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We discuss the diffusing-wave spectroscopy technique for multiple scattering of light as intro-
duced in recent experiments. This technique has proven to be useful in probing the self-diffusion of
scattering particles in suspension by measuring the light-intensity autocorrelation function. We
show how the autocorrelation function depends upon the dynamic structure factor of the medium in
the presence of correlations between the scattering particles. There is a simple generalization of the
result obtained for uncorrelated media to include the dynamic structure factor. Previous theoretical
work has employed the white-noise model, valid for small uncorrelated scattering centers. The re-
sults of this model are valid only so long as the propagation of the light can be regarded as diffusive.
On short length scales, however, the propagation becomes increasingly ballistic in nature. We
present an exact formal solution of the transport equation capable of describing the crossover from
ballistic to diffusive propagation. The resulting transport kernel provides a simple correction to the
diffusion approximation for large scattering particles, which substantially improves the agreement
with measured autocorrelation functions. We also discuss the polarization dependence of the auto-
correlation function for both small as well as large scattering particles.

I. INTRODUCTION

The multiple scattering of light by dense random
dielectric materials has received much interest recently.
Experimental and theoretical work has been devoted to
the nature of Auctuations' and the coherent back-
scattering enhancement. ' Most of the theoretical
work on light scattering to date has been based on two
major assumptions: uncorrelated disorder and the
diffusion approximation. In the diffusion approximation
one assumes that the propagation of light in a random
medium is incoherent and diffusive, which is valid for the
transport of light over distances which are large com-
pared with the transport mean free path l*. Over shorter
distances the propagation is increasingly ballistic in na-
ture. The assumption of uncorrelated disorder has also
been referred to as the white-noise model. This is valid,
for example, in media composed of a dense collection of
noninteracting scattering particles of size, a, much small-
er than the optical wavelength A, . Here the scattering and
transport mean free paths are identical: I =l*. In many
experimental situations the particle size a k. As the
correlation length a increases, the scattering becomes
nearly ballistic over longer length scales. This leads to a
transport mean free path l* which becomes larger than
the extinction length l of the coherent field. Individual
scattering events change the direction of propagation
only slightly. A complete angular randomization of the
wave occurs only over a longer length scale, namely l*.
In this paper we present a detailed theory of the cross-
over from ballistic propagation to isotropic diffusion, and
discuss comparisons to experiments where such a cross-
over has been observed. As in the field-theoretic analysis
of John and Stephen, ' we find that the scattered intensity
due to a plane-wave incident on a disordered medium

must be decomposed into an infinite series of spherical
harmonic or angular-momentum components. The iso-
tropic s-maUe component corresponds to classical
diffusion. In the white-noise model all statistical weight
is given to the isotropic part of the intensity, whereas in a
realistic medium a summation must be performed to in-
clude all higher-angular-momentum components neces-
sary for a proper description of the crossover from ballis-
tic to diffusive propagation.

A departure from the diffusion approximation has been
seen in recent measurements of the time autocorrelation
function of the speckle pattern of multiply scattered
light. This new technique of photon-correlation spectros-
copy [known as diffusing-wave spectroscopy (DWS)] re-
lates the measured autocorrelation function to the dy-
namics of the scattering medium. ' ' This is an exten-
sion of single-scattering spectroscopy [quasielastic light
scattering (QELS)], which has been useful for some time
in studying dynamic structural properties of the scatter-
ing medium. Single-scattering spectroscopy relies on the
fact that dielectric Auctuations are suKciently weak that
the light scattered by the entire medium can be described
within the Born approximation. In dense liquids, col-
loidal suspensions and other complex fluids, this is no
longer true. DWS suggests a new direction in extracting
the nature of dynamic correlations within such systems,
given a precise theoretical description of the multiple
scattering of light in correlated dielectric media. We
present a formal theoretical framework, within which
this goal may be achieved.

At long times, the decay of the light intensity auto-
correlation function for diffusing scatterers is dominated
by optical paths of small extent. The departure from the
theoretical calculations based upon the diffusion approxi-
mation appears at such long times. A proper theoretical

40 2383 1989 The American Physical Society



F. C. Me,cKINTOSH AND SAJEEV JOHN

treatment of this regime requires that we go beyond the
diffusion approximation. In this work we describe an in-
tegral equation formalism for dealing with correlations in
the scattering medium. With the introduction of a
nonzero correlation length we are able to determine the
higher-angular-momentum components of the scattered
intensity. The resulting description of short paths leads
to much better agreement with experiment. The depen-
dence of the autocorrelation function on the dynamic
structure factor S(q, t) for interacting particles is dis-
cussed as well. Furthermore, the deviation seen in the
autocorrelation function suggests that a similar deviation
from the diffusion result may be seen at large angles in

the coherent backscattering peak. This is due to an anal-

ogy that exists between the decay of the autocorrelation
function with time and the coherent backscattering peak
as a function of angle. ' ' This analogy is strictly true
only for scalar waves, as we shall see below.

We begin Sec. II by reviewing in physical terms the
DWS experiments and the origins of the discrepancy be-
tween the measurements and the previous theoretical cal-
culations. In Sec. III we discuss the generalization of the
DWS techniques for interacting systems. Section IV de-
velops the theoretical framework for dealing with corre-
lations in the medium, while Sec. V is devoted to the ex-
ample of scattering from large particles. Finally, Sec. VI
contains the results of the calculated polarization depen-
dence of the autocorrelation function.

II. THE PHYSICAL PICTURE

the light —the observed intensity will be an incoherent
sum of contributions of light scattered through all possi-
ble sequences or paths. Take, for example, a particular
sequence of scattering events occurring at pointsr„.. . , r„for which the scattering wave vectors areq„.. . ,tq„. The field E(t) at the detector will carry a
phase

E(t)-exp i g q r (t) (2.1)

(2.2)

Here, we denote by ( ) the ensemble average over all
configurations of the scattering particles. In this case,
the fields E may be treated as complex Gaussian random
variables, and this correlation of four fields factorizes

(2.3)

In the limit of weak scattering (A, « l) the field E(t)
emerging from a sequence of scattering events at
r&(t), . . . , r„(t)will interfere only with the light E(0) scat-
tered by the same particles in the same order
r&(0), . . . , r„(0).We thus find the decay of the correla-
tion function obtained by Maret and Wolf

This is the product of scattering amplitudes for identical
6 function scatterers at points r„.. . , r„.Experiments
have measured the correlation between the intensity of
the light at different times

Diffusing-wave spectroscopy is an extension of single-
scattering techniques to the strongly scattering regime.
Quasielastic light scattering has been used to measure the
dynamic structure factor S(q, t) of the scattering medi-
um. Since QELS depends only on single scattering, it
may be used to probe the motion of scattering particles
over distances comparable to the wavelength of light.
The multiply scattered light, on the other hand, is sensi-
tive to motion over much smaller distances, due to multi-
ple phase shifts. Maret and Wolf have found that the
correlation function for multiply scattered light decays
nonexponentially. They demonstrated the existence of
multiple time constants, indicative of the differing decay
rates of the paths of various lengths. The longest paths
decay most rapidly, while the slowest decay rate is that of
single scattering (ro ), where ro is the time required for a
scatterer to move one optical wavelength. It was subse-
quently demonstrated for diffusing scatterers, that the ex-
perimental correlation functions all decay as exponentials
in Q t li o over three decades. ' Independently, Stephen
theoretically demonstrated the dependence of the correla-
tion functions for short times.

For simplicity we shall consider a scalar field E(x, t)
which we associate with the electric field of light. We ex-
pect that in the multiple-scattering regime the polariza-
tion dependence (or vector nature) of the electromagnetic
field becomes unimportant (in a sense to be described
later), as the scattered light becomes depolarized. So
long as the scattering is weak —i.e., provided that the
mean free path l is much larger than the wavelength A, of

(E(t)E*(0))~ g exp igqj. [r, (t) —rj(0)]
paths

n{q )(r )/6—
paths

(2.4)

In Eq. (2.4) we have made the assuinption that the
scattering particles are small and move as if they are in-
dependent Gaussian random variables. Hence, the aver-
age of the exponential may be replaced by its first cumu-
lant. For interacting particles, this is the leading term in
a cumulant expansion which describes interparticle corre-
lations. Such as expansion would be essential in describ-
ing the true dynamic structure of a dense or strongly in-
teracting Quid. In addition, we have assumed that the
particles scatter light independently. That is to say, the
probability distribution for the wave-vector transfers q is
independent of the macroscopic arrangement of the
scattering centers r but is determined entirely by the
structure of individual scattering particles. This is a good
approximation when the interparticle distance is very

where the sums are over all possible paths. Here, (q ) is
averaged over the single-particle form factor, and
(r ) —6Dst for simple diffusion of particles with self-
diffusion constant Dz. For isotropic scattering the
mean-square transfer

2

&q') =2k'=2
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large compared with the optical wavelength. In the case
of anisotropic scattering, e.g. , from large particles, the
form factor becomes q dependent and the scattering is
typically confined in the forward direction (small q). We
may account for this by noting that the mean-square
transfer (q ) =2kol/1* is reduced by the mean number
1*/1 of scattering events required to completely random-
ize the direction of wave propagation. The number of
steps in a path of length s is given simply by n =s/l.
Thus for a typical path of length s, the loss of coherence
with time is proportional to exp[ 2(t/r—o)s/1" ], where
'Tp Dg k p. The observed intensity is then given by a
proper weighting of paths of length s. The weight, or
number, of such paths may be characterized by a func-
tion P (s), which in turn can be related to the time-
dependent intensity of scattered light due to an incident
pulse. '"

Having made the above simplifying assumptions con-

P(s) = C

4~sD
—c~r —r'~ /(4sD)e (2.5)

where D =cl*/3 is the classical diffusion coe%cient for
light. It follows that

cerning the lack of dynamic correlations between the
scatterers as well as the statistical independence of the
different point scattering events in evaluating the ex-
ponential in Eq. (2.4), all remaining information regard-
ing the actual structure of the scattering medium is
relegated to the function P (s). If the propagation of light
is assumed to be purely classical diffusion on all length
scales, then P (s) is given by the probability that a classi-
cal random walker will enter and leave the medium at
prescribed locations after executing a path of length s.
For a point source at r' and detector at r ( Ir —r'I ))1*)in
an infinite medium, this is given by

3/2

(E(t)E*(0))~ f dsP(s)e ' = f ds
0 0 4~sD

' 3/2

exp[ cIr r'—
I

/(4s—D) 2ts/(ro—l*)] . (2.6)

This integral is dominated by a saddle point at so =+(3'/8t)
I
r r I, wh—ich maximizes the exponential. At short times

(t «ro) the autocorrelation function is dominated by paths of this length. We may evaluate Eq. (2.6) by expanding the
argument

f (s) = —cIr —r'I /(4sD) 2ts/(~01*)—

(E(t)E*(0))~ f dx
4mspD

about the saddle point, keeping only Gaussian fluctuations
3/2

exp( +6t/—~OIr r' /1*——
—,'o'x')

(2.7)

(2.8)

where

0 —3
Ir —r'I'
2l *Sp

(2.9)

is the second derivative of f with respect to s, and
x =(s —so) represents the fiuctuations about so. The ex-
perimentally observed square root of time behavior in the
exponential is manifest in this simple model for short
times, within the diffusion approximation. (As discussed
below, the observed autocorrelation function involves a
sum of contributions from different initial and final
scattering points r' and r within the medium. )

Photons in a real physical medium, however, have al-
ternative nondiffusive modes of propagation on short
length scales. These correspond to the decomposition of
the total incident plane-wave intensity into angular-
mornentum components for the specific intensity. ' In a
correct treatment of wave propagation, each of these
modes must be given the appropriate statistical weight.
This weight depends sensitively on the propagation dis-
tance. High-angular-momentum components are negligi-
ble on long length scales, where propagation becomes iso-
tropic, whereas on short length scales of nearly ballistic

[8+e'(x, t) ] E (x, t) =0,1 d
c2 dt2

(2.10)

where the light scatters off of the random dielectric Auc-

propagation, all angular-momentum components must
receive significant weight so as to represent a plane wave.
The amount of statistical weight given to each mode is
determined by the form factor and the instantaneous or
static structure factor of the medium. As such, these
weight factors provide a spectroscopic probe of the static
structure factor within a multiple-scattering medium. In
previous first-principles theoretical work, all statistical
weight has been given to the diffusion mode, and none to
the higher-angular-momentum modes. This is the funda-
mental origin of certain discrepancies between the white-
noise model and experimentally measured correlation
functions. The formalism which we present in Sec. IV
provides the necessary framework to resolve these
discrepancies by incorporating correlations and the re-
sulting nondiffusive modes of optical propagation.

