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The refractive index of He as a function of pressure, n (P), has been measured with an accuracy of
3X 1073, in a diamond anvil cell up to 16 GPa at T'=298 K, by an experimental procedure which
couples two types of interferometric methods. These data permit us to obtain, from recent Brillouin
scattering measurements, the fluid adiabatic sound velocity, so as to derive the equation of state of
liquid He up to melting, the volume discontinuity at melting, and some related thermodynamic
quantities. Under justified physical assumptions, the equation of state is extrapolated into the solid
phase, in good agreement with recent single-crystal x-ray data. The comparison of these two equa-
tions of state with different calculations confirms the importance of many-body interactions in dense
He. The refractive index of He, expressed as a function of density, is then related, through a
Sellmeier formula, to the electronic properties of dense He: These are given in terms of the evolu-
tion with density of the excitonic 1'S,—2'P, energy level and of the contraction of the electronic

cloud of the He atom.

I. INTRODUCTION

With pressure, simple molecular solids which are insu-
lators at low density, gradually become semiconductors
and finally metallize. Such an evolution towards metalli-
zation is of fundamental interest: It requires working
with the Coulombic Hamiltonian of the system, i.e., be-
tween the electrons and the nuclei, and various theoreti-
cal attempts for modeling that have been proposed, like
tight-binding methods,' Hartree-Fock-type approaches,?
and one-electron density-functional calculations.> But
such calculations have yet to incorporate phenomenologi-
cal inputs in order to obtain good agreement with experi-
ment.*> However, there is a very promising way for cal-
culating such electronic properties quasiexactly through
the use of quantum simulations.® The quantum simula-
tion of a system of H, molecules has recently been per-
formed over the whole density range from its insulating
phase up to a monatomic metal.’

It then seems that theory is ahead of experiment since
there is a shortage of experimental data on which to com-
pare all those various calculations of the electronic prop-
erties of simple molecular systems, specially on He and
H, which should be the best experimental references due
to their electronic simplicity and also to their evolution
going over a large density range, from insulating atomic
or molecular solid to monatomic metal. It is consequent-
ly easily understandable why the measurements of the
electronic properties of simple molecular systems at very
high density is one of the major projects of high-pressure
physics.

Such a lack of electronic property measurements stems
from the fact that for generating high pressures on such
systems (now routinely around 1 Mbar) diamond anvil
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cells have to be used. Although they are wonderful tools,
their main drawback for the purpose discussed is that the
diamond band edge is around 5 eV. This prevents the use
of any direct absorption-type experiments which usually
permit characterization of the system at low pressure as
reviewed by Sonntag for rare gases.® Only at very high
pressure, once the band edge of the transition drops
below the one of diamond, are single-photon experiments
possible; for example, absorption experiments have been
reported for solid xenon only for pressures above 30
GPa’

The only way to circumvent this problem is to measure
physical properties which are directly related to the elec-
tronic transitions of the system and the refractive index
seems to be the best candidate. Different methods for
measuring the refractive index in a diamond anvil cell
have already been proposed in the literature;!%!! however
their accuracy was inadequate so as to obtain unambigu-
ously the electronic properties.

In Sec. II we present a new interferometic method
which enables measurements of the refractive index for
visible wavelengths in a diamond anvil cell with an accu-
racy of 3X 1073, The method was here applied to the
measurement of the refractive index of dense He.

Based on these n (P) data and recent Brillouin scatter-
ing measurements, in Sec. III an analysis of the thermo-
dynamic properties of dense He gives the equation of
state (EOS) in the liquid and solid phases, the volume
discontinuity at melting, and the adiabatic sound velocity
as a function of density.

In Sec. IV the EOS is used to relate our refractive-
index measurements of dense He to the evolution with
density of its electronic properties in terms of the energy
of the excitonic 1'S;—2!P; level and of the contraction
of the atomic electronic cloud in the crystal.
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II. REFRACTIVE-INDEX MEASUREMENTS OF DENSE
HELIUM

A. Membrane diamond anvil cell Fabry-Perot optical system

As sketched in Fig. 1, this setup is constituted of a dia-
mond anvil cell for generating the pressure and of an op-
tical setup assembled for measuring the refractive index
by two interference techniques.

1. The diamond anvil cell

The main characteristics of diamond anvil cells have
been extensively reviewed.!>!3 For an understanding of
the present refractive-index measurement method, suffice
it to say that the sample is enclosed in a cylinder formed
by a hole drilled in a T 301 stainless-steel gasket which is
compressed by the two culets of the diamond anvils; a
small ruby ball is put in the sample chamber for the pres-
sure measurements.!> The two culets of the diamonds
constitute a Fabry-Perot interferometer, with its inter-
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mediate medium filled with the sample under pressure:
Plane-parallel plates interferometric methods can then be
applied to measure the refractive index of this dielectric
medium. For doing accurate measurements, the parallel-
ism of the diamond culets has to be kept at best under
pressure. That is why we have used a newly designed dia-
mond anvil cell, the membrane diamond anvil cell
(MDAC);!* its main new feature is that the force on the
piston is generated by pressurized helium which pushes
an annular membrane. The thrust on the mobile piston is
then axial and the variation of pressure very smooth;
these are optimum conditions for keeping the parallelism
of the culets under pressure. The detailed presentation of
the cell and the method for loading the He sample have
been described elsewhere.!*

2. Interferometric measurements

The essence of a Fabry-Perot interferometric measure-
ment is to coherently add two different beams of wave-
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FIG. 1. Optical setup for interferometric measurements: ( 4) quartz-iodine lamp, (B) A* laser beam, (C) spectrometer slits, (G;)
separating cubes, (F;) lenses (F, is a UM32 Wild-Leitz microscope objective and F, a 50 mm focal distance camera lens), (OC) X20
eyepiece; (L,,L,,L;) distances of, respectively, 54, 675, 4250 mm, (H) image of the sample, ®; diameter of the diffraction ring,
(MDAUQC) is a design of the MDAC. In the bottom right of the figure is shown the white-light interferences as recorded through the
spectrometer; in the bottom left of the figure is shown a photograph of the rings of the laser interferences.
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length A of which optical paths differ by ne, n being the
refractive index of the medium inside the Fabry-Perot
and e its thickness. The fringe pattern is then directly re-
lated to ne /A. Unfortunately, it is generally very difficult
to extract n and e from such a measurement since they
appear in the formula in the form of their product. We
solved this problem by coupling two interferometric
methods: the one corresponding to a white-light parallel
beam and the other to a convergent monochromatic laser
beam.

