cases ¹
=16—64, ~=0.5 —1.0,

and P=32—64, which can be regarded practically as zero
temperature. We set the cluster size p=4. The ratio of
inner-block and corner processes is chosen as 4:1. After
2X10 Monte Carlo steps for thermalization, we did

TABLE II. Correlation functions ( —1)'p(l) and energy for
N= 64.

(3.1)

The large-separation correlation becomes, as Haldane
suggested, ( —1)'~l~ ' exp( —~l~/g). Figure 4 shows
~l' p(l)~ as a function I in semilog plot. The linearity of
the curve is very much improved. In Fig. 5 we compare
the fitting of the correlation function in the form
AKo(~1~/g) with A exp( —l~/g) and A~l exp( —l~/
g). Apparently the fitting in the form AÃo(

~

I
~ /g) is best.

The estimated inverse correlation lengths 1/g for the
cases ¹=64and ~= 1.0,0.5 are
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6
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

w= 1.0

0.6667(1)
0.4736(1)
0.2611(2)
0.2014(2)
0.1479(2)
0.1188(2)
0.0936(2)
0.0762(2)
0.0610(2)
0.0497(2)
0.0402(2)
0.0330(2)
0.0270(2)
0.0225(2)
0.0186(2)
0.0156(2)
0.0128(2)
0.0106(2)
0.0088(3)
0.0074(3)
0.0062(3)
0.0053(3)
0.0044(3)
0.0038(4)
0.0032(3)
0.0028(3)
0.0024(3)
0.0021(3)
0.0018(4)
0.0017(4)
0.0016(4)
0.0015(4}
0.0016(4)

90.941(1)

v=0.5

0.6671(1)
0.4701(1)
0.2549(1)
0.1963(1)
0.1427(1)
0.1135(1)
0.0883(1}
0.0713(1)
0.0567(1)
0.0461(2)
0.0373(2)
0.0306(2)
0.0249(2)
0.0206(2)
0.0170(2)
0.0142(3)
0.0116(3)
0.0096{3)
0.0080(3)
0.0067(3)
0.0055(4)
0.0047(4)
0.0039(4)
0.0033(4)
0.0027(S)
0.0023{5)
0.0019(5)
0.0017(5)
0.0015(5)
0.0013(6)
0.0012(6)
0.0011(6)
0.0011(6)

90.119(3)
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FIG. 4. (
—1)'l'~ (S S+&) is plotted as a function of I in

semilog plot. We set here ~=0.5 and %=64. Comparing with
Fig. 3, the linearity of curve is improved.

0. 156 for &=1.0,
1/E= '

0. 159 for ~=0.5 .

Using a r correction law, ' we extrapolate from these re-
sults to the ~~0 limit,
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FIG. 5. Comparison of the fittings of the correlation function
in the form AKoi

~
l~ /g') with A exp( —

~
I~ /() and

A~l(
' exp( —(l(/g). Apparently the fitting in the form

AKo((l~/g') is best. o, AKO(l/g)/p(l); 4, Al '~2exp( —I/g')/
p(l); X, A exp( —l/g)/p(l).

I

32 64

FIG. 7. S(m) as a function of system size X. X, ~=1.0; 0,
~=0.5; V, extrapolated data; 4, exact results.

I //=0. 160 . (3.2) I//=0. 165, c =2.57, E(vr) =0.425 . (3.4)

This value is near the results of Takahashi' (1//=0. 18)
and Takada (1/(=0. 12).

According to spin-wave theory, " the elementary ex-
citation of the antiferromagnetic Heisenberg chain is ap-
proximated by

This value is very close to our result and Nightingale and
Blote's calculation of the energy gap [e(~)=0.41].

Figure 6 shows the structure factor S(q). In the case
of S =

—,', S(q) diverges logarithniically at q =rr. But for
the S= 1 case, it has a Lorentzian-type peak at q =m,

E(q)2=c (sin q+g ), (3.3)

where q is the wave number and c is the so-called light
velocity of the system. Parkinson and Bonner' have cal-
culated the elementary excitation up to X= I4 by the
Lanczos method, and independently Takahashi' has cal-
culated the elementary excitation for %=32 by the pro-
jector Monte Carlo method. From their results in the
neighborhood of q = vr and Eq. (3.3), we estimate that

S(q) I(q —~) +( (3.5)

S(7r)~3.9 (N~ ~ ) . (3.6)

In Fig. 7 we show S(m) as a function of N. We find that
S(vr) tends to a constant in the limit of N~ oo,

IV. CONCLUSION

4.0

3.0-

2.0

0 0

In this paper we have investigated the spin S= 1 anti-
ferromagnetic Heisenberg model. We used the large-
cluster decomposition Monte Carlo method. We find
that the correlation function decays almost exponentially.
More precisely, correlation functions are we11 described
with the 2 —d classical Orstein-Zernike form, that is, the
modified Bessel function. Our results support Haldane's
conjecture.
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FIG. 6. Structure factor S(q) as a function of q.
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