A simple derivation of the intensity autocorrelation has
been given by Stephen. This begins with the wave equa-
tion satisfied by the (scalar) field E (x, t),
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tuations e in the medium. (Without loss of generality, it
is assumed that the fluctuations have zero mean
(e') =0. ) The strength of the fluctuations is character-
ized by the correlation

Dielectr ic medium

r
' = (0, 0, z ')

k o(e'( xt, )e'(y, tz)) =B(x y, t—, —t2) . (2.11)

L (r, r') =—3 1

1' lr —r'I
(2.13)

The Green's function techniques are useful in calculating

For low densities and for noninteracting particles, this
correlation is proportional to the density of scattering
particles and has a width in lx —yl, approximately equal
to the particle radius. At t=0 the Fourier transform
B(q) of Eq. (2.11) is proportional to the single-particle
form factor. For particles smaller than a wavelength of
light, this will have a characteristic width greater than

In other words, the form factor will be nearly in-
dependent of the scattering vector q, and the scattering
will be isotropic. This is the essence of the white-noise
approximation made in Ref. 20. All transfers
q. =k —k. i between wave vectors k, which represent
physical intermediate states (i.e., lk~l=ko), are given
equal weight. The transport of the field from one point to
another within the medium is given by Green's functions
which are solutions to the wave equation. The techniques
used to caIculate these Green's functions have been de-
scribed in detail by a number of authors in the context of
intensity Auctuations ' and the coherent backscattering
of light. "' ' It is not our purpose at present to describe
these techniques again, but rather to discuss the physical
interpretation of the results obtained to date by these
techniques, and to describe recent results which go
beyond the diffusion approximation. The result of the
calculation of the field-field correlation for backscatter-
ing light from a half-space may be expressed by the in-
tegral

r, (t) —= (z(t)z*(o) )

—f dz e '~ f dz'e ' f d pL(p, z, z', k, k';t) .
0 0

(2.12)

The physical interpretation of this integral is summarized
by Fig. 1. The incident light with wave vector k' enters
the medium and is initially scattered at the point r'. The
exponential factors denote the attenuation of the
coherent field in the medium, while the transport kernel
L(r, r', k, k', t)=L(p, z, z', k, k', t) describes the specific in-
tensity of light at r with wave vector k, for multiple
scattering of waves from r' with incident wave vector k'.
Here, p=(x, y) is the separation between r and r' in the
plane parallel to the boundary. A precise definition of
this function in terms of Green's functions is given in Sec.
IV. The integral then adds contributions from all possi-
ble initial and final scattering points. For isotropic
scattering, L is independent of the initial and final wave
vectors k' and k, since the individual scattering events
are independent of the transfers q . It is well known that
the diffuse intensity (t=O) at r from a source at r' in an
infinite medium varies inversely with separation

z)

FIG. 1. A typical multiple-scattering path. The incident
wave with wave vector k' begins to scatter at r'=(0, 0,z'). The
kernel L (r, r', k, k', t) describes the transport of the field from r'
to r within the medium. The coherent field from r=(x,y, z) is
then observed as the reflected light.

4mc 1

l DK
(2.14)

where D =cll3 is the diffusion constant of the light in
three dimensions.

Both Eqs. (2.13) and (2.14) exhibit poles as lr —r'l ~0
and K ~0, respectively. One of these poles is physical,
while the other is unphysical and is responsible, in part,
for the failure of the diffusion approximation. The diver-
gence of the pole in Eq. (2.14) in the long wavelength lim-
it (IC~O) leads to classical diffusion, described in real
space by Eq. (2.13), which is infinite in range as the
power-law behavior has no characteristic length scale. In
contrast, the nonintegrability of L (K) in dimensions
d & 2 for short wavelengths (K~ oo ) leads to the unphys-
ical pole of Eq. (2.13) as the separation from the source
becomes small. Equation (2.13) is only valid for
lr —r'l »1. This pole overestimates the contribution of
shorter paths to the scattered intensity.

If the isotropically scattering particles are themselves
diffusing in the medium with self-diffusion coefficient D&,
then the Fourier transform of the dielectric correlation
becomes

2D t
B(q, t)= f d re 'q'B(r, t)=B(q, O)e ' . (2.15)

[The precise relationship between B (q, t) and the dynam-
ic structure factor is given in Sec. III.j Physically, the
above simply says that large transfers q lead to faster de-
cay of correlations due to the phase factors e'

the Fourier transform of this function with respect to the
separation variable r —r':

L (K ) = f d re
—iK (r —r')L (r —r')
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described above. This leads to an expression for l. (K)
in which the pole of Eq. (2.14) has been rounded off:

4n.c 1

DK +6(t/ro)(c/I)
(2.16)

Here we have made the adiabatic approximation that the
velocities of the scattering particles are negligible com-
pared to the speed of light. From this we obtain

3 1 —+6t/roir r'i/!—L(r —r', t)=—,e (2.17)

which is simply a statement that longer paths (for which
ir —r'i is typically larger) lose phase coherence more rap-
idly. The above is still valid only for ir —r'i ) I ))A, , and
for isotropic scattering. For anisotropic scattering, l in
Eq. (2.17) must be replaced with I'. This demonstrates
the precise equivalence of the simple physical arguments
leading to Eq. (2.8) and the formal transport theory
within the diffusion approximation. The advantage of the
formal theory will become apparent in Sec. IV, where we
demonstrate how it may be generalized to incorporate
spatial correlations in the disorder and hence nondiffusive

propagation. We also show in Sec. VI how this treatment
may be generalized to include polarization effects. The
expressions above have also assumed an infinite scattering
medium. Proper treatment must be given to the effects of
boundaries. We shall choose the approximate boundary
conditions that the diffuse intensity vanishes at an extra-
polation distance zb-—0.7l* outside of the medium. '

This may be accomplished by the method of images. For
the case of transmitted light through a slab of width 8', it
has been shown that the correlation function obtained
from Eq. (2.17) is in good agreement with experimental
data. ' ' ' In particular, for thick slabs (W))1'), the
data asymptotically follows an exponential

+6t—/ro lV/I
trans (2.18)

For backscattered light, however, both of the above
treatments fail at long times ( r —ro) for the same
reason —they fail to properly treat short paths. It is such
short paths which dominate at long times. For isotropic
scattering, the diffusion propagator of Eq. (2.17) above
leads by the method of images to a correlation function
(for small t /ro)

expI +6t—/ro[p +(z —z') ]' /l II,(t)ct: dze ' ' dz'e '/' d p 2+( I )2]1/2

expI +6t/r—o[p +(z+z'+2z„)]'/ /l I

[p + (z +z'+ 2z6 ) ]' (2.19)

where we have taken the extrapolation distance zb -—0.7l. We have mentioned an analogy that exists between the decay
of the autocorrelation function and the coherent backscattering peak as a function of angle. ' ' This may be seen be-
ginning with the expression for the coherent backscattering peak

C(0)tz- f dze ' 'f dz'e ' 'fd p 2 2, /20 0 [p+( —') ]'
1 e'q ~

[p +(z+z'+2z6) ]'/ (2.20)

Here q =kosin0, and 0 is the angle between incident and
scattered wave vectors, which is assumed to be small. '

The integrals over the two-dimensional separation vector
p may be done analytically. In both of the cases above,
this integral may be written as

in Sec. VI. The resulting integrals of Eqs. (2.19) and
(2.20) are

I 1( ) —r
1

( I+ tt// 6t/ro)
—~[.p'+a')'" —[.q'+q')'"I ~i

( 2+ 2)1/2 (F2+~2)1/2

In Eq. (2.19) 2l=+6t/z l ' and q=0. In Eq. (2.20)
g=0 and q =koo for small angles. This leads to an
identification of the two-dimensionless parameters

X 1+
+6t /ro

—
( +6t /ro)2zb /1

1 —e (2.22)

( 2m l /A)8~+6t /ro .,

In other words, Eqs. (2.19) and (2.20) lead to the same de-
cay of I and C when plotted versus +6( t /7 0) and
(2ml/A, )0. This analogy is strictly true only of scalar
waves, as the polarization dependence of the coherent
backscattering cone is quite different from that of the au-
tocorrelation function. The analogy should be nearly
true, however, for highly anisotropic scattering where the
polarization dependence is weak. We shall return to this

(1+k l8) k l8

(2.23)

( )
—y+6t/ro

(2.24)

The result of Eq. (2.22) is shown in Fig. 2(a). At long
times, the calculated correlation function deviates
dramatically from the data, which has been shown' to
follow an exponential in Qtlro:
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FIG. 2. (a) The autocorrelation function in the scalar white-
noise model for isotropic scattering deviates dramatically from
the observed nearly straight-line exponential behavior. At long
times t-~o, the overestimate of short paths leads to a much
slower decay than is observed. (b) The simple correction de-
rived in Sec. V improves the agreement with the observed ex-
ponential behavior. Physically, this is due to a more realistic
treatment of short paths.

The deviation is due to the overestimate of the contribu-
tion of short paths, which decay very slowly. The treat-
ment summarized by Eq. (2.4) may be improved by cut-
ting off short paths. Within the diffusion approximation,
this corresponds to modifying the weight P (s) given to
short paths. A At to the data may also be obtained by
forcing the light to begin diffusing from a point approxi-
mately I within the medium, ' while retaining the same
function P(s). A clear theoretical understanding of the
nature of the propagation of light over short, nearly
ballistic paths is necessary in order to make this more
rigorous. It is the purpose of Secs. IV and V to derive
from first principles a physically well-motivated generali-
zation of the diffusion picture, by obtaining the form of
the transport kernel L of Eq. (2.12) which is capable of
correctly interpolating between ballistic and diffusive

propagation.
The parameter y in Eq. (2.24) is found to be about 2

experimentally. We may define a slope (y) for the decay
of the theoretical autocorrelation function by

I,(t)-e '-1 y+—6t/r(),
y+6t —y~o

(2.25)

for small t. Similarly, we define a slope for the coherent
backscattering cone by

C(8)-1—ykoi9 . (2.26)

zbC(&)-I— k 1*8, (2.27)

for small angles. The slope @=0.7 in Eq. (2.27), while a
derivation of the coherent backscattering peak from
transport theory yields a more realistic slope of 1.7,
which is still smaller than the value of about 2 found ex-
perimentally. ' This discrepancy is due to an incorrect
treatment of the contribution of short paths, both in Eqs.
(2.19), (2.20), and in Ref. 24. Although the absolute rate
of decay of C and I, is determined correctly by the
diffusion approximation, the overestimate of the intensity
contributed by short paths has made the slope y (or the
relative decay) too small.