This was performed on the optical assembly, drawn in
Fig. 1, which is set in front of the entrance slit of a spec-
trometer. Once the laser beam has been lined up with the
spectrometer, diaphragms D, and D,, separating cubes
G, G,, and G3, and diaphragm D, are aligned in this or-
der. The eyepiece is then positioned so that the laser
beam goes through the center of its graduated reticle.
Afterwards, lenses F3,F,,F¢,F,F,,F5 are placed on the
bench. The lens F;, the diaphragm D, the Wild-Leitz
UM32 microscope objective F, the camera lens F,, and
the eyepiece have fixed positions; the separating cubes G,
and G, are mounted on the two positions slides and the
MDAC on an xyz micrometric stage. Our experimental
procedure is decomposed in three steps.

Placing the cell. The sample chamber is visualized
through the UMS32 objective and the eyepiece which
make a (X 380) microscope. The cell is moved in the y
direction until a good focus is obtained. The region of
the sample, of which the refractive index and thickness
will be measured, corresponds to the domain of 10 pm di-
ameter around the center of the reticle.

White-light interference measurements. These interfer-
ences are obtained by illuminating the sample chamber
under a parallel beam of white light of 25 um diameter
spot in the cell. It is produced by the quartz-iodine lamp
A, two lenses F¢ and F,, and two diaphragms 0.5 mm in
diameter, D; and D,. This setup is turned on by sliding
cube G; into position. For incident light I,(A), the
reflected light going into the spectrometer I,(A) is given
by the well-known formula:

)
LOV=I,(%) Fsm' (227rne/7») ) 1)
1+ Fsin“(2mrne /\)

The fringe pattern measured out of the spectrometer is
of a good contrast as shown on the right of Fig. 1.
Around 60 interference fringes were recorded in a spec-
tral domain taken between the wavelength A, =5145.4 A
of the laser beam and the one A, =7425.2 A of a neon
lamp. The order of interference of the laser wavelength
K, is then obtained by counting the number of minima of
interference Ak between the wavelength A, of the minima
of interference nearest to A; and the one A, nearest to A,,,
ie.,

K, =Mk Ay /(Ay—Ay) . )

This formula is in fact really exact if there is no disper-
sion. In He the dispersion is quite small and K, calculat-
ed by the above formula was differing from its true in-
teger value by a positive quantity less than 0.4 up to 16
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GPa. This was consistently checked with the Sellmeier
equation used below to analyze the refractive index data.

Laser interference measurements. The laser beam is
diverged by F5 to fill the camera lens F, which enables a
4 pm diameter focus in the sample chamber; cube G; and
the iris D, separate off the coherent beam reflected on the
two diamond culets. Projected on a screen, this gives a
contrasted fringe pattern very similar to the one given by
plane parallel plates, as seen in the bottom left of Fig. 1.
This fringe pattern can, however, be obtained in any
plane situated behind F,.

The dark interference rings of diameter ®;, measured
on the screen, are given by the following relations:

2e(n?—sin%)1?=K;A, , (3a)
¢;= Atani . (3b)

A is a geometrical factor which relates ®; to the angle i
of its corresponding beam after F,. A is experimentally
calibrated by measuring the refractive index of air. The
order of interference K; of the ith ring is straightforward-
ly related to K; by K;=K,;—i. From Eq. (3) it is easily
obtained that

_ | #k3 $iK3

2 —
AP+¢7 A4}

(K2—K2%)™! )

which enables a direct determination of the refractive in-
dex n of the sample from the measurement of the diame-
ter of two rings; its thickness e is then obtained from Eq.
(3).

Before we move to the analysis of the data obtained on
He, three comments have to be made in order to stress
the care which had to be taken from reaching an accura-
cy as high as 3X 1073,

(i) In principle, the refractive index could be obtained
from Eq. (4) with two diffraction rings only. In fact, we
had to use all the different couples associated to four
rings at least. With a program, the diameters of the rings
were slightly changed within experimental error bars
(AD/d=3X10"3) 50 as to obtain the smallest dispersion
of the values of n calculated with the different pairs of
rings. It is easily shown that the number of fringes AK is
related to the thickness e of the sample through

. 2.
AK — e sin’i,, , )
An,

where i,, is the maximum optical aperture angle of the
MDAC (i,, =15°); a Ak equal to 4 necessitates a thick-
ness of 50 um at 16 GPa which could only be obtained by

using a double gasket.
(ii) Theoretically, the geometrical factor A4 is given by

A=L,(L—-F)/F, (6)

where F is the focal distance of the camera lens F, and L
is the image distance of the diamond culet ¢, the nearest
to F,. L —F being of the order of 4 mm, ¢, had to be po-
sitioned with an accuracy better than 4 um so to be al-
ways in the same geometrical configuration.

(iii) The variation of n caused by nonhydrostaticity and
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the variation of thickness e due to the nonparallelism of
the culets or to their deformation, could be sensitively
detected on the changes of the ring fringe pattern when
the sample chamber was moved in the x or z directions.
That explains why it was very important to be sure that
both interferometric measurements were done in the
same region of the sample.

