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Quantum hard rods: Critical behavior and conformal invariance
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The critical properties of one-dimensional quantum Ising models with near-neighbor exclusion
(hard rods) are studied by finite-size scaling and conformal invariance. For dimers (rods with length
m =2) the system exhibits an Ising-type critical point, while for rn ~ 3 the system undergoes a first-

order phase transition. The operator content of the critical Hamiltonian of hard dimers has been
determined for different boundary conditions and identification with the sectors of the Ising model
has been done. Using our results, we propose a phase diagram for the quantum Ising model with

multispin interaction in the presence of transverse and longitudinal fields.

I. INTRODUCTION

Models with nearest-neighbor exclusion have been in-
troduced to describe the fluid-solid phase transition of
systems of rigid molecules' and to model the order-
disorder transition of absorbed monolayers on two-
dimensional surfaces. For such models in two-
dimensions, the first exact results have been achieved for
close-packing problems (dimers, dumbbells). The
most famous exact result in this field is due to Baxter,
who solved the hard hexagon model (the triangular lat-
tice gas with nearest-neighbor exclusion), showing that
the system undergoes a second-order phase transition
characterized by the critical exponents conjectured for
the three-state Potts model. It is interesting, that the
hard-square model (square-lattice gas with nearest-
neighbor exclusion) has no exact solution yet, although
analytical, numerical, and series studies " accurately
show that the system obeys an Ising-type critical point.
The hard-square model is equivalent to the high-field lim-
it of the antiferromagnetic (AF) square-lattice Ising mod-
el in a field, and the numerical results have been used to
check the accuracy of the Muller-Hartmann-Zittartz for-
mula. ' The generalized hard-square model with
second-neighbor attraction shows interesting features: a
line of tricritical points and a surface of first-order transi-
tion. '

In this paper we introduce a one-dimensional quantum
analogy of these models, which we refer to as quantum
hard rods. (The classical one-dimensional hard-rod sys-
tem is the subject of intensive investigations due to its in-
teresting dynamical behavior. '

)
The Hamiltonian of the system is defined as

H = —g cr', —h g o.";+I, g (cr';+ l)(o';+, +1)

+J~ g (cr';+1)(cr', +2+1)+ .

where o';, 0.; are Pauli matrices at site E, and J;= ~ for
i = 1,2, . . . , m —1, and it is zero for i ~ m. According to
H (1.1), two up spins are separated by at least a distance
of m; thus, to each up spin a hard rod with length m can

be assigned, and the Hamiltonian (1.1) describes the ab-
sorption of these particles on the chain. Another possible
interpretation of (1.1) is the description of the
association-dissociation process of linear molecules with
m atoms an a chain in the presence of an electric field.

The Hamiltonian (1.1) is equivalent to the h, ~O limit
of the following multispin-coupling model:

HM =( —1) g Q o';+1,—h& g o'; —h, g cr; . (1.2)

First we note, that this model for h& =0 exhibits a phase
transition at h, = 1 (Refs. 17 and 18), where the degenera-
cy of the ground state is lifted by a factor of 2 ', and
the transition is continuous for m=2 [Ising-type (Ref.
19)] and for m=3 [four-state Potts type (Refs. 20—23)],
while it is of first order for m ~4 (Refs. 24 and 25). In
the presence of a negative longitudinal field the schematic
phase diagram is sketched in Fig. 1. Along the phase
transition line which terminates at h, =0, hI= —m, the
ground-state degeneracy changes by a factor of m; thus
for m ~ 3 one expects a different type of critical behavior
than is present for hI =O. At h, =0, H~ describes a clas-
sical system, the ground state of which is infinitely degen-
erate at h&

= —m: all of those states have the same ener-

gy in which the distance between neighboring up spins is
at least m. This degeneracy is solved up by switching on
the h, field, and the secular equations of the first-order
degenerate perturbation calculation are equivalent to the
quantum-hard-rod problem in (1.1), where h =h, /(hi
+m) measures the slope of the transition line in the limit
h, oh, —m.

The HM Hamiltonian for m =3 has been numerically
studied by Penson et al. Three-state Potts critical be-
havior is found in accordance with the ground-state de-
generacy of the ordered phase, but the fluctuations in the
numerical data was so strong for —3&h& & —2 that no
conclusion could be drawn in that region.