In Sec. VI we derive a simple correction to Eq. (2.17)
valid for intermediate distances tr —r'~ -l* and for
l*))l. As shown in Fig. 2(b), the resulting expression
for the autocorrelation function is in better agreement
with the measured autocorrelation function. By the anal-
ogy above, we may expect that the similar correction to
Eq. (2.20) will account for the coherent backscattering
peak at large angles. In addition, the calculated slopes
"y" for I (t) and C(0) are approximately 2, in agreement
with experiments.

III. INTERACTING SPHERES

The derivation of Eq. (2.4) assumed that the scattering
particles were small and uncorrelated. In reality the am-
plitude for scattering with wave-vector transfer q from a
point r within the medium is proportional to the Fourier
transform of the dielectric fluctuation. The total scat-
tered field from n scattering events may then be written
as

E(t) ~ f + e'(r~. , t)e (3.1)

This slope is simply the inverse of the angular width of
the cone in units of A, /(2m. l). By Eqs. (2.22) and (2.23)
these slopes are both @=2.4. For anisotropic scatterers,
say particles of radius a ~ A, , the integrals of Eq. (2.12) are
modified by simply replacing l by the transport mean free
path I' in the integral over p. The scattering of the
coherent field, however, is still characterized by the mean
free path l. In the limit of large 1*/l, the scattering of
the coherent Aeld is restricted to the surface of the medi-
um, i.e., z,z'(&I*. If we choose -the approximate bound-
ary condition that the diffuse intensity vanishes at a dis-
tance zb ——0.7l* outside of the medium, ' then for exam-
ple, the coherent backscattering peak is given by
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e'(r, t)= g b(r —x (t))
a=1

=I b (r —x) + 5(x—x (t)),
x a

(3.2)

where b (r) represents the dielectric constant of an indivi-
dual particle centered at the origin. For simple spherical
particles of radius a, this is given by

bo, if r~a,
b r='

0, otherwise . (3.3)

where the integrals over rj add contributions of light
scattered from all points within the medium. The depen-
dence of E on both static and dynamic correlations
within the medium is contained in the Auctuation e,
which depends upon the specific configuration of scatter-
ing particles. Up to a shift in e in Eq. (2.10), the fiuctua-
tion field e'(r, t) due to N identical particles located at
xi(t), . . . , Xiv(t) is

In the limit that a ~0, b (r) is an approximation to the g
function and Eq. (3.1) reduces to the expression in Eq.
(2.1):

E(t)-exp i gq. r.(t)
'

J
(3.4)

where r represent positions of just n of the scattering
particles.

In deriving Eq. (2.4) we considered only the interfer-
ence between scattering paths which involved the same
scattering particles and the same transfers q, in the same
order. Corrections to this (from interference between
diff'erent scattering paths) are of order (kol) ' and small-
er. [This is because the intermediate plane-wave states
have wave vectors k, which are uncertain by an amount
of order I '. Thus, for example, in paths which difFer
only by a transposition q ~q +1, the phase space avail-
able to the intermediate state k. is restricted to a solid an-
gle of order (kol) '. ] In the limit of weak scattering
these terms vanish, and the generalization of Eq. (2.4) to
include correlations is

oo n I

( (t)EE*(Q)) «X X l (r ett t(r e0)e t
' '' '

l
.

n =1 j=1
(3.5)

Here the average (( )) denotes the ensemble average ( ),„,over all configurations of e' as well as an average ( ) over
all possible transfers Iq. }. For scattering from discrete particles in suspension, the ensemble average assumed in this
derivation corresponds to an average of the measured autocorrelation function over all possible configurations of the
scattering particles. In colloidal liquids, for example, this ensemble average is equivalent to a time average, since, given
sufficient time, each particle will move throughout the liquid and the full configuration space will be spanned. In col-
loidal glasses, gels, and crystals, the motions of individual particles are restricted about some mean configuration, which
is stable. In experiments, the ensemb1e average may be performed by moving the sample many times, in order to
probe various members of the ensemble. ' This requires that the sample be of linear dimension much larger than the
length of correlations within the medium, e.g. , for a crystal, the sample must be much larger than the size of an indivi-
dual grain. We shall also assume Gaussian statistics of the Ouctuations e, which allows us to factor the ensemble aver-
age of the 2n-fold product of fields e in Eq. (3.5) into pair correlations. This is valid when the number of scattering par-
ticles is large. With these assumptions, Eq. (3.5) is equivalent to the sum of ladder diagrams (see Sec. IV) for weak
scattering ( l » A, ):

(E(t)E*(0))()- g Q J ( (er, , t) (e0, 0)),„,e
n=1 1 q

Here we have used the translation invariance of

(3.6)

which is ensured by the ensemble average, in order to pick out the only nonzero Wick contractions. The integrals over
r simply yield the Fourier transform of the pair correlation, or the dynamic structure factor S(q, t), in the following
way. Using Eq. (3.2), the integrals can be evaluated

l b(r —x)b(x) Xb(x —x,(t))b(x' —xe(D)) e'e'=bt(b(q) —pe ' e ),r, x, x'
aP iV

(3.7)

where we have again used translation invariance. The
first term, ~b (q) ~, is the form factor (to be derived in Sec.
VI) and

1 iq [x (t) —xs(0)]
e

N ens

is the dynamic structure factor S (q, t):

B (q, t):—ko I (e'(r, t)e'(0, 0) )e'q'
r

=koN~b(q)~ S(q, t) .

With this, Eq. (3.5) becomes

(3.8)

(3.9)
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The average ( ) is over all transfers q=k —k' between
physical states ( k =k ' =ko ). For large particles, the
form factor emphasizes small transfers, so that

4'(B(q, t)) =2m J sinOdHB(2kosin(0/2), t)

=2m OdOB k00, t (3.10)

Here we have taken the wave-vector transfers q to be in-
dependent of each other. This is true only of long paths.
At t=O, the product g (B(q,O)) simply gives the
weight P (n) of paths of length n contributing to the total
scattered intensity. Thus the product

(B(q, t))
(B(q,O))

describes the dephasing of the scattered light with time
n

&E(t)E*(0)&
- yP(. )

&B(q,O) )

= QP(n)exp n ln (B(q, t))
B q, O

(3.11a)

This is the generalization of Eq. (2.4), which is valid for
large n. When n is large, the ratio

(B(q, t))
(B(q,O) )

must be near unity in order to give an appreciable contri-
bution to the autocorrelation function. An approxima-
tion to the logarithm gives

q (*.( )
—*.(O))

)Gq, t= — e
ens

—w(t)q (3.13b)

b [2 sin( 9/2 ) ]sing d 0,

Here 6W(t)=([x(t) —x(0)] ) is the mean-square parti-
cle displacement as a function of time. (This propaga-
tor for motion of individual scattering particles is not to
be confused with the single-photon Green's functions dis-
cussed above. ) We shall presently consider two impor-
tant limits. First, we consider self-difFusion of the scatter-
ing particles. For dilute, noninteracting spheres, the dy-
namic structure factor may be approximated by the
single-particle self-diffusion propagator

B(q, t) =kP'Ib(q) I'e (3.14)

In this case, the small time [(tl/rol*) «1] limit of Eq.
(3.11) is precisely Eq. (2.4), where the average (q ) is
weighted by the form factor ~b(q)~ . The simple results
of Sec. II are recovered in this case.

Another important limiting case is that of particles
which interact strongly (e.g. , via Coulomb repulsion) to
form a colloidal glass or crystal. As in solids, the parti-
cles will vibrate about their mean positions subject to
Brownian motion in the quid. If the interparticle spacing
is large, then the vibrations may be considered to be in-
dependent of each other. (In addition, due to the viscosi-
ty of the Quid, phononlike modes will be strongly over-
damped. ) For large transfers q (corresponding to dis-
tances smaller than the mean interparticle spacing), only
the diagonal terms (a=P) in Eq. (3.13a) survive. The
average over S(q, t) involves an integral in Eq. (3.10) with
measure

(E(t)E*(0)) ee Q P(n)e p x—n 1—
(B(q,O) )

(3.11b)

which gives weight primarily to transfers q —1/a. Thus,
if the interparticle spacing is much larger than the wave-
length and particle size, we may approximate

This suggests a simple generalization of Eq. (2.4), in
which we replace

S(q, t)=G(q, t) .

By Eq. (3.13b) this leads to

(3.15)

tl (B(q, t))
(B(q,O))

(3.12) (E(t)E*(0))~ QP(n)e (3.16)

Actually, the former expression is just the self-diffusion
limit of the latter. Equation (3.11) corresponds to the
diffusive mode of propagation of the 1ight, since it exhib-
its no dependence upon the initial and final wave vectors.
In Sec. IV and in Appendix 8, we discuss the nondiffusive
contributions of the scattered light.

A large body of literature exists on the theoretical and
experimental determination of the dynamic structure fac-
tor S (q, t) for colloids. The dynamic structure factor
S(q, t) is defined by the following sum over all pairs of
particles:

where the average (q ) is weighted by the form factor.
For long paths, the scattered light is still diffusive and
hence P(n) may be approximated by Eq. (2.5). The re-
sulting autocorrelation function is then

[6W(t)k2]~/~r, (t)=. "' '" ' (3.17)

Thus, in experiments on colloidal glasses or crystals one
can measure the mean-square displacement W'(t) as a
function of time, ' provided that the interparticle spacing
is large.

1 'q I*„() —*))(0)])S q, t = — e
~p ens

' (3.13a) IV. FORMAL SOLUTION
OF THE TRANSPORT EQUATION

while the single-particle propagator is the diagonal part
of this

In this section we derive from first principles a solution
to the transport equation in a random medium with a
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cgo(k)go(k') f (k)ij'r'(k')

/[2(t/7- )+DK2] k (K, t)
(4.1)

Here

general correlation function 8 (q, t) defined in Eq. (2.11).
This solution yields a transport kernel L (r, r', k, k', t) [see
Eq. (2.12)] for the specific intensity of light at r with wave
vector k, given a source at r' with incident wave vector
k'. This leads to a new set of functions &fr (k ) for
a=0, 1,2, 3, . . . , which describe the spectral content of
the wave in the random medium. Each of these functions
is highly peaked about ~k~ =ko, with characteristic width
given by l '. Here ko=(2m/A, ), where A, is the wave-

length of light. The index e labels the angular-
momentum component of the energy density. In general,
for an incident plane wave impinging on a dielectric
half-space, the specific intensity is decomposed into an
infinite series of angular-momentum components with
characteristic decay lengths. In the diffusion approxima-
tion only the isotropic function Po(k) is retained.

In this section we demonstrate that the crossover from
ballistic propagation on short length scales to diffusive
propagation on long length scales is obtained by replac-
ing the propagator of Eq. (2.14) by a sum over all the
angular-momentum components e:

A,o(K, t) =2 + D—Kt l

7p c

and for a )0 and small It,

X (K, t) =A, '+A, "K'+ (4.2)

J(R,k)= f 1"(R—R';k, k')J (R', k') . (4.3)

This expresses the linear response of the scattering medi-
um to incident light with wave vector k'. The response is
determined by the averaged two-particle propagator

The expansion coefficients define length scales (A, "/A, )'~

over which the ath angular-momentum component de-
cays exponentially with distance K . This result is de-
rived from a linear integral equation which the transport
kerne1 satisfies, without recourse to the field theoretic
analysis of Ref. 15. A simple physical interpretation of
this result in terms of the photon trajectories is deferred
until Sec. V.