B. Results

The measurements of the refractive index of He in the
liquid and the solid phases up to 16 GPa at T =298 K
are plotted in Fig. 2. The dispersion of the experimental
points gives the magnitude of the uncertainty in the abso-
lute determination of the refractive index, i.e., 3X 1073,
However, the fit of these measurements, represented by
the solid line in Fig. 2, somehow averages out these errors
and should give n (P) with an accuracy of 1 X107 3.

The minimum pressure attainable with the MDAC is
0.2 GPa, below which He fluid leaks out of the sample
chamber. The measurements are reported only up to 16
GPa since above the accuracy of the measurements wor-
sens with pressure: for a given accuracy the thickness of
the sample, e should increase with n [see Eq. (5)] and so
should be greater than 50 um above 16 GPa, a require-
ment that we could not fulfill even with double gaskets.
Upon to 1 GPa, the refractive-index measurements (in
the static region) of Lallemand and Vidal,!> agree within
the 3X 1073 error bars with the present results (measured
at A=5145.4 A but converted into static values with the
Sellmeir formula [Eq. (19)] which is used below to ana-
lyze the data); however, it should be noted that they in-
creasingly differ with pressure from our n (P) fit, being
systematically lower. Finally, the discontinuity of n at
melting was measured, giving
(n;=1.1772 and n,=1.1811); this will be related in Sec.
I1I B to the volume discontinuity at melting.

Some data are given in Table I, since we believe that
they should be useful for high-pressure research: He is

An/n=0.33% -
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FIG. 2. Refractive index of He as a function of pressure at
T =298 K. The dots are the experimental points, and the solid
line their fit; the vertical dash line marks the melting pressure
(P=11.6 GPa).

known as the best hydrostatic medium and should thus
really be utilized in the studies of solids under high pres-
sure in order to minimize the parasitic influence of strains
on the EOS and on the phase diagram; the characteriza-

-tion of a semiconductor under pressure is mainly based

on optical studies, the analysis of which will sometimes
require the refractive-index values of the pressure-
transmitting medium.

As it will be shown below, the electronic properties of
dense He can only be obtained from the refractive index
if we know its density dependence. Consequently, in the
next section we will first reanalyze recent Brillouin
scattering measurements of Polian and Grimsditch!® in
order to obtain an equation of state of liquid He up to its
melting density. The one previously derived by them
from their Brillouin measurements could be subject to
criticisms since they had to use an extrapolation of n (P)
and their hypotheses on C,/C, were questionable. From
it, a complete set of thermodynamic properties of dense
He will be calculated under some reasonable physical as-
sumptions.

TABLE 1. Physical properties of dense He at =298 K; melting is occurring at P=11.6 GPa. Vs
the volume [from ¥V, of Eq. (10)], P the pressure, n the refractive index, U the adiabatic sound velocity,
y the ratio of specific heats [from 1/y . of Eq. (9)], E, the excitonic 1'S,—2'P, energy level, C the

Clausius-Mossotti factor.

v P U E, c

(cm®/mol) (GPa) 103n —1) (km/s) y=C,/C, eV) (cm3/mol)
22.512 0.2 35.0 1.673 1.510 21.58 0.5170
13.760 0.5 57.5 2.258 1.404 21.59 0.5166
10.175 1.0 78.0 2.879 1.310 21.61 0.5164
7.833 2.0 101.0 3.666 1.224 21.63 0.5156
6.177 4.0 129.0 4.638 1.153 21.70 0.5134
5411 6.0 147.2 5.289 1.112 21.79 0.5113
4935 8.0 160.7 5.796 1.084 21.94 0.5076
4.597 10.0 170.8 6.218 1.064 22.17 0.5015
4.387 11.6 177.2 6.497 1.052 22.40 0.4958
4.262 11.6 181.1 22.57 0.4919
4.107 13.0 186.0 22.80 0.4864
3.965 14.5 190.0 23.12 0.4792
3.840 16.0 193.0 23.48 0.4713
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III. THERMODYNAMIC PROPERTIES OF DENSE He
AT T =298K

A. Liquid phase

In a recent article, Polian and Grimsditch!® have re-
ported Brillouin frequency shifts in fluid He as a function
of pressure up to melting. Their Brillouin scattering
measurements were done in the backscattering geometry
and so in order to obtain the adiabatic sound velocity U
from the measured frequency shift Aw=2nw,;U /c, the re-
fractive index as a function of pressure n (P) has to be
known. The equation of state can then be related to U
through the following thermodynamic equation:

2
B,=2Y" ™)
Y
where v is the ratio of the specific heats (y =C,/C,), p
the density, and By is the isothermal bulk modulus.

The present n(P) data are therefore used to derive
from these Brillouin measurements'® the precise experi-
mental U(P) from 1 GPa up to 12 GPa; they are comp-
leted by the experimental values of McCarthy!” below 0.2
GPa, of Kortbeek et al.'® up to 1 GPa, and those of
Mills ez al.'® up to 2 GPa. Rewriting Eq. (7) as