Our aim in the present paper is to study the phase tran-
sition of the hard-rod model (1.1) and at the same time to
complete the phase diagram of the multispin-coupling
Hamiltonian (1.2). The structure of the paper is the fol-
lowing. In Sec. II the phase transition point and the criti-
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FI (hl. ) =F1 (hl*. ),
where

Fl (h) =L [E,(L)—EO(L)]

(2.2)

ht

hl 0.0

0.0

FIG. 1. Schematic phase diagram of the Ising model with
multispin coupling in the presence of transverse and longitudi-
nal fields Eq. (1.2). The degeneracy of the ground state is lifted
by a factor of m along the phase transition line separating the
paramagnetic ("P") and the ordered ("0") regions. The quan-
tum hard-rod problem Eq. (1.1) is obtained in the limit h, —+0,
and the slope of the phase transition curve at hI= —m corre-
sponds to the critical point h, of H.

The translation invariance of the ground state of H
(1.1) is spontaneously broken at a critical value of h =h„
and for h (h, the ground state is m-fold degenerate, an-
tiferromagneticlike ordered. To locate the phase transi-
tion point and to determine the critical behavior of the
models we use finite-size scaling. In this method the
first step is the calculation of the energy of the ground
state Eo(L) and of the first excited state E, (L) for finite
chains with L, lattice sites by the Lanczos tridiagonaliza-
tion scheme. The dimension of the eigenvalue matrix
(Dr ) follows a simple rule. Since the possible states are
of two kinds depending on whether the first spin is

~
J, ) or

it is
~

't ) (i.e., a rod starts with length m) we can write

cal behavior of (1.1) is determined by finite-size scaling
(FSS) (Ref. 27). In Sec. III the FSS spectrum of the m =2
critical Hamiltonian is investigated, and the operator
content of the model is determined for different boundary
conditions (BC s) by applying conformal invariance. Fi-
nally, Sec. IV contains a discussion.

II. PHASE TRANSITION IN THE SYSTEM

dFL
ocL '.

h=h,
(2.3)

In practice a finite-size estimate for y, can be obtained
from the series

dFL
ln

dFL

dh =h*I.
ln(L'/L) . (2.4)

A first-order transition is controlled by a discontinuity
fixed point with y, =2 in two dimensions. In the follow-
ing we present the numerical results for m =2 and 3.

A. Results for m=2

is the scaled gap. To determine the limit of the finite-size
data different sequence extrapolation methods have been
developed.

We mention that this method can be successfully ap-
plied to locate a first-order phase transition point, too. In
this case the presence of a so-called hybridization gap '
in finite systems at the phase transition point signals the
crossing of energy levels in infinite systems. Since the hy-
bridization gap vanishes exponentially with increasing
system size, the scaled gap goes to zero at the phase tran-
sition point; however, the hL series separates the ordered
[FI (h)~ ~ ] and the disordered [FI (h)~0] regions in
this case, too.

Next, we turn to specifying the values of the system
size. Due to the AF-like order the symmetry of the states
for finite chains depends on

1=L (modm)=1, 2, . . . , m —1,
and the degeneracy of the ground state for infinite sys-
tems is preserved only if L =km, with k =1,2, . . . .
Therefore in the FSS analysis we use L =km, L ' =L +m.
We note that for different values of I different boundary
conditions are defined with different operator content of
the Hamiltonian. Having located the critical point the
correlation length or gap exponent v= 1/y, may be deter-
mined from the scaling law:

DL DL —1 +DL —m (2.1)

Thus, DL asymptotically behaves as DL =x with x
the solution of x =x '+1; xz =(1+&5)/2
=1.618 . the golden ratio, x3=1.4656. Since DL in-
creases very slowly with the size of the lattice as the di-
mension of the eigenvalue problem of HM in (1.2), which
is 2 independently of m, we can investigate much larger
systems. The maximal lattices in our calculation were
L =22 and L=30 for m =2 and m =3, respectively. [We
previously mentioned that Penson et aI. have diagonal-
ized HM (1.2) for m=3 up to L=15.] The next step in
the FSS analysis is to locate the critical point h, as the
limit for L, L'~~, the series of FSS fixed points hL
solution of

The numerical calculations have been performed for
finite chains with even lattice sites up to L=22. The FSS
fixed points, the value of the scaled gap at these points,
and the difference in the derivative of the scaled gaps

dFL
L dh h hL

dFL

dA h =h~
(2.5)

are presented in Table I. One can see that the different
series quickly converge to their limit. As an example we
present the result of the van den Broeck —Schwartz (VBS)
extrapolation algorithm for the FSS fixed points in
Table II, which leads to an estimate

bc = 1.526 492+0.000 005
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TABLE I. The FSS fixed points, the value of the scaled gap
at these points, and the difference in the derivative of the scaled
gaps Eq. (2.5) for the hard dimer model.