The derivation of the diffusion propagator by Green's
function techniques in an isotropically scattering medium
has been discussed by a number of authors. "' ' The
specific intensity J(R,k) of radiation at R and with wave
vector k can be related to the light J (R,k') incident at
R' with wave vector k':

I I

PR —R';k, k'j= f e '"'e'"' Ge R+ —,R'+ —6" R' —,R ——
)r, r' 2' 2 2' 2

(4.4)

I
V'+ (coo/c')[r+ e'(x)] I 6 (x,x') = —5(x—x') . (4.5)

We have neglected the time dependence of the dielectric
fiuctuations (or, equivalently, the velocities of the scatter-
ing particles). This adiabatic approximation is valid for
particle velocities much smaller than the wave velocity, c.
This is a good approximation for light scattering. The
product of Green's functions in Eq. (4.4) is then ensemble
averaged over all possible realizations of e'. We will cal-
culate the Fourier transform of Eq. (4.4) with respect to
R:

I qq, (K)—=f e ' 1 (R;k, k') .
R

For isotropic scattering, a diffusion approximation may
be obtained by summing the ladder diagrams in a pertur-
bation expansion in the scattering potential. In this ap-
proximation, the scattered part of I is independent of in-

(4.6)

An abbreviated notation has been used for the spatial in-

tegration: f =—Id r. Similarly, below we shall abbrevi-

ate wave-vector integrals:

f =—fdk/(2~)'.

The one-particle Green's functions 6 and 6 appearing
in Eq. (4.4) are the retarded and advanced exact solutions
to the wave equation Eq. (2.10) with a specific
configuration of the scattering particles [i.e., a given
dielectric fiuctuation e'(x)] and a fixed frequency
coo=cko/(e)'

cident and final wave vectors k' and k, with the result
given by Eq. (2.14). This derivation involves an expan-
sion about small K, and is only valid for Kl «1. From
this we obtain a result for Eq. (4.4) which is valid only for
R ))l. For anisotropic scattering, the diffusion result is
valid over distances R greater than the transport mean
free path l*. We wish to extend I to intermediate dis-
tances R ~l*, for which I must depend upon the wave
vectors k and k'.

The propagator I satisfies the Bethe-Salpeter equation

I „„(K)=Gk+ 6" k—

5gg'+ f Ui;g (&)f g,g(&), (4 7)

where 5i,i,.——(2ir) 5(k —k') and U is the irreducible vertex
function. The single-particle Green s functions appearing
in Eq. (4.7) are ensemble averaged. This equation is de-
rived in Ref. 28 for electron transport. It may be viewed
as a transport equation for the specific intensity, to which
the Twersky integral equation is an approximation.
The definition of the irreducible vertex function, U, is il-
lustrated diagrammatically in Fig. 3(a). Diagrams of this
class cannot be split by cutting a pair of retarded and ad-
vanced Green's functions (solid lines). We shall, howev-
er, concern ourselves with the weak scattering approxi-
mation to this vertex as illustrated in Fig. 3(b), in which
(to lowest order in A, /1) we may take
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(a)

k'+K/2

k-K/2

:Ui

k+K/2

:r"
k'-K/2

:r;/rrrr' ~ rrrrr'

~ ~

~ ~
~ ~

GR/A(k) —[k2 k2 yR/A(k)] —1 (4.11a)
satisfy

ImX /"(k)= f 8(k —k', 0)ImG /"(k') .

More generally, in Ref. 28 is derived the Ward identity
relating the self-energies to the irreducible vertex

(4.11b)

fixed frequency coo= cko/(F)'/ . In the coherent potential
approximation the single-particle self-energies defined by

beak(K) —f Ukk (K)b Gk. (K),
where

(4.12a)

bXk(K)=X k+
2

—X k—K
2

(4.12b)

and

j~ g~
I I+ I I + ~ ~ ~

I

FIG. 3. (a) The Bethe-Salpeter equation is an integral equa-
tion relating the transport kernel I to the irreducible vertex
function U. The irreducible vertex is defined as the sum of all
diagrams which do not fall into two distinct parts when a single
pair of retarded and advanced propagators (solid lines) are cut.
The first few terms in U have been shown. The last of these is
one of the "maximally crossed" diagrams. (b) In the weak
scattering approximation, only the first term in the expansion of
U is included. The Bethe-Salpeter equation then reduces to the
sum of ladder diagrams.

bGk(K)=G k+
2

—6 k—K
2

(4.12c)

This is valid for anisotropic as well as isotropic scatter-
ing. It is the result of particle number conservation, and
thus is true in dissipationless media. With the assump-
tion of weak scattering the integral equation of Eq. (4.10)
may be represented diagrammatically as in Fig. 3(b). The
scattering events with transfers q; are represented by the
dashed lines, with which we associate the strength
8 (q, , t). The integral equation (4.10) may be rewritten as

f k[ 5kk—fk«»kk (t)]l k k(K")=fk«»kk (4.1»

U„„(K)=kf (e'(x, 0)e'(0, 0))e'" where

fk(K) =G k+ G k— (4.14)
=8(k —k', 0) . (4.8)

(The next higher correction to this is from the crossed di-
agrams which describe interference between difFerent
diffusion paths. We shall ignore these effects for the
present. ) In a nondissipative medium we may assume
that the dielectric Auctuations are real, as is done in Eq.
(4.8). The propagator I (R;k, k') in Eq. (4.4) and its
Fourier transform satisfying Eq. (4.7) describe the trans-
port of the light at a particular time, and as such involve
only equal time correlations of the Green's functions and
of e'. More generally, we are interested in the field-field
correlation at different times,

(E(t)E*(0)) —f I (R—R', k, k', t)J (R', k') . (4.9)

Up to factors describing the decay of the coherent field
within the medium, this is the generalization of Eq.
(2.12). Here I „k(K; t), obtained as in Eq. (4.6), satisfies

I kk(K;t)=G k+ G" k—

I kk (K; t) = [5—f (K)8 (t) ]kk,'f k, . (4.15)

The inverse is defined by

f„[5—f«»(t)]kkI[5k, k' fk, (K)Bk,k'(t)1 5kk

(4.16)
The precise relationship between I in Eqs. (4.9), (4.10),
and the generalization of Lkk in Eq. (2.12) to anisotropic
scattering is that

Pkk. (K;t) =5kk fk+fkLkk. (K;t)fk (4.17)
or

Lkk (K;t)=8(k —k', t)+ f 8(k —k„t)f„L„„,(K, t),

Here we have abbreviated 8 (k —k', t) as Bkk. (t). From
Eq. (4.13) we see that the propagator I may be obtained
from the inverse of the operator (5 fB), prov—ided that
the inverse exists:

T

X 5kk+ f„B(k—k„t)Ik k(K;t)
L

(4.10)
=8(k —k', t)

(4.18a)

in the weak scattering limit. Again, we have made an
adiabatic approximation. The dielectric fIuctuations are
assumed to vary slowly with time, and at any instant
present a static random potential, which scatters the
light. Hence the Green's functions are evaluated at a = f„B(k—k„t)[5—f (K)8 (t)]„„',.

1

(4.18b)

(4.18c)

+f 8(k —k, , t)fk 8(k, k',t)+—
1
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The transport kernel L (r, r', k, k', t) in an infinite medium
is obtained by inversion of Eq. (2.14):

I. (r, r;k, k;r)= f e'K ~' ' L+ (K;t) .
K

(4.19)

A,.~o. (4.23)
The Ward identity above tells us that fo(k) =—EGi, (0) is a
zero mode of the operator [5—f (0)B(0)]:

f„,[5 k
—)fk(0»ii (0)]~G) (0)=o (4.24a)

since

B,Gi, (0)
b, Xi,(0)= (4.24b)

We may write I i,i, (K;t) in terms of these (normalized)
eigenfunctions:

(k) *(k')
fi, ~

A, (K, t)
(4.25)

An expression similar to Eq. (4.18c), but in terms of the
operator (B ' f)—, can be found in Ref. 15, and in Ap-
pendix A. Formally, the inverse can be expressed as a
geometric series

(5—fB)i,),'=5),),, +f),B„),, +fq f Bi,),
)
f),)B))) +

I

(4.20)
or by Eq. (4.15):

r„,(K; t) =5„,f„,+f„B„„,f
+f) f B),i,)fi,)B),)), fi, + . . . . (4.21)

The first term I i,i, (K, t)—:5),i,.fi, (K) represents the
coherent (unscattered) field. Subsequent terms represent
single- and higher-order scattering. Physically, the
reason that all terms must be considered is that, in a
scattering medium of dimensions much larger than the
mean free path l, very long random walks of the scattered
waves are possible. Truncating the series after n terms
would correspond to scattering in a medium of linear di-
mension less than V n I. This series is none other than the
sum of ladder diagrams, which is simple to evaluate only
for isotropic scattering, where the integration over the in-
termediate momenta k becomes trivial because B is con-
stant. For anisotropic scattering, Eq. (4.20) no longer
represents a practical way to calculate I . Equation (4.20)
does, however, demonstrate the existence of (5—fB)
for any finite K. It can be shown that the series con-
verges for finite K in the weak scattering limit. Physical-
ly, this is apparent since only a finite number of scatter-
ing events, and hence only a finite number of terms in Eq.
(4.20), can occur in any finite volume. Nonzero K values
correspond to probing the system in a finite scattering
volume of linear dimension K

We may express the operator (5—fB) ' in a special
representation in terms of eigenfunctions f and associat-
ed eigenvalues A, of the operator (5—fB):

f [5—f (K)B(t)]„i,g (k')=A. (K, t)f (k), (4.22)

with

We will concern ourselves primarily with the low-lying
eigenvalues A, ((1, for which the eigenfunctions are
strongly peaked about k =ko. As f), (K) decreases with

K, the eigenvalues increase quadratically with K:

A, (K, t) =A, '(t)+ A."K'+ (4.26)

(4.27)

Here and in Eq. (4.25) the a=O mode corresponds to the
diffusion approximation. By the Ward identity, and the
spherical symmetry of the eigenfunction $0(k)=b, G(k),
this term in Eq. (4.25) is independent of k, k and yields

r(K, O)- l 1
(4.28)

4~ X,"Z'

which is the diffusion approximation of Eq. (2.14). As
discussed in Sec. II, this pole as K~O is physical, in the
sense that the diffusion approximation is good in the
long-distance limit. In the short-distance limit
[K)(l*) '], however, the other modes (a)0) will be-
come important, as the eigenvalue A,o(K) increases and
becomes comparable to A, &, A.2, etc. The diffusion pole, as
derived above in Eq. (4.28), is due to the vanishing of
A,o(0,0). The other modes (a) 0) are not important for
large distances R, due to the exponential factors:
exp[ —(iP/A, ")'~ R], where A. %0. For the correlation
function of Eq. (4.9), the a =0 mode of Eq. (4.27) reduces
to Eq. (2.17), which describes classical diffusion of light

l 1 —[Ao(t)/I ] R
I (R, t)- e

(4~) A,()'R
(4.29)

where go(t)/go =6(r/~0)(l*) as we shall see in the
next section. The "excited states" with eigenvalues A,

(a) 0) describe the crossover to ballistic propagation on
short length scales. The eigenfunctions g (k) will be-
come increasingly dependent upon the direction k, so
that the products g (k)P*(k') will lead to a propagator,
I (R;k, k';t) in Eq. (4.27), which becomes peaked about
k=k'. This peak becomes more pronounced as R de-
creases, due to the exponential factors exp[ —(A, /
A,
"

)
' ~ R ]. The wave retains its directional character on

length scales shorter than I*, and only for R &&l* does
the transport kernel become isotropic, as suggested by
the classical diffusion model of Sec. II.