P, 1 e 1

Jo 2 Gy = Ly ®)
gives the numerical procedure for obtaining the fluid
equation of state from sound-velocity data if y(p) is
known. Unfortunately, ¥(p) has only been measured up
to 1 GPa (p=0.4 g/cm’). In Fig. 3 the experimental
determinations of y(p) of various authors'” %2 are com-
pared. They were though not directly measured but ob-
tained from Eq. (7) by combining compressibility and
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2B-Aziz
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FIG. 3. The ratio of the specific heats I'=C, /C, as a func-
tion of density. The solid squares, solid triangles, and stars are,
respectively, the experimental results of McCarthy (Ref. 17), Vi-
dal (Ref. 20), and Kortbeek (Ref. 18). The open triangles, open
circles, and solid circles are, respectively, the calculations of
Ross (Ref. 21) in the liquid phase with the exponential-six po-
tential, our calculations in the solid phase with the exponential-
six and Aziz pair potentials. The solid lines represent 1/, and
1/y _ given by Eq. (9).
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sound-velocity measurements; such a procedure relies
heavily on the numerical fits of the data and that explains
why there is such a scattering in the experimental points.
In their recent work, Kortbeek et al. have considered
those sources of error and so their values of y(p) are ex-
pected to be quite accurate. For extrapolation y(p) up to
melting, we use two calculations: the one of Ross?! based
on its liquid variational theory?? with the exponential-six
potential?® and our one in the solid phase, based on the
self-consistent phonon with cubic anharmonic term calcu-
lation?* with the exponential-six>* or Aziz*® pair poten-
tials. The quite large differences between these two calcu-
lations can be imputed either to the discontinuity of y at
melting or to the errors inherent in the calculations
which have to be very accurate since y is related to the
second derivative of the free energy with respect to T.
We then set two extrapolations: one which is based on
the calculation of Ross 1/y _ and the other one agreeing
with Kortbeek’s data and our calculation 1/y . These
two functions were fitted by polynomials, giving

1/y _=0.6+0.358p+0.127p>—0.18p° , (9a)
1/7 . =0.6+0.27p+0.615p>—0.721p>+0.206p* ,
(9b)

where p is in g/cm’.

From these two y(p) curves, two equations of state
were derived from Eq. (8), ¥ _ is associated and 1/y _
and V', to 1/y . We have applied successfully the fol-
lowing empirical equation, introduced by Benedict,!® to
fit them:

V. (cm?/mol)=23.810P ~!/3—17.833p 273

+29.760P !, 10
10
V_(cm?®/mol)=23.256P " 1/3—16.36P 2/}
+29.226P7!

where P is in kbar.

The self-consistency of our numerical procedure was
checked by recalculating y(p) from our fits of ¥V (P) and
U(p) with Eq. (7). The agreement was excellent with a
maximum deviation of 0.5% over the loop. The
difference between our two determinations of the fluid
EOS increases with density and amounts of 2% at melt-
ing. However, since the overall agreement of 1/y, with
the experimental points is better than the one of 1/y_,
we believe that its corresponding EOS, V., should be
nearer to the real one than V' _. Furthermore we will see
below, when we will extrapolate the liquid equation of
state in the solid phase under justified physical hy-
potheses, that the one obtained from ¥V, is very near to
the recent single-crystal x-ray diffraction measurements
of Mao et al.?®. This consequently tends to demonstrate
that 1/y, and ¥V should be in fact very good fits of
their corresponding true experimental values. So in all
the following, the equation of state V' (P) and the ratio of
the specific heats y(p) of liquid He will be, respectively,
related to their fits V' (p) and 1/y , (p).

In Fig. 4 various experimental and theoretical EOS of
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FIG. 4. Deviation of various liquid-He EOS at T=298 K
from our determination [V'+ of Eq. (10)]: the dash-open-
triangle and dash-star lines are, respectively, the experimental
fits of Mills (Ref. 19) and Polian (Ref. 16). The dash-dot and
dash-solid-triangle lines are, respectively, the calculation. of
Ross (Ref. 21) with the exponential-six potential and the one of
Barrat (Ref. 27) with the Aziz pair potential.

fluid He are compared to the present determination. The
one of Polian,'® based on the same Brillouin scattering
measurements, increasingly differs with density, leading
to a difference of 1.3% near melting; this discrepancy can
be mainly imputed to their poor extrapolation of y(p).
The extrapolation of the measurements of Mills,'° made
below 2 GPa, and fitted by a Benedict-type EOS, is in
very good agreement (better than 2X 107 3%). This comes
from the fact that the Benedict-type EOS [of the form of
Eq. (10)] seems to represent very well dense fluid over a
large-density domain. Two calculations are also report-
ed: the one of Ross?! based on his variational method (in-
cluding the #* quantum correction) with the exponential-
six potential and a quantum Monte Carlo path integral
one®’ with the Aziz pair potential.>®> These two methods
are known to give quasiexact EOS for a given interaction
and so any observed difference from experiment should
be attributed to the pair potential. When using the
exponential-six potential the agreement is very good at
least above 2.5 GPa, but there is an increasing discrepan-
cy with density when the Aziz pair potential is chosen in-
stead. This confirms recent conclusions on the impor-
tance of many-body interaction in dense He:?®?° The
Aziz pair potential has been adjusted on true pair proper-
ties, whereas the Ross potential has been derived
from shock-wave Hugoniot, and so it incorporates
averaged many-body interactions. At low density, the
exponential-six potential certainly overestimates the con-
tributions of many-body forces which are small, as it can
be inferred from the good agreement obtained in this re-
gion when the Aziz pair potential is used.

In Fig. 5 we have plotted the adiabatic sound velocity
U as a function of density over the whole density range of
the liquid phase. Its main feature is that the adiabatic
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FIG. 5. Adiabatic sound velocity of He, U vs density at
T=298 K. Below py=0.5 g/cm’, the experimental data are
very well reproduced (with an accuracy of 107° by
U=1.02+2.606p+6.525p%—2.863p> and  above by
U=0.039+7.102p.

sound velocity is a linear function of p above p,=0.50
g/cm3. It clearly demonstrates that the well-known
Rao’s rule, expressed by VU 173=const, as well as the
free-volume model, expressed by V!/3U=const, are inap-
propriate for dense liquids. This linearity of the adiabatic
sound velocity function of the density, known as the
Birch law,® seems also to be valid in dense simple molec-
ular systems even up to at least 1 Mbar, and this “univer-
sal” behavior will be analyzed more thoroughly in anoth-
er article.’! The linear behavior at very low density is re-
lated to the virial expansion.*?