FI.(hL )

10-

2
4
6
8

10
12
14
16
18
20

2.090 449
1.588 491
1.545 843
1.534 968
1 ~ 530 944
1.529 116
1.528 167
1.527 626
1.527 295
1.527 081

2.120 890
1.247 216
1.157 752
1.130 190
1.118 182
1.111896
1.108 201
1.105 847
1.104 256
1.103 131

0.482 437
0.487 720
0.474 913
0.468 819
0.465 578
0.463 669
0.462 456
0.461 639
0.461 063
0.460 643

0.7

hc 2.0

The extrapolation of the other two quantities in Table II
gives

F (h, ) = 1.098 51, b,F=0.4586 . (2.6)

&+i 1 1+1 (2.8)

B. Results for m =3

In this case the numerical calculations have been per-
formed for finite chains up to L=30. The FSS fixed
points, the value of the scaled gap in these points, as well
as the estimates for the y, critical exponent (2.4) are

Since b,F approaches a finite value according to (2.3) the
correlation length exponent v=1 and the transition is an
Ising type, as expected from the ground-state degeneracy.
To obtain a more transparent picture we define the densi-
ty of hard rods as

(2.7)

and plot this quantity as a function of h in Fig. 2. As
shown, p decreases monotonically with increasing h from
p= 1, but due to quantum Auctuations its value remains
finite even at the maximally disordered point: For
h —+~, p=0. 39167. At the critical point p, =0.68917,
and according to numerical studies, the first derivative of
p has a logarithmic singularity around the critical point,
as to (o') for the Ising model. ' We note that in the
hard dimer model the first neighbor correlations are re-
lated to the one-site expectational values since

FIG. 2. The density of hard dimers Eq. (2.7) extrapolated
from finite lattice data. The first derivative of p has a logarith-
mic singularity at the critical point.

presented in Table III. Our first observation when com-
paring the results of the m =3 model to the results of the
m=2 model is the much slower convergency of the data.
The series of FSS fixed points seems to approach their
limit h, =1.013+0.001 like 1/L, in contrast to the usual
correction terms for periodic BC O(1/L ) —O(1/L )

(Ref. 27). It is extremely difficult to obtain a convincing
extrapolation value for the y, exponent. Concerning the
ground-state degeneracy of the ordered phase of the mod-
el, three different types of critical behavior are possible:
(i) critical three-state Potts model (y, =1.2) (Ref. 7), (ii)
tricritical three-state Potts model (y, = —", =1.714) (Ref.
7), and (iii) first-order transition with discontinuity fixed
point (y, =2). The numerical values in Table III rule out
the possibility that the model belongs to the universality
class of the critical three-state Potts model, but it is im-
possible to decide between the two other cases purely on
the basis of the y, L series. Therefore, we perform other
independent estimates to determine the order of the tran-
sition.

First let us study the limit value of the scaled gap. The
F~ values in Table III seems to tend to zero. Supposing
an exponential decay of the form FL ~ exp( aL) the es-—
timate ca=0.007—0.005 can be obtained. A similar ex-
ponent can be deduced from the series of the scaled gaps

TABLE II. VBS extrapolants for the critical point for the hard dimer model.

2.090 448 8
1.588 490 7
1.545 842 9
1.534 967 8
1.530 944 1

1.529 115 8
1.528 166 8
1.527 625 7
1.527 294 9
1.527 081 3

1.541 883 0
]..531 245 5
1.528 581 0
1.527 593 1

1.527 142 6
1.526 908 1

1.526 774 2
1.526 692 0

1.526 546 0
1.526 499 3
1.526 493 2
1.526 492 3
1.526 492 7
1.526 490 2

1.526 492 2
1.526 492 2
1.526 492 6
1.526 492 4

1.526 492 2
1.526 492 5
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3
6
9

12
15
18
21
24
27

1.568 936
1.153499
1.099 301
1.077 388
1.065 027
1.056 904
1.051 088
1.046 688
1.043 229

I'L, (hL*, )

1.895 631
0.957 429
0.804 800
0.727 393
0.674 379
0.633 258
0.599 269
0.570 109
0.544 478

yt, L

0.579 611
0.897 600
1.019746
1.093 275
1.143 939
1.181 695
1.211 424
1.235 823
1.256 509

at h =h, . These results show the presence of a hybridiza-
tion gap; ' thus they are in favor of a weakly first-order
phase transition in the system.