In general, the eigenfunctions f (k) will depend on K
and t as well. For the present we shall take the eigen-
functions for E=O and t=O. [For the case of a Gaussian
correlation function B (x) a detailed derivation of the
eigenfunctions and eigenvalues is given in Appendix A.
More general correlation functions B(x) have been con-
sidered in Ref. 15. The eigenfunctions and eigenvalues
resemble those of a quantum particle bound in a spheri-
cally symmetric 5-shell potential. ] The K dependence of
the eigenvalues A. (E) of Eq. (4.26) then leads to an ex-
pression for I (R;k,k'):

4a —[i (t)IA, ] R

4m.R
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V. SCATTERING FRAM LARGE PARTICLES

In this section we consider scattering by particles of ra-
dius a ) A. . If the particles are uncorrelated (e.g. , at low
concentrations), the averaged dielectric correlation

B (x—y ) =k o ( e'( x )e'( y ) ) (5.1)

N

B(x—y)=ko g f b(x —x )b(x. —y) .
j=]

(5.2b)

The form factor is simply proportional to the Fourier
transform of this with respect to the relative coordinate
x

B (q) =koN f e ' "b (x—xo)b (xo)
XXO

=koNb (q), (5.3a)

t

4m 3 3j, (qa)
b(q)= f e 'q'b(r)= a bo

3 ga
(5.3b)

The function j, is the first spherical Bessel function. The
form factor b (q) is a highly peaked function about q=O,
with width a . Thus for a & k, the scattering is
predominantly in the forward direction, with mean-
square scattering angle [determined by the width of
b (q)] given by (8 ) =2/(koa) . As the light is repeat-
edly scattered in the medium, the direction of the light k
executes a random walk on the unit sphere with rms step
size 8, ,-1/(koa). The number n„ofsuch steps re-
quired to randomize the light is related to a by

n„(8')—1. (5.4)

This number n, is simply the ratio of the transport mean
free path l to the scattering mean free path l, where

in* =(1—cos8)

will have a characteristic width of approximately a. To
be more precise, we shall assume uncorrelated spherical
scattering particles at random positions x„.. . , xN, and
with dielectric constant b0. The dielectric Auctuation
due to a single particle at x is then characterized by

bo, if ~x —x.
~
&a,

e'(x) =b (x—xj)= (5 2a)0, otherwise .

The ensemble average in Eq. (5.1) then corresponds to an
integral over the particle positions xi, . . . , xN..

about k=k', since short scattering paths are unlikely to
have randomized k. This angular dependence arises from
the eigenfunctions g ( k ) for a )0.

As we have seen in Sec. III, for interacting particles
B (q, t) is the product of the form factor and the dynamic
structure factor S(q, t) of the medium. For simple
Brownian motion of noninteracting particles, the correla-
tion B (q, t) in Eq. (5.3) becomes the product of the form
factor with the single-particle self-diffusion propagator

2D tB (q, t) =B (q, O)e (5.6)

[4v —fg(0»~g(o)] .

We may evaluate the corresponding eigenvalues as fol-
lows:

A,.(0,0)= ' g f ltd.
" (k)

We wish to find the eigenfunctions and eigenvalues of Eq.
(4.25) in the limit that a ))X. In this limit we will be able
to make certain simplifying assumptions, which are valid
for intermediate distances R. We also wish to consider
the weak scattering regime, for which l »A, . Here the
function fz(0) is highly peaked about the energy shell
~k~ =ko. The width of fz(0) is approximately 1//, i.e.,
fz(0) is small whenever ~k —

ko~ ) 1/I. Since fz(0) de-
scribes the coherent propagation of plane-wave states
with wave vector k which have a finite lifetime ~=l/c,
this is nothing more than the Heisenberg uncertainty
principle. From Eq. (4.22) for low-lying states a, with ei-
genvalues A, «1, the eigenfunctions g must also be
highly peaked about k =k0. In this case, what is impor-
tant physically is the angular dependence of g on k near
k =k0. As with any quantum-mechanical bound state in
a spherically symmetric potential, the wave function fac-
tors into a radial eigenfunction and a spherical harmonic
( F) labeled by total angular momentum a and azimuthal
quantum number m. It is shown in Appendix A that for
k0a »1 and l &)A, , the radial wave function for all low-
lying eigenfunctions becomes independent of a in the
classically forbidden region, and may be approximated by
the solution for a=0. We denote this function by Po(k).
We may approximate these low-lying eigenfunctions by

(k) =&4vrgo(k) Y (k), (5.7)

where the eigenvalues are independent of m, by the
spherical symmetry of the operator

f sinO d 8 B(2kosin(8/2) )( 1 —cos8)
0

f sin8 d 8B(2kosin(8/2) )
0

2

(koa)
(5.5)

X [5qq —f„(0)Bqt(0)](t'~ ~ (k')

=f,fo (k)[&tk' fa( )Bat'( )]No(k ) n(~) ~
kk*

(5.8a)

for a ~ X. Only over distances R large compared with the
transport mean free path l * will the propagator
I (R;k, k') become independent of k and k', due to the
randomization of the intermediate wave-vector direc-
tions. For shorter distances R ~ l* it too will be peaked

where x =cosO=k-k'. The eigenfunctions are slowly
varying with k over angles small compared to 0, „pro-
vided that o. ((t9, ',. Since 8 weights small angles
0 ~ 0, „wemay approximate the Legendre polynomials
in Eq. (5.8a) by
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P (x) =1—P' ( l )(1—x),
1 ))2t /r ( 1 —cos 8 ) = 2tl

o (5.10)
valid near x = 1. In this case the eigenvalues may be eval-
uated

~ (0,0)=f Qo(k)[5 —f (0)B (0)]qqgo(k) +P' (1)
kk'

&&f,„,lo(k)f g(0}&(k—k', 0)g (k')(1 —cos8)

a(a+1) l
(5.8b)

Here we have used the fact that, in the weak scattering
limit, the functions fz and go(k) are highly peaked about
k =ko. Thus the integrals in Eq. (5.8b) reduce to a single
integral over transfers q =k —k', between wave vectors
with k =k'=ko. This can be expressed as an integral
over the scattering angle 8, as in Eq. (5.5). By the as-
sumption a&(0, ', made above, these eigenvalues are
indeed much smaller than 1. An individual scattering
event changes the direction of propagation only by a
small angle of order 0, , Thus, in order to describe
propagation of the waves on the short 1ength scale of l,
we must consider a of order 1/8, , Our restriction to
small eigenvalues will be sufficient to describe scattering
over intermediate scales l «R ~ l*. The dependence of
the eigenvalues for small times t can similarly be evalu-
ated since

a(a+1) l t l
(5.1 1)

In Appendix 8 we calculate the shift A.o'K in the eigen-
value A.o with small but finite K. For eigenfunctions

(k) which vary slowly with direction k, we may ex-
pect that the shifts A.

" E in A, of Eq. (4.22} are near-
ly independent of a for the low-lying states. With this as-
sumption, the resulting eigenvalues are

A, (E,t)= +2 — +—,'ll K', (5.12a)
2 l* ~o l

or

and

a(a+1) 1 t l
2 lQ +o l

(5.12b)

A,
"=—' ll* .ct, 3

(5.12c)

which is valid even for times t-v.o, in the limit that
a ))A,. Putting Eq. (5.9) into Eq. (5.8a) yields (see Ap-
pendix B)

8 (q, t) =8 (q, O)(1 qDzt)—
=8( ,q)0[1 2t/ro(1 ——cos8)] .

By "small times t" we mean

(5.9)

These eigenvalues depend only on the ratio
1/1'—= (1—cos8), and not on the specific choice of the
form factor b (q), so long as it is a highly peaked func-
tion about q=O with width 1/a (&ko. Equation (4.27)
then becomes

3P k sf* k'

4~// R 2 zo

' 1/2

R /I* 4' g Y (k) F„* (k')

To

3'(('o k 4o k a(a+1)
6

t
exp — 3

4nl/'R 2
R/l' (2a+1)P (k.k') . (5.13)

Here the function Po is spherically symmetric, and physi-
cally just enforces that k =k ' =ko. We shall furthermore
take the asymptotic expression for the eigenvalues

while for backward scattering

I (R;k, —k) = g (
—1) (2a+ 1)e

3

4mtt *R
2

/
A, (0)=

2 l
(5.14) 3 1 —e

4mll*R (1+e i~)
(5.17)

Consider the specific intensity (at t=O), which by Eq.
(5.13) may be written as

I (R;k,k')= g(2a+1)P (k.k')e
4m//*R

(5.15)

The physical interpretation of the result in Eq. (5.17) is
clear: the unphysical pole as R ~0 in the white-noise
model is now rendered finite. This reduces the contribu-
tion of short paths to the rejected intensity. The forward
scattering result of Eq. (5.16) also has a simple physical
interpretation. As R ~0

I (R;k, k)= 3=
4~//*R g (2a+ 1)e

Here l*( ' =&3/2. For forward scattering
I (R;k,k)=, 2

3
2

(5.18)

3 1+
4~geR (1 e

—R/g)2
(5.16}

For anisotropic scattering on short length scales R, the
wave vectors are confined to a small solid angle AO in the
forward direction and the intensity falls off with the
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square of the distance R:

bQ=n(9 ) =R/l* .

Thus the intensity falls off with the cube of R

(5.20)

I—
R (5.21)

for small R /l', as in Eq. (5.18).
The expression for the propagator I in Eq. (5.15) is

capable of describing the crossover from isotropic
I

I—
AQ R2 (5.19)

The scattered wave-vector directions k execute a random
walk on the unit sphere with small steps 0, , After a
small number n =R/I of such steps, the solid angle
grows linearly with n:

diffusion to the nearly ballistic scattering regime for
R 5l*. For R ))l*, only the s-wave term (correspond-
ing to classical diffusion) in the sum survives, due to
the exponential suppression of the higher-angular-
momentum components. For shorter paths, with R ~ l*,
these other terms increase the forward scattering. We
cannot, however, expect Eq. (5.15) to be valid for very
short distances R « l*, since we have made several ap-
proximations to the eigenfunctions and eigenvalues of Eq.
(4.25) which are valid only for intermediate (R ~ l*) and
longer distances. [Perhaps the most severe approxima-
tion is that the eigenfunctions g (k) are independent of
K. ] To describe propagation over very short distances,
exact eigenfunctions and eigenvalues would be necessary.
For backward scattering we shall approximate the trans-
port kernel L (R;k, —k; t) by the following simple numer-
ical interpolation formula:

L (R;k, —k;t) — exp — 6—3

lR &0

1/2 1/2

R /I —exp — —+6— R /I
1

2 70
(5.22)

This is chosen because it exhibits the characteristic removal of short paths from the scattered intensity, which we ex-
pect on physical grounds, and agrees numerically with Eq. (5.17) for intermediate and longer distances R, where the
above treatment is valid. Equation (5.22) is equivalent to a modified weighting factor

3/2

P(s)= C

4~sa e
—c(r —r' l(4sD)( 1 e

—s l(6l )
) (5.23)

(k)Pa, m(k') l~r —r'~'

(A,
"

)
i 4sA,

" (5.24)4~s

in Eq. (2.6). [This equivalence may be obtained by a saddle-point approximation, as in Eq. (2.8) or more rigorously, as
in Appendix B.] The more general expression in Eq. (4.27) is equivalent to

' 3/2
I asP(s)=

l

With the substitution of L in Eq. (5.22) into Eq. (2.19), or
Eq. (5.23) into Eq. (2.6), we calculate a slope y =2, in the
limit of large scattering particles. Furthermore, as can be
seen in Fig. 2(b), this more realistic treatment of the short
paths yields better agreement with the measured auto-
correlation functions. The remaining discrepancy be-
tween the observed autocorrelation function and the
theory, at long times, is likely to be an artifact of our
large particle approximation. It is probably necessary to
consider the K dependence of the eigenfunctions g, in
order to more rigorously treat the crossover to ballistic
propagation. Furthermore, it is apparent that the as-
sumption leading to Eq. (5.12c) is not valid for larger a.
This is because the saddle point associated with the ath
term in Eq. (5.24) corresponds to a characteristic path
length

s —[l /(4A, "A, ))'~ ~r —r'~,

which must approach
~
r —r'~ for increasingly ballistic

paths. Here, A, —1, and so A.
"—l . We have also impli-

citly assumed the same boundary conditions for all
nondiffusive modes. More precise boundary conditions
must be determined before more quantitative comparison
with backscattering experiments is possible.