Some liquid thermodynamic properties are collected in

Table I.

B. Volume discontinuity at melting

At the present time, the measurements of melting at
very high density have been limited to the locus of the
P(T) melting line;*> but, the volume discontinuity is
needed for a complete description of the thermodynamic
of the transition. Consequently, it seems interesting to
relate the observed discontinuity of the refractive index
at melting to its volume discontinuity. As it will be dis-
cussed below, the refractive index is related to the density

by the well-known Lorenz-Lorentz relation:
n2—1
m=pF“(p) . (11)

It is then straightforward to see that
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The F;,(p) function is achieved below and, in the
frame of the analysis of Sec. IV, is obtained to be in-
dependent of the phase, as seen on Fig. 8. From Eq. (12)
and the measured An/n equal to 0.33%, we obtained
Ap/p=2.8% at T =298 K, corresponding to a melting
pressure of 11.6 GPa, in very good agreement with the
extrapolations of Mills et al.'® or van der Putten et al.®*
and the calculation of Young et al.?* as analyzed in Ref.
33. The volume discontinuity amounts to AV =0.125
cm®/mol. This is the first time that such a volume
discontinuity at melting is measured in a diamond anvil
cell, and this should motivate further studies since this
quantity is a very sensitive test of the calculations of melt-
ing.

1+

C. Solid equation of state

The method which we used above to derive the equa-
tion of state of dense liquid He cannot be pursued in the
solid phase, although Brillouin scattering measurements
have been reported up to 20 GPa;'® the solid bulk
modulus is not easily related to the experimental data be-
cause of the anisotropy of the solid state.

Another method would be to extrapolate the function
F,(p), which appears below in the analysis of the refrac-
tive index measurements, and then derive the EOS from
n (P). However, the equation of state obtained in doing
so was found to be sensitively dependent on the numeri-
cal form assumed for the extrapolation.

We thus turn to a third method which is based on the
following physical assumption: at high density, the equa-
tion of state of the liquid and the solid phases, extrapolat-
ed in their metastable region, are parallel and shifted by a
constant quantity, the volume discontinuity at melting.
Such a statement was clearly demonstrated by recent
simulations of dense He around its room temperature
melting.’> The equation of state of solid He is then
straightforwardly derived from the liquid equation of
state, knowing the volume discontinuity at melting,
AV=0.125 cm’/mol:

V(cm?/mol)=23.810P ~1/3—17.883p 273
+29.760P~1—0.125 , (13)

where P is in kbar. The difference with the true experi-
mental EOS should be attributed mainly to the uncertain-
ties in the determination of the liquid EOS which were
analyzed above.

In Fig. 6 this EOS is compared to various calculations
and to the recent single-crystal x-ray measurements.?’
We note a slight discrepancy with the x-ray measure-
ments. Knowing that in the x-ray experiments the pres-
sure was measured by the ruby fluorescence R line excit-
ed by the synchrotron beam, it is possible that a small-
temperature heating could have occurred with the conse-
quence of introducing a systematic error in the pressure
measurement; the observed difference of 5 Kbar would
then correspond to an elevation of temperature in the
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FIG. 6. Volume of solid He as a function of pressure at
T=298 K. The solid line gives our determination [Eq. (13)]; the
open triangles are single-crystal x-ray diffraction measurements
(Ref. 26); the dash-star line is the theoretical EOS of LeSar
(Ref. 29); the dash-solid-triangle, the dash-open-circle, and
dash-solid-circle lines are our self-consistent phonon calcula-
tions with, respectively, the exponential-six potential (Ref. 25),
the Aziz pair potential (Ref. 25), and the Aziz pair potential
completed by three-body interactions (Ref. 28).

ruby chip of the order of 40°C which is a reasonable
physical value. In any case, this discrepancy between the
present and the x-ray EOS gives in fact the error bars
which should be put on our experimental EOS, i.e., at
most 1% on the volume. As already noticed above, this
in return proves that our ¥V, (P) liquid EOS should differ
by less than 1% from the true experimental one. We
have also performed calculations of the solid-He EOS
with our self-consistent phonon model, using two pair po-
tentials: the Aziz pair potential’® and the exponential-six
one.? Their comparison to the experimental one [Eq.
(13)] in Fig. 6 confirms the trend already observed in the
liquid phase: the EOS corresponding to the Aziz pair po-
tential diverges with density from the experimental one
while the agreement is quite good for the exponential-six
potential, at least up to 20 GPa where it starts to diverge.
As analyzed elsewhere, this is a direct proof of the impor-
tance of many-body interactions in dense He. Le Sar,?
on one side, has recently proposed that these are due to
the contraction of the atomic wave functions, induced by
the high-pressure crystal environment; his pressure-
volume curve is reported in Fig. 6. On the other side,
Loubeyre?® has shown that they can be well taken into
account by an effective three-body exchange potential;
the EOS calculated by adding this interaction to the Aziz
pair potential is also reported in Fig. 6. It is interesting
to note that the experimental EOS falls between these
two theoretical predictions. It is not the purpose of the
present article to critically discuss the two models of
many-body interactions but much more to stress that fur-
ther x-ray measurements are needed in order to reduce
the experimental uncertainty on the EOS of solid He
which is a necessary step towards the quasiexact descrip-
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tion of dense He, as a model of dense insulators.

Should we stop here the analysis of our #n (P) measure-
ments, we would miss one of the main information en-
closed in them, that is the evolution of the electronic
properties of He with density. The next part is devoted
to such a study.

IV. ELECTRONIC PROPERTIES OF DENSE He

According to the theory of dielectric materials based
on the Lorentz local-field model, the refractive index is
related to the atomic polarizability through the Lorentz-
Lorenz relation:

___._—.=-——-_————-=I;'11 . (14)

F,, is called the Lorenz-Lorentz factor expressed in
the same units as the inverse of the density p, N, is the
Avogadro’s number, and a represents a mean individual
atomic polarizability which depends on the collective
influence of the dense surrounding medium. It should be
noted that this relation is exactly valid only for point di-
poles in a cubic arrangement, otherwise the following
occurs.