In order to obtain an independent evidence on the or-
der of the transition, we determined the latent heat. In
Table IV the first derivatives of the ground-state energy
are tabulated, in the first column at h =h, and in the next
two at the FSS fixed points. (The second and third
columns contain results for chains with spins I. and
L +3, respectively. ) The second and third series have the
same limit,

5E0(L)
Dz= lim-

6h

while the limit of the first series is

5eG

5h h=h, + ' (2.9)

TABLE III. The FSS fixed points, the value of the scaled gap
at these points, and the finite lattice estimate for the y, exponent
Eq. (2.4) for the m=3 model.

E Eo= —g[b, +r+(b, +r)], (3.1)

P Po = —[b, + r (b, +—r )],
where (b„b ) characterize a primary scaling operator,
where x =6+6 is the scaling dimension and s =6—5 is
the spin, r, r are non-negative integers, g is a normalizing
constant (the so-called sound velocity ), and Eo denotes
the ground-state energy of the Hamiltonian with periodic
BC. The finite-size correction to EG is universal:

first-order ones. In our case from the values of Table IV
one can calculate a very small latent heat EL=0.004
(which is on the order of the latent heat of the Q=5—6
state Potts model ), but its value is comparable with the
error of the estimate. Thus, we can conclude that the
transition of the m=3 model is very probably of weakly
first order; however, the estimated latent heat of the tran-
sition is very small; thus the possibility of a second-order
transition with very strong conAuent singularity cannot
be excluded. (We note that the classical hard-square
model with diagonal attraction also exhibits a first-order
transition. )

III. OPERATOR CONTENT OF THE m =2 MODEL

Conformal invariance supplies a very efficient method
to determine the anomalous dimensions of critical opera-
tors by calculating the FSS spectrum of the critical Harn-
iltonian for diFerent boundary conditions. For toroidal
BC (periodic, antiperiodic, twisted) the dispersion rela-
tion for an excited state obeys the form

5Eo(L)
Di = 11m

I, mL 5h
E (L)=Lg e — +ETC

0 0 (3.3)

6eG 6eG+
2 5h h=h, + 5h

The latent heat determined from these limits as

(2.10)
where c is the central charge of the Virasoro algebra. For
a free boundary condition, Eqs. (3.1) and (3.3) are
modified as

5eG 5eG
=2(D) D2)—

h=h +
(2.1 1)

is zero for second-order transitions, while it is finite for

E E=—g(b, +—r)0

~c
Eo(L)=Lg @0+—— + 0 ~ ~

24L'

(3.4)

(3.5)

TABLE IV. The first derivative of the ground-state energy density at the bulk phase transition point
(first column) and in the FSS fixed points (second and third columns). The extrapolated values are in

the last row.

3
6
9

12
15
18
21
24
27
30

extrapolation

—eo(L, h, )

0.501 577
0.343 291
0.319585
0.310628
0.305 927
0.302 998
0.300 975
0.299 479
0.298 319
0.297 387

0.2878+0.0002

&o(L, hL )

0.417 320
0.355 359
0.338 368
0.330066
0.324 906
0.321 270
0.318 507
0.316 302
0.314483

0.290+0.002

o(L +3~hL*)

0.541 829
0.370 223
0.342 620
0.331 659
0.325 566
0.321 537
0.318 591
0.316296
0.314429

0.290+0.002
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Our Hamiltonian (1.1) is diFerent from that of the usu-
al models with nearest-neighbor ferromagnetic interac-
tion, while it has a nontranslationally invariant ground
state and cannot be defined as an antiperiodic-type BC.
Furthermore, as already mentioned, the parity of the
length of the chain defines different boundary conditions.
Thus, in order to define the reference energy values Eo in
(3.3) and (3.5), we first determine the finite-size behavior
of the ground-state energy for different BC's.

(a) Periodic BC even lattice

'' 2

Eo' (L)=Lg eo — + (3.6)

E ' (L)=Lg e+ + (3.7)

where c =0.50000, co= —0. 15694, and the sound veloci-
ty determined from the distance of the equidistant levels
is (=2.7973. The accuracy of these figures is about five
digits.

(b) Periodic BC odd lattice:

(b)

1 &o

FIG. 3. The spectrum of the critical hard dimer