VI. POLARIZATION DEPENDENCE
OF THE AUTOCORRELATION FUNCTION

For very short times t, the correlation function I ((t) is
dominated by long paths for which the observed photons
have lost memory of their incident polarization. Thus
the correlation functions I

~~

and I ~ for parallel and per-
pendicularly polarized light will initially decay with the
same absolute rate. The two signals will differ, however,
due to unequal contributions of short paths. The intensi-
ty of the parallel polarized light will be enhanced, relative
to the perpendicular intensity, because the short paths
tend not to alter the polarization of the incident light.
The decay of correlations due to these short paths will be
apparent only at longer times. Thus, the difference
I

~~

—I z will be independent of time to erst order in
(6t/~0)'~ . Because of the differing contributions due to
short paths, the slopes (y) of lnI

((
and lnI j versus

(6t /ro) ' will differ.
The generalization of the Green's function techniques

to a vector field such as light has been given by a number
of authors in the context of coherent backscatter-
ing. "' ' The wave equation for a transverse vector
field in the absence of sources is
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CO

V E+ D;=0,
C

(6.1)
where e' fluctuates randomly with zero mean as before.
The correlations of the dielectric tensor are characterized
by

subject to V E=O. The displacement vector D is related
to E by the dielectric tensor e: k o( e'~( x, t) e' „(0,0)) =5,"5 „B(x,t) . (6.4)

D, e, E (6.2)

e,,(x)= [r+ e'(x)]5,, (6.3)

We shall assume that the scattering of the light is elastic
and isotropic. This corresponds to a real dielectric tensor
which is given by

The averaged one-particle Green's functions are given by

G~R~/A(k) —P (k)GR/A(k) (6.5)
A A

where PJ(k)=(5~. —k;k ) reAects the transversality of
the wave, and G are the Green's functions for scalar
waves. The generalization of Eq. (2.12) becomes

1; (t)=(E,.(t)E /(0)) ~ f dze '/'f dz'e ' 'f d pLJ „(p,z, z', k, k', t)E E„
0 0

~p
where the polarization vector of the incident wave is E . As before we will calculate the transform of I.:

L," „„~(K;t)=f e ' L, „(R;k,k';t),
R

which satisfies the integral equation

L; „kq(K;t)=B(k—k', t)5; 51„+f B(k—k), t) g P; (k))PJ„(k,)fq (K)L „„qk(K, t) .
1 m'n'

(6.6)

(6.7)

(6.8)

We shall consider the white-noise model, in which L is independent of incident and reAected wave vectors. In Appen-
dix C we find that the autocorrelation function for parallel polarized light is

1 ll(t)~ I (t,O)+ ",I (t, v 9/7)—
where for simplicity we have defined

expt (6t/ro+g —)'/ [p +(z —z') ]'/ /lI
I(t,g)= dz e '/' dz'e ' ' d p [p'+( —') ]'

expI (6t/ro+g —)' [p +(z+z'+2zb) ]' /I I

[p + (z +z'+ 2zb ) ]'/

(6.9)

(6.10)

For perpendicularly polarized light

] (t) I(t, O) I(t, v'9/7) .— (6.1 1) 0.5
When /%0, only short paths (8 ~ l*/g) contribute to the
integral in Eq. (6.10). Thus, Eqs. (6.9) and (6.11) exhibit
unequal contributions of short paths to the correlation
functions. The parallel polarized autocorrelation func-
tion is enhanced due to short paths, while the perpendic-
ularly polarized autocorrelation function reAects the re-
moval of certain short paths, which do not depolarize the
wave. Substitution of these expressions into Eq. (2.12)
yields the following slopes (for small t):

A

0.2
A

0. 1
LLI

0.05—
LLjV'

0.02-

and

yii
——1.6

pg —2.7

(6.12)
0.01 I

0.2
I

0.4 0.6
gt/~,

o.a

which are in good agreement with experimental values
of 1.6+0.1 and 2.8+0.2, for scattering of 488 nm light
from uncorrelated polystyrene latex spheres of diameter
0.091 pm. For such small particles, the white-noise mod-
el is expected to be valid. The autocorrelation function
for perpendicularly polarized light has been plotted in
Fig. 4. This correlation function more closely follows the

FIG. 4. In the crossed linear polarization channel, the elim-
ination of short scattering paths leads to much better agreement
with the observed autocorrelation function. The increased slope
in both the observed and calculated correlation functions is due
to the fact that short paths, which tend not to flip the polariza-
tion, do not contribute in this channel.
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experimentally observed exponential decay with Qt/ro
This demonstrates the importance of properly accounting
for the polarization dependence of short paths, even in
systems where the white-noise approximation is valid.
The improved agreement of the calculation with the data
[compared with Fig. 2(a)] is due to the fact that short
paths contribute little to the perpendicularly polarized
scattered light. Similarly we have calculated the correla-
tion functions for the two circularly polarized channels,
which we shall refer to as the helicity preseruing (incident
and observed light of the same circular polarization) and
the opposite helicity channels. These are obtained in Ap-
pendix C:

s —l*. This is because the wave s helicity is randomized
much more slowly than is its direction, which results in a
dramatic difference between the slopes y+ and y for
l'/l ~ 3. For circularly polarized light, the probability
of scattering with and without a spin Aip depends only on
the scattering angles 0., and is independent of azimuthal
rotations. For example, the scattering from small parti-
cles may be characterized within the Born approxima-
tion. This yields a simple dependence of the amplitudes
for scattering through an angle 0 with and without spin
Aip which is given by the overlap of the outgoing circular
states ~R') and ~L') with the incident states ~R ) and

I +(t) ~ I(t,O)+ ,'I(t, &9/—7)—,'I( ,'t, +5—/—3),

and

(6.13) 1 —cosO ~R, ~R )
1+cos0

2 2
(6.16)

1 (r) I(t, O)+ ', I(t, v'9—/7)+ ,'I( ', t, &5/—3)—, (6.14)
0e
2 0e

for the helicity preserving and opposite helicity channels,
respectively. The two slopes in these channels are ap-
proximately

y+ ——2.4

and (6.15)

—1.7
These results are valid for short times, t, and for isotro-

pic scattering from small particles. For larger particles,
the scattering becomes increasingly anisotropic, with the
result that the polarization dependence of the autocorre-
lation functions is reduced. This is because the typical
paths involve many scattering events, each of which
tends to depolarize the light. This effect has been seen ex-
perimentally. ' For example, the measured slope y for
the decay of the autocorrelation function for parallel
(perpendicular) polarized light increases (decreases)
monotonically with particle size. (This property has been
used to determine the size of unknown but monodisperse
particles in suspension at high densities, where QELS is
inapplicable. '

) These two slopes nearly converge as the
scattering becomes highly anisotropic. The slopes yz and

y~~~
differ by only 5% for I*/l ~ 10. This is because, for

every scattering path which preserves the incident linear
polarization, there is an equally probable path which Aips
the polarization vector. This is true for scattering by
large particles, in which case the individual scattering an-
gles 0 are small. The scattered wave vectors k deter-
mine a path on the sphere of radius ko, as shown in Fig.
5. In the limit of small scattering angles 0, we may take
this path (C) to be continuous. The polarization vectors
are then parallel transported along the path. If this path
preserves the incident polarization, then the path C', ob-
tained by azimuthal rotation of the sphere through an an-
gle of 45' about the incident wave vector, will result in a
final polarization vector which is perpendicular to the in-
cident polarization. Thus, for scattering from large parti-
cles, both parallel and perpendicularly polarized light are
equally probable.

There is, however, a striking memory of the incident
helicity or circular polarization, for paths of length

0e
2

0
e

FIG. 5. When the individual scattering angles are small, the
wave vectors k, define a nearly continuous curve on the sphere
of radius ko. The polarization vector of the wave is parallel
transported along this curve. For example, curve C corresponds
to a scattering path for light with incident wave vector k; and
final wave vector k~= —k;. Parallel transport of the unit vec-
tors e& and e& along path C leads to inversion of e2, while e& is
preserved. Thus, if the polarization of the incident light is
directed along either e& or e2, then path C would lead to ob-
served light polarized along the same direction. Parallel trans-
port along the path C', obtained from C by rotation through 45
about the incident wave vector, would lead to transposition of
el and e2. This path would contribute to the perpendicular po-
larization channel, if the incident light is directed along e& or e2.
In general, for any path C contributing to the parallel polariza-
tion channel, there is a path C' obtained as above, which con-
tributes to the opposite polarization channel.
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for scattering without and with spin Hip, respectively.
The asymmetry factor A is a function of particle size.
For isotropic scattering, all scattering angles are equally
probable, and there is no asymmetry for pn individual
scattering event: A =0. For large particles, however, the
scattering angles are typically very small. This leads to a
value of A =1. The probability for scattering n times
without a single spin Aip is then

1+A
2

P+=
j=1

where we have taken the probabilities to be independent
of each other. Only paths with an even (odd) number of
spin Aips will contribute to the helicity preserving (oppo-
site helicity) channel. Thus, the weight factors P (s) for-
paths which contribute to the two circular polarization
channels are

even
odd n =s/1

(s)=P(s) g g p
(a. -j j=1

(6.18)

where P(s) is the scalar weighting function. Here the o .

are "+"and "—," and the symbols g"'" and g'~~ refer
to sums with an even and odd number of "—"signs in

[oj}.Since p++p =1,

1=(p-+. )'= r np +-r np. . .
(~,. j i (~,. j

(6.19)

by the binomial expansion. Similarly,
odd n~'=(p. —p-) = r np. ,

—X rrp. ,fo. j 1 jo-, j 1

(6.20)

follows from the binomial expansion. Thus,

P (s) = ,'P (s)(1+e '~" '),—— (6.21)

where we have rewritten A in the more suggestive form:

Thus, for small scattering angles the probability for spin
Aip decreases as 0, while the degree of randomization of
the wave's direction grows as n (8 ) after n scattering
events. For scattering from large particles, the Born ap-
proximation is no longer sufficient. The intensities I (0—)
of scattered light without and with spin Hip can, however,
be calculated from Mie theory. ' ' For scattering
through small angles 0, the calculated dependence of the
intensities on 0 is qualitatively similar to that of Eq.
(6.16). In particular, when the scattering angle is small,
the probability for spin Oip is quite small. Thus, for high-
ly anisotropic scattering the autocorrelation function
(and in fact the intensity itself) in the helicity preserving
channel is enhanced, relative to the opposite helicity
channel, by the more probable paths which do not result
in spin Rip. We may represent these probabilities, aver-
aged over all angles, by

f sinOI+ (8)d 8—
= —,'(1+3 ) (6.17a)f sinO[I+(8)+I (8)]dO

and

y =2.6

(6.22)

using Eqs. (6.21) and (5.23) in (2.6).
In Sec. II we discussed an analogy between the decay

of the autocorrelation function with time and the
coherent backscattering peak as a function of angle,
which is strictly true only for scalar waves. The sharp
backscattering peak is a consequence of interference be-
tween time-reversed paths, and is apparent only in the
parallel and helicity preserving channels, ' ' in which
the incident and reAected polarization states are equal.
On the other hand, the decay of the autocorrelation func-
tion with &t is due to the loss of phase coherence be-
tween identical paths separated in time by t, and is mani-
fest in all polarization channels. To be more precise, the
vector corrections of Refs. 13 and 14 to the scalar calcu-
lation of the backscattering cone differ from those of Ap-
pendix C for the autocorrelation function. As in Ref. 14,
however, the vector correction in the helicity preserving
channel is small. The autocorrelation function and the
coherent backscattering cone in this channel more closely
resemble scalar results, and hence may be expected to
more clearly exhibit the analogy discussed in Sec. II.