(i) In the liquid phase, deviations from this formula
come from the different configurations of the molecules
relative to one another which give statistical fluctuations
on the induced dipole moments. According to Alder
et al.,’® the left-hand side of Eq. (14) should be rewritten
as

47N,

52
Fll 3

1+22-R*(0)
20

» (15)

where o is the Lenard-Jones diameter. Because the di-
pole dielectric function R *(0) is only important near the
- critical density and a?/0® is very small for He, this effect
is certainly negligible®® for the analysis of the present
measurements at 7 =300 K.
(ii) Taking into account the spatial extent of the atomic
charge distribution, the effective field on the atom should
be written

E;=E+4mgP/3 (16)

where P is the vector of polarization of the medium and g
is a measure of the charge overlap between neighbor
atoms; for g =1, E 4 is the Lorentz local field which leads
to Eq. (14). Guertin and Stern have calculated the value
of g for Gaussian charge distributions in various lat-
tices.’” They have related g to the fraction f of the elec-
tronic charge contained in the atomic polyhedron. If we
suppose that the spatial extent of the charge distribution
of an He atom is given by its hard-sphere diameter o
(=2.556 A), a rough estimate of f is then f=6V /mo>.
From the values of Guertin and Stern,’” we obtain that
0.98 <g <1 over all our experimental density range, g be-
ing even greater than 0.995 in the whole liquid phase.

This discussion demonstrates that we should obtain
meaningful values of the atomic polarizability « in dense
He, if we analyze our data with Eq. (14).

The atomic polarizability a is entirely related to the
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electronic transitions and Eq. (14) may be expressed in a
quantum-mechanical Sellmeier form3®

1n2—1 _ 47# N, e?

p n?+2 3m,
Fy «» dF/dE’
X ’
I,Zk Ei—E 95 (- |
(17)

where Fj, are the oscillator strengths associated with the
discrete atomic transitions, and (dF /dE') are the photo-
ionization cross sections for transitions to the continuum.
The dielectric properties of He in the density range stud-
ied here, result mainly from the lowest uv levels which
correspond to perturbations with density of the singly ex-
cited atomic transitions of the form 1!S—n!P. The
dominant contribution is still the one associated with the
118 —2!P transition since its oscillator strength is greater
than the sum of the ones of all the other levels. Their to-
tal contribution could then be represented to a very good
approximation by a single density-dependent Frenkel ex-
citon line, denominated somehow improperly 1S,
—2'P,. Equation (17) can then be reexpressed in the
simpler form:

1 n2—1 477%2Na92 fo Se
P = 2 PR 2
p n2+2 3m, El(p)—E* E?—E

, (18)

where Ey(p) and f, are, respectively, the density-
dependent energy and oscillator strength (supposed to be
independent of density as in the first-order perturbation)
of the effective excitonic level. The remaining electronic
transitions, i.e., the doubly excited and the ground-state
continuum ones, have been lumped into the second term,
corresponding to an effective transition of oscillator
strength f. and energy E_, supposed to be independent of
the density. This dispersion formula serves several pur-
poses: It expresses data economically, permits interpola-
tion, averages over random errors, and has theoretical
implications.

Its parameters are directly obtained from Eq. (43) of
Peck,’® which was fitted on dispersion data of the refrac-
tive index of He gas at T=0°C and P =1 atm. The nu-
merically explicit form of Eq. (18) is then

F, =276.87 | —24%6 _, 1212 .19

E3(p)—E? (38.86)>—E?

in which the energy of the electromagnetic wave is in eV
and p is in mole/cm®. In the dilute gas, E,=21.57 eV
whereas the atomic 1'S—2!P atomic energy level is
equal to E =21.22 eV. This demonstrates the fact that
although this excitonic level takes effectively into account
many other singly excited transitions, its energy differs
little from the one of the 1'S —2'P atomic level or of its
perturbation with density. This formula was then applied
to analyze the measurements of the absolute reflectance
R of liquid He at 1.2 K performed by Surko et al.*
132 2
R= (n 1)2+K2 (20)
(n+1)+K
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in which an absorption K is due to the damping factor I
which is included in Eq. (19) by replacing the first term of
the right-hand side Eq. (19) by

0.496/(E3—E*—iTE) . 1)

As seen in Fig. 7, a very good agreement was obtained
with E;=21.59 eV and I'=0.432 eV; at such a low den-
sity (p=0.1449 g/cm?, a value which was extrapolated
from the measurements of Edwards*!), a shift of this exci-
tonic level E is already measurable. We have also point-
ed in Fig. 7, the calculated position E,=21.48 eV of
the maximum of the absorption peak, which is related
to 2nK. Equation (19) was also applied to analyze
the refractive-index measurements of Edwards*' at
p=0.13307 g/cm®, giving E,=21.58 eV. These two
very accurate values of E, at low density and the analysis
of our refractive-index measurements with the experi-
mental EOS derived in the preceding section, give the
evolution of the energy of the effective excitonic
11S,—2'P; line, Ey(p), over a large density range, as
plotted in Fig. 8. Furthermore, we can say that its rela-
tive variation should be very near to the one of the true
118,—2'P, excitonic level. Nevertheless, extrapolating
Ey(p) would give an unphysical always increasing E,(p).
It is because in our model [Eq. (18)], we have neglected
the variation with density of the oscillator strength, f,.
This hypothesis certainly breaks down at high density,
but in the domain of validity of the first-order perturba-
tion theory, roughly corresponding to the density range
investigated here, it should be correct. Some numerical
values of E(p) are given in Table I.

This blue shift of the exciton energy has previously
been observed by Sinnock and Smith in their study of the
refractive index of condensed argon, krypton, and xenon
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FIG. 7. Absolute reflectance of liquid He at 1.2 K. The dots
are the measurements of Surko (Ref. 20); the solid line our cal-
culation [Eq. (21)] with a damping factor I'=0.432 eV and an
excitonic level E;=21.59 eV.
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FIG. 8. Evolution of the Clausius-Mossotti factor C and of
the energy of the 1'S,—22P, excitonic level E, with density.
The small dots are the experimental results of Lallemand (Ref.
15) the open circles and open squares are data obtained, respec-
tively, from the measurements of Surko (Ref. 40) and Edwards
(Ref. 41). The dots (C) and crosses (E,) are obtained from the
present n (P) measurements; the dash lines interpolate between
them as guide to the eyes.

at atmospheric pressure.*? This is qualitatively under-
standable since as the density is increased, the exciton en-
ergy increases due to the increased interactions of the
more diffuse excited state with the rest of the crystal.
Although the electronic transitions in the He atom are
in the far uv region, there is still a frequency dependence
of the refractive index in the visible. Equation (19) was
then used to extrapolate our data in the static limit in or-
der to make a comparison with previous dielectric mea-
surements. A systematic study of the dielectric proper-
ties of rare-gas crystals under pressure up to 1 GPa has
been performed by Lallemand and Vidal with capacitance
measurements.!> In the static limit, Eq. (14) is usually
called the Clausius-Mossotti relation and its right-hand
side the Clausius-Mossotti factor C. The values of C(p)
obtained from the present measurements as well as from
the ones of Surko*’ and Edwards*! are reported in Fig. 8.
The error bars correspond to an error of 1072 around
the n (P) values given by the fit of the present measure-
ments. The error bars are very large at low density but
fortunately they decrease with density as seen in Fig. 8.
The differences between our C(p) and the one of Lal-
lemand" are within these large low-density error bars.
However, if we take into account the very accurate mea-
surements of Surko*® and Edwards,*! which are in very
good agreement, and the behavior of our C(p) at high
density, where the error bars are small, we then see that
the evolution proposed by Lallemand is certainly too
steep. We feel confident that the dashed line, represent-
ing the C(p) results in Fig. 8, reflects very well the evolu-
tion of the He atomic polarizability with density.
There exists a simple approximate formula to calculate
the polarizability of a spherically symmetric atom:*
a=2-3 722 22)

9a, 4
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FIG. 9. Ratio of the mean-square radius of the crystal atomic
wave function ({72)) to the gas value ({r2),) as a function of
volume for dense He. The dots are the calculations of LeSar
(Ref. 29) and the stars the experimental determinations from
Eq. (23).

which relates the polarizability to the extent of the elec-
tronic cloud, a, being the Bohr radius of the hydrogen
atom, and r; the position of electron i. Generally, a
corrective multiplicative constant should be added in or-
der to obtain a good agreement with experimental a. The
observed decrease in C(p) can consequently be directly
related to the contraction of the electron cloud of an
atom in the crystal which takes place in order to lower
the repulsive interaction of an atom with its neighbors; as
discussed above, this is the mechanism of the many-body
interactions proposed by LeSar.”’ From Eq. (22) we can
thus scale an experimental electronic cloud contraction:

(r¥) _ | Cp)
o5~ |6 (23)

and compare it in Fig. 9 to the one calculated by LeSar.?
The agreement is quite good and it could even explain the
discrepancy between LeSar EOS and the experimental
one, as seen in Fig. 6. For volumes greater than 4
cm’/mole, the theoretical contraction is less than the ex-
perimental one which means that the theoretical EOS
should be below the experimental one (which is the case if
we extrapolate LeSar EOS) but for volumes smaller than
3.7 cm3/mol, it is the reverse and there his EOS is stiffer
than the experimental one. The analysis of LeSar?’® clear-
ly points out that there is a close relationship between the
electronic properties of the system and the modeling of
its interactions.

Finally, we believe that the analysis of the electronic
properties of dense He in terms of the evolution of an ex-
citonic level should be more appropriate to evaluate the
predictions of the different ab initio calculations.

V. CONCLUSION

The present study reports accurate measurements of
the refractive index of He up to 16 GPa that were made
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possible by the development of an original experimental
interferometric method.

The determination of n(P) is certainly important for
diamond anvil cells high-pressure research since the re-
fractive index is needed in the analysis of many optical
measurements which are the main means of investigation
of the properties of a sample under very higher pressure.
As an example, the present n(P) measurements on He
were used in order to extract the adiabatic sound veloci-
ties from recently published!S Brillouin frequency shifts.

These results then permit to go back to the thermo-
dynamic properties of dense He, like the equation of
state, the sound velocity, or the volume discontinuity at
melting. Because fluid He extends over a very large den-
sity range, the present set of thermodynamic data could
thus be quite useful for testing the validity of the theories
of dense simple liquids, more specially U(p) and
Cp /Cv(p) which are related to the second derivative of
the free energy. Still, other single-crystal x-ray measure-
ments would be welcome in order to reduce the error bars
on the EOS; this is important for improving the descrip-
tion of the interactions in dense insulators which are still
a subject of debate.

But the knowledge of n (P) is essential if we want to
probe the electronic properties of dense insulators in dia-
mond anvil cells. The usual optical absorption measure-
ments, related to the imaginary part of the dielectric con-
stant, are inappropriate here since the absorption of the
diamonds obscures everything. It is the first time that
the evolution of the electronic properties of an insulator
have been measured over such a large density domain.
This is all the more interesting since He atom has only
two electrons and so its system should be the most amen-
able to a theoretical attack. The present data could first
be compared to recently proposed tight-binding calcula-
tions"?? and if necessary should stimulate the completion
of new accurate methods of calculating the electronic
band structure of insulators, which are known to be unsa-
tisfactory up to now.’