There is yet another distinction between the autocorre-
lation function and the coherent backscattering peak.
Single scattering events lead to constructive interference
between reversed paths, regardless of the scattering an-
gle. Such events, therefore, contribute only to the in-
coherent background intensity, and not to the coherent
backseat tering peak. Only second- and higher-order
scattering events contribute to the coherent intensity.
This leads to an enhancement factor of approximately
1.85 over the background. ' For times t ~~0, however,
single scattering contributions to the autocorrelation
function do decay. The enhancement of (I(t)I(0)) at
t=0 is precisely twice the uncorrelated result: (I )~.
This will lead to a decay of the coherent backscattering
peak at large angles which differs from that of the auto-
correlation function at long times, in the parallel polar-
ized channel. In the helicity preserving channel, on the
other hand, only second- and higher-order scattering
events are present, and the aforementioned vector correc-
tions are small. ' The analogy, which is strictly true only
for scalar waves, should be more apparent in this chan-
nel.

VII. DISCUSSION

The essential features of the autocorrelation functions
measured in DWS experiments on noninteracting systems
can be captured within a simple theoretical framework

A:—e ' " . Physically, n' represents the number of
scattering events required to randomize the wave s helici-
ty. For large particles, this number becomes greater than
1*/l, the number of scattering events required to ran-
domize the wave's direction. For example, we find that
n '- 50 for / /I= 10. This leads to the dramatic
difference between the initial slopes
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introduced by Maret and Wolf in Ref. 2. This approach
expresses the autocorrelation function as a sum over
paths of various lengths s, weighted by the number P(s)
of such paths. Having assumed that the scattering
centers are pointlike and uncorrelated, self-diffusion of
these particles leads to a loss of phase coherence which
depends only on the length of the path. This approach is
entirely equivalent to the more formal calculation of Ref.
20, using Green's function techniques. The generaliza-
tion of the more physically transparent result to large
scattering particles, for which the transport mean free
path l*)l, was obtained by averaging the wave-vector
transfers q over the form factor: ( q ) =2k 0l /l ". (We
have shown in Sec. V that this result is equivalent to the
formal solution of the transport equation, within the
difFusion approximation. ) A simple generalization of this
approach, which includes correlations within the medi-
um, has also been derived here. The resulting autocorre-
lation function depends on the dynamic structure factor
S (q, r) only through its average over all transfers
q =k —k' between physical intermediate states
(k =k'=k0), weighted by the form factor.

The diffusion approximation corresponds to the
weighting factor P(s) in Eq. (2.5) or the equivalent trans-
port kernel L (R, t) in Eq. (2.17), both of which are valid
only for paths much longer than l'. A large portion of
the reAected light from a half-space of scattering parti-
cles, however, is due to paths of intermediate lengths:
R,s-l*. It is not surprising, then, at the diffusion ap-
proximation leads to rather striking discrepancies be-
tween the calculated and measured autocorrelation func-
tions. Physically, the diffusion approximation overesti-
mates the number of short paths, and leads to a much
slower than observed decay of the autocorrelation func-
tions at long times. This has been demonstrated by re-
cent numerical studies. On short length scales, the
propagation of the light is increasingly ballistic in nature.
We have derived a solution for the transport equation,
which is capable of describing the crossover from ballistic
to diffusive propagation. For large scattering particles,
we obtain a transport kernel L, in terms of eigenfunctions

f (k), which describe the spectral content of the specific
intensity within the medium. For large scattering parti-
cles, these functions are part of a spherical harmonic ex-
pansion of the specific intensity. Over long length scales,
only the spherically symmetric part (corresponding to
classical difFusion) is important. Over shorter length
scales, increasingly angular dependent terms become
significant. As the DWS experiments for backscattering
suggest, a more complete understanding of this crossover
from ballistic to diffusive propagation is required.

Several experiments are possible which would help to
determine the contributions of short, nearly ballistic
paths. For example, in Sec. VI we discussed a difference
between the autocorrelation functions in the two helicity
channels, which is due entirely to short paths. Measuring
the difference between these two autocorrelation func-
tions would be an important test of any theory of the
crossover region. Furthermore, in the limit of large
scattering particles, and provided that precise boundary
conditions at the surface of the medium are known, it is

possible to "invert" the integral transforms of both Eqs.
(2.6) and (2.12) to obtain either the weighting function
P(s) or the transport kernel L (r, r';t) from the measured
autocorrelation function. Also, the angular dependence
of the spectral modes P given in Secs. IV and V might
allow one to isolate these contributions to the rejected
intensity, and thereby measure the eigenvalues A, . The
angular dependence predicted by the sums in Eqs. (4.27)
and (5.13) for backward scattering is, however, quite
weak. We have shown in Appendix B that all low-lying
eigenvalues depend on the dynamic structure factor in
the same way —namely, the aforementioned average. It
would be necessary to isolate the contributions of the
"highly excited" modes, which might be apparent only
near forward scattering, in order to obtain more informa-
tion about the dynamic structure factor. As the paths
length s is reduced, the nature of the measured "average"
over S (q, t) is changed. The single scattering limit is that
of QELS, where the single transfer q is precisely known,
and $(q, t) may be directly measured. For paths of inter-
mediate length l &s ~l*, the average of the dynamic
structure factor will depend upon the net transfer

qnet qi + +qn

The determination of these other moments would allow
the study of S(q, t) in the intermediate regime between
QELS and DWS.

Within the white-noise model, valid for small uncorre-
lated scattering particles, the autocorrelation functions
differ dramatically in slope for the various polarization
channels. This is due entirely to the different numbers of
short paths contributing in the various channels. Short
scattering paths favor the parallel linear polarized and
opposite helicity channels, for backscattering. The slopes
in these channels are smaller, due to the slow decay of the
short paths. For anisotropic scattering from large parti-
cles, the linear polarization dependence is less pro-
nounced. This is because the typical paths contributing
to the rejected intensity involve many scattering events,
each of which 'ends to depolarize the wave. There is,
however, a high degree of memory of the incident circu-
lar polarization over paths of short to intermediate
length. This reAects the predominance of forward
scattering within the Mie theory.
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APPENDIX A

A spectral representation of Lzz, (K;t) in Eq. (4.18) is
possible in terms of the operator (8&&' —f„5&&,). We
may obtain this from Eq. (4.18c), since
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kk'
k kkl k&k'

=I:(5—f»8
=(8 ' —f)kk'

u (k)u*(k')
c(Ic., t)

(A 1)

Here the eigenfunctions-u and associated eigenvalues c.

are related by

fk(BkkI fk5kk~)un(kl) saua(k).

and B ' is the operator inverse of B:
—1

Bkk Bk k' 5kk' '
kl 1 1

(A2)

(A3)

Formally the inverse can be expressed as a differential
operator'

1
kk' kk'8( V )

(A4)

where B appearing on the right-hand side is the Fourier
transform of Bkk.

where (8 ) is the average of 8 (q, O) over transfers q:

4m(8) =2mBo f sin8d8e
0

—a k 01 8=4+B0
a k

(A6c)

The inverse in Eq. (A4) can be expressed in a Taylor
series for large a:

a3 3/2
kk' kk' B
—1

0

p2I— + 0 ~ ~

a
3/2

=5„k (a —V ),
B0

(A7)

where we have neglected terms of order 1/a . [More
generally, we could have considered other smooth form
factors in (A6a) which allow such an expansion for large
a. j For self-diffusion given by Eq. (5.6), 8(q, t) is ob-
tained by replacing a by a +4Dst in Eq. (A6a). The ei-
genvalue equation (A2) is then simply a Schrodinger
equation

8 (x)=ko ( e'(x)e'(0) ) (AS)
—V +a +4Dst — fk u (k)= e u (k),

with the argument x replaced by the differential i%'k with
respect to k'.

In Sec. V we observed that the eigenvalues of (5—fB)
did not depend on the specific form factor, but only on
the ratio l /1*. Here we shall use a Gaussian form factor,
which closely approximates that of Eq. (5.3b):

with "potential"

V(k)=a +4Dst — fk,a~'"

(A8a)

(A8b)

8 (q, O) =Boe (A6a)

By Eqs. (4.lib) and (4.24b):

lmr""=(8& f lmG„""=(8)lmr""f f (0)

and "energies" c . For K=O, the potential is spherically
symmetric. Thus the eigenfunctions can be separated
into radial and angular variables

u (k)=R (k)Y (k) . (A9)

(A6b) The Schrodinger equation then reduces to

k +a'+4Dst+ —,, fk(0) R (k)=, , Eo(t)R (k) .
k2 dk dk

(A 10)

In the weak scattering limit the potential V is character-
ized by a deep well near k =k0 due to the highly peaked
function fk(0). The ground-state radial function Ro and
other low-lying states are bound, and are therefore highly
concentrated about k =k0. As in Ref. 15, we shall make
the 5-shell approximation, in which f&(0) is approxi-
mated by a 6 function at k =k0-.

i (ak), k (ko,
k. ( k), k&k, ,

where

i (x)=&(rt/2x)I +»z( )x

(A12)

fk(0)= 5(k —ko) .
2k0

(Al 1)

and

k.(x)=&(~/2x)rC. „,(x) .

The low-lying eigenfunctions R (k) satisfy
differential equation for the modified spherical Bessel
functions away from k =k0..

In the limit of large scattering particles (ako » 1) and for
u ~ k0a, the Bessel functions near k =k0 are well approx-
imated by their asymptotic forms:
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and

ex
i (x)-

X

e X

k (x)-
X

(A13)

is the ground state' of Eq. (A8a):

k kkiUO ki

fj k
( kk)Bk)k2 fk5kk)Bk)k2 Wo(k2)

which are independent of a. Thus, by Eq. (A10):

Bo o a(a+1)
t =

g 3 3/2 ~ 2k 2 2k 2
p a p7p

(A14a)

= f (5—fB)kk, lo(kz) =0 . (A15a)

In this model with form factor (A6a)

2:—(1—cos8) =
a kp

(A14b)

Similarly, for the other low-lying modes [see Eq. (A13)],

(k)= Y. (1)v,(k)= Y. (k) f Bkk q, (k, )
1

so that the eigenvalues E of Eq. (A14a) depend only on
the ratio I/l*:

= f Bkk Y (k, )Qo(k&) . (A15b)

a(a+1) I t 1
(A14c)

Apart from an overall factor, these eigenvalues are the
same as those found in Sec. IV. This agreement is due to
a relationship between the eigenfunctions 1t of (5 —fB)
and v of (B ' f), whic—h is true for low-lying states. In
particular, we have observed in Sec. IV that
go(k)=bG&(0) is (up to normalization) a zero mode of
the operator (5 fB). T—hus

v (k)= f Bkk go(k')

Here, we have used the fact that the dependence of
Y' (k) is weak on angular scales small compared with
0, ,—the width of B. For this reason we obtain the
agreement between the low-lying eigenvalues X of
(5—fB) and E of (B ' f), as well —as the approxima-
tion g (k)= Y (k)Po(k) made in Sec. V—both of
which are valid in the limit of large scattering particles
(koa )&1). The expression for I found in Eq. (5.13) can
also be obtained as follows. From Eq. (4.17), the kernel
I kk (K;t) (excluding the coherent term) can be expressed
in terms of the eigenfunctions U

fkv (k)v * (k')fk
Fkk. (K; t) = Fkk.(K; t) —Fkk. (K; t) =fkLkk, fk, = g

a, m K,Kt
(This function characterizes the scattering portion of the light. ) From this we obtain

~(~ k k, )
1 fk a, m a, m fk' —(e~~t~/~~)f v (k)v* (k')f, o, in~

4mR ~a

(A16a)

ge 4m g Y (k)Y* (k') .
4mll *R (A16b)

Here we have used Eqs. (4.12a), (4.24b), and (A15b) to ex-
press v in terms of Y and go,

scattering limit. From Eqs. (4.11a) and (4.12c) we have
that

fkv (k)~go(k)Y (k) . (A16c) bGk(K)=[2k K+32k(K)]fk(K) . (B1)

APPENDIX 8

The dependence of the eigenvalues A, on small K may,
in principle, be evaluated from perturbation theory about
K=0 in the eigenvalue equation (4.22), or in the
Schrodinger equation (A 1 1) with perturbing potential

V'(k)=Bo[fk(0) —fk(K)]/(a~ /
) .