Finally, the extension of the present measurements to
higher density in He or to other more dispersive systems
would require the determination of the dispersion of the
refractive index; but this is of a higher degree of difficulty
than the present study.

ACKNOWLEDGMENTS

We thank J. M. Besson and A. Polian for continuous
interest in this work and many helpful discussions and J.
L. Barrat for help in the quantum simulations of the
EOS’s of fluid He. We are grateful to M. Ross for com-
municating the results of his fluid variational calculation.
We are thankful to the support of the Commissariat a
PEnergie Atomique (France) under Grant No. C-1880-
N2A and of the Groupement de Recherches Coordonnés
de Structure Interne des Etoiles et des Planetes Géantes
(Paris, France). The Laboratoire de Physique des Milieux
Condensés is Unité Associée No. 782 du Centre National
de la Recherche Scientifique.



2378

1G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754
(1986).

28. Raynor, J. Chem. Phys. 87, 2790 (1987).

3B. J. Min, H. J. F. Jansen, and A. J. Freeman, Phys. Rev. B 33,
6383 (1986).

4W. A. Harrison, Phys. Rev. B 31, 2121 (1985).

5N. C. Bacalis, D. A. Papaconstantopoulos, and W. E. Pickett,
Phys. Rev. B 38, 6218 (1988).

6D. M. Ceperley, in Simple Molecular Systems at Very High
Density, edited by A. Polian, P. Loubeyre, and N. Boccara
(Plenum, New York, 1988), p. 477.

7D. M. Ceperley and B. J. Alder, Phys. Rev. B 36, 2092 (1987).

8B. Sonntag, in Rare Gas Solids, edited by M. L. Klein and J. A.
Venables (Academic, New York, 1976), p. 1021.

9K. Asaumi, T. Mori, and Y. Kondo, Phys. Rev. Lett. 49, 837
(1982).

103, van Straaten and I. F. Silvera, Phys. Rev. B 37, 1989 (1988).

M. Grimsditch, R. Le Toullec, A. Polian, and M. Gauthier, J.
Appl. Phys. 60, 3479 (1986).

12A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983).

13H. K. Mao, in Ref. 6, p. 221.

14R. Le Toullec, J. P. Pinceaux, and P. Loubeyre, High Press.
Res. 1, 77 (1988).

15M. Lallemand and D. Vidal, J. Chem. Phys. 66, 4776 (1977).

16A. Polian and M. Grimsditch, Europhys. Lett. 2, 849 (1986).

17R. D. McCarty, Thermophysical properties of Helium-4 from 2
to 1500 K with pressures to 1000 atmospheres, Nat. Bur. Stand.
Technical (U.S.) Circ. No. 631 (U.S. GPO, Washington, D.C.,
1972).

18p_ J. Kortbeek, J. J. van de Ridder, S. N. Biswas, and J. A.
Schouten, Int. J. Therm. 9, 425 (1988).

19R. L. Mills, D. H. Liebenberg, and J. C. Bronson, Phys. Rev.
B 21, 5137 (1980).

20p. Vidal, L. Guengant, and M. Lallemand, Physica 96A, 545
(1979).

21M. Ross (private communication).

LE TOULLEC, LOUBEYRE, AND PINCEAUX

40

22M. Ross, J. Chem. Phys. 71, 1567 (1979).

23D. A. Young, A. K. McMahan, and M. Ross, Phys. Rev. B 24,
5119 (1981).

24p. Loubeyre, D. Levesque, and J. J. Weis, Phys. Rev. B 33,
318 (1986).

25R. A. Aziz, F. R. McCourt, and C. C. K. Wong, Mol. Phys.
61, 1487 (1987).

26H. K. Mao, R. J. Hemley, Y. Wu, A. P. Jephcoat, L. W.
Finger, C. S. Zha, and W. A. Bassett, Phys. Rev. Lett. 60,
2649 (1988).

27J.-L. Barrat, P. Loubeyre, and M. L. Klein, J. Chem. Phys. 90,
5644 (1989).

28P. Loubeyre, Phys. Rev. Lett. 58, 1857 (1987).

29R. LeSar, Phys. Rev. Lett. 61, 2121 (1988).

30F. Birch, J. Geophys. Res. 66, 2199 (1961).

31p, Loubeyre and R. Le Toullec (unpublished).

325, Q. Hirshfelder, C. F. Curtiss, and R. Byron Bird, Molecular
Theory of Gases and Liquids, (Wiley, New York, 1954), p. 232.

33p, Loubeyre, in Ref. 6, p. 181.

34L. van der Putten and J. A. Schouten, High Press. High
Temp. 18, 393 (1986).

35D. Frenkel, Phys. Rev. Lett. 56, 858 (1986).

36B. J. Alder, H. L. Strauss, and J. J. Weis, J. Chem. Phys. 62,
2328 (1975); B. J. Alder, J. C. Beers, H. L. Strauss, and J. J.
Weis, Proc. Nat. Acad. Sci. U.S.A. 77, 3098 (1980).

37R. F. Guertin and F. Stern, Phys. Rev. A 134, 427 (1964).

38C. R. Mansfield and E. R. Peck, J. Opt. Soc. Am. 59, 199
(1969).

39R. Peck, Appl. Opt. 22, 2906 (1983).

40C. M. Surko, G. J. Dick, F. Reif, and W. C. Walker, Phys.
Rev. Lett. 23, 842 (1969).

4IM. H. Edwards, Can. J. Phys. 36, 884 (1958).

42A. C. Sinnock and B. L. Smith, Phys. Rev. 181, 1297 (1969).

433, O. Hirschfelder, C. F. Curtiss, and R. Byron Bird, Ref. 32,
p- 946.