We shall follow a self-consistent argument given first in
Ref. 28 in the context of electron propagation. We begin
with the Bethe-Salpeter equation (4.10) in the weak

EXk(K)=Bkk (0)b.Gk (K), (B2b)

and integration over k& is implied in both equations. In-
tegration of Eq. (B2a) over k and k' results in

Multiplying both sides of Eq. (4.10) by (2k.K+ b.X )

yields

[2k K+52k(K)]l kk(K;t)

=b, Gk(K)[5kk+Bkk~(t)Fk k,(K;t)], (B2a)

where the Ward identity of Eq. (4.12a) becomes
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2Rr )Z;r) J'=kG„
k

+ J~q [bG~(K)BI,|, (t)l 1, (K;t)
1

—I „(K;t}B|,I, (0)b,G„(K}],
where the current relaxation is defined by

I'(K;t)= f (k K)I (K;t),
k

and

I q(K;t)= f I l,l—, (K;t) .

Similarly,

(83a)

(83b)

(83c)

where we have used the weak scattering approximation

AG 2 3

5(k —ko) .
4~ko

(86)

where

(87a)

Here we have denoted the sum over all transfers
q=k —k' between physical states (with k =k'=ko) by
( &. Now, if we multiply both sides of Eq. (82a) by
(k.K) and integrate we obtain

2Kko' I (Z;t)= f ~G&B(q, O) &(1 co—s0&r'(lt;t),

r(K;t)=—f 1„„,(K;t) .
kk'

(83d}

The function I 1,(K) can, by symmetry, be expanded in
Legendre polynomials in k K. We shall approximate I k

as in Ref. 28,

(87b)
f (1—k.k')Bl, l,.(0)= (1—cos8& =-

f B~l (0'
kk'

Putting Eqs. (83a) and (85) together we may solve for 1:

I l,(K;t)=
AGk

I (K;t)+d I '(K;t)
&G ko

(84)

This is valid in the weak scattering limit, where we have
seen that I kk is a sharply peaked function about k =ko.
We have approximated this peak by AGk, and we have
kept just the first two terms in the expansion of I k con-
sistent with definitions (83b) and (83d). Higher-angular-
mornentum dependent terms will not alter our results
below in the weak scattering limit. Equation (83a) now
becomes

2EI'(K;t)= f b.G —fEG[(B(q,O) &

—(B(q, t) &]I (E;t), (85)

(88)

Thus

l),o(K, t) =2 + '/l*E—tl

7 0
(810)

as in Eq. (5.12).
For the higher-angular-momentum modes with a) 0,

we may evaluate the eigenvalues as in Eq. (5.8)

Since we have integrated over both k and k', this must be
identified with the spherically symmetric term in Eq.
(5.13). For self-diffusion of scattering particles

(B(t)&
(B(0)&

X f,&*, (k)[51| —f~(0}B|1,(t)N'. ,

= f go(k)[5gg —fg(0)B~q (t)PG(k k')]go(k')
kk'

= f $0(k)[5&z —fl, (0)B|,j, (t)]go(k')+P' (1)f Po(k)fz(0)B|,l,.(0)$0(k')(1 —cosO)
kk' kk'

&B (q, t) & ~(~+1)
(B(q,O) &

(811)

Here we have used the fact that the functions fl, (0) and go(k) are highly peaked about the shell k = ko to replace the in-
tegral over B(k—k', t) by the average over all transfers q=k —k' between physical states with k =k'=ko.
lying eigenvaiues depend upon the dynamic structure factor S(q, t) only through this average. This leads to a transport
kernel I given by Eq. (5.13), in which 6t /zo is replaced by 3[1—( B (q t) & /(B (qO) & ].

The dependence of the scattered light on path length s can be determined from

I t

NR —R';s;k, k') fe '"'e'"'e'"*r='(G" R+ —,R'+ ;res+re/2 G" R' ———,R ——;res— 2)e,e/
r, r', co

(812a)

where the Green's functions are now evaluated at different frequencies. The propagator I satisfies the modified integral
equation

r„„(K;)=G k+; + /2 G" k —;— /2 51,|,+ Ul, l, (K)l 1, 1, (K; )
K K
2' ' 2' ' kl

(812b)
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and the eigenvalues are

A, (t;ai)=A, (t) ic—ol/c,
from which we obtain Eq. (5.24).

APPENDIX C

(B12c)

A.„(tM= 1, . . . , 9 ) are

A, ,(K,O)=1 ——'l K

(C6)
X4 s 6(K, O)= —,', —1 [ —,",K —,",(K—,+Kb)] (c&a,b),
~7, s, 9(K,o)=-,' —l'[ —,', K' ——'(K'+K2)]

The solution of the integral equation (6.8) may be ob-
tained as for Eq. (4.18)

L„„«,(K, t)= f B(k—k„t)(1—fB),,'„„„,(Cl)
1

where

f„[5;5,„5„„—P; (k)Pi„(k)fi, (K)Bi,k, (t)]

X ( 1 fB )m
'„—.m„k 1 5lm 5—,„5kk . (C2)

The white-noise model corresponds to the s wave or
spherically symmetric term in Eq. (4.25) for
B(k—k', 0)=BO, a constant. Here L is independent of
the incident and scattered wave vectors and Eq. (Cl)
simplifies to

L;J „(K,t)=BO(1 —fB),"'„. (C3)

For t=0, this inverse was obtained in Refs. 13 and 14 in
terms of the eigenvectors ~ij &„andassociated eigenvalues
t(,„(K)of the matrix

g„.„(~)=B,f P,.(k)P,„(k)f (K)
k

2
(P (k)P' (k)(1 k'k K Kq) &k (C4)

where ( &z refers to an average over k on the unit sphere.
The eigenvalues A,„ofQ are not to be confused with those
of Sec. III. Here only the spherically symmetric mode Po
corresponding to the white noise model will be con-
sidered. The nine ortho-normal eigenvectors are

imn&, = 5 „,1

3

5 +l(n —1)2tt/31
23 ~3 mn

1
mn &4, 5, 6 (5 5 b+5 b5

(C5)

1
~mn&7s9 (5 5 b 5 b5

For the final six eigenvectors the spatial indices (a, b)
take on the values (1,2), (1,3), and (2,3). The eigenvalues

Here the indices a and b are distinct from each other and
from c, which takes on the values 3, 2, and 1. For t&0,
we may obtain these eigenvalues from

A,„(K,t)=(ij ~„go(k)P; (k)P„(k)fk(K)
XB«(t)otto(k') ~mn &„

&B(~,O)& & (C7)

For the case of self-diffusion of the scattering particles,

(B(q, t)&

&B(q,O) &

(C8)

and

A, , (K, t) = 1 —2———' l2K2
Tp

A, ,(K, t)= —,', 1 —2— ,', l'K'——
jo

~4, , s6(Kt) = —,', 1 —2
7 o

—l [70K —,",(K, +Kb)] —(c&a,b), (C9)

A7s9(K, t)= —' 1 —2 —l2[ —'K —'(K +K )]

The inverse of (1 fb);
„

is obt—ained as in Ref. 14
9

L;, .(K, t)=BO g llj&„(mn~„.(C10)

The transformed quantity L, „(R,t) in Eq. (6.6) may be
obtained

9

Lt „(R,t)=Bo g ~ij &„D (R, t)(mn~„ (Cl 1)

from

(C12)D (R, t)= f e!K.R 1

ic 1 A, (K,t)—
These functions may be evaluated as in Appendix B of
Ref. 14:

—Q 6t /t. oR /1

D, (R, t)= 7

—v 6tlt.o+9/7R/l
10 eD, ,(R, t)=

D4, s, 6(R, t) =
ml R

3 '70 exp I
—+99/23( t /ro) +2 1 /23[R +—(Rtt +R )]' /l ]

4~l' 39 [R 2+ 23 (R 2+R 2) ]1/2

(C13)
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3 10 expI —'1/ 10/3(t/ro)+5!3[R, +3(R, R—i )]' /i I
D7 s 9(R~t)=

4m. h [R 2+ 3(R 2+R 2 }]1/2

The parallel polarized portion of the autocorrelation function is obtained by choosing the incident and scattered po-
larization vectors to lie along the same axis (say x). Only the first three modes (p= 1,2,3) contribute

(R, t)=L„(R,t)=BO g lxx &„&xxl,a„(R,t)=, . exp —6—R/I + —",exp — 6 +— Rll
1 70 7 0

Substitution of this into Eq. (6.6) yields Eq. (6.9). Similarly the perpendicularly polarized autocorrelation function in
Eq. (6.11) can be obtained from L, ~~ in Eq. (Cl 1). Single scattering events, however, do not contribute in this channel,
since such events would leave the incident polarization intact. This is seen by rewriting Eq. (C10), as in Ref. 14:

9 1
L, „(K,t) ="Bo g )ij&„&mn~„" 1 —A,„K,t

A,„(K,t)=B, g ~ij&„1+ " '
&mn~„

1 —A,„K,t
A,„(0,0)=B,5, 5,„+B,g ~ij &„"' &mn~„.» —X„K,t

The first term is just the single scattering term of Eq. (6.8), which vanishes for i =j=x and m =n =y. Thus

A,„(0,0)L„„,(K, t) =B, y Ixx &„"' &yy I„,

(C15)

(C16)

which results in Eq. (6.11).
In Ref. 14 it was shown that

P;—(k) =
—,'(5,1

—k, ki +ie;tiki ) (C17)

project onto right- and left-hand circularly polarized states with wave vector k. Here e,-JI is the antisymmetric tensor.
For the helicity preserving channel

A,„(0,0}
L+(K, t)=BO g [P;+(kf)] ~ij&„" &mnl„P+„(k,) .

p=1 p t
(C18)

For backscattering the final and incident wave vectors are opposite (kf = —k;), and the single-scattering terms vanish
once again, resulting in Eq. (6.13). Similarly, in the opposite helicity channel

9

L (K, t)=BO g [P;+. (kf)] ~ij &„&mn~„P„(k;).

The vector correction for the coherent backscattering peak involves the kernel'

A,„(s,0)
C, „(s)=Bg ~in &„" &mj~„," 1 —

A,„s,O

(C19)

(C20)

where s—:k;+kf. Here the presence of k„in the numerator reAects the fact that no single-scattering terms contribute
to the coherent intensity. The nature of the time-reversed interference leads to mixing of the polarization of the in-
cident and final states. Only when these two polarization states are equal will the p=O mode (corresponding to long
difFusion paths) be present. '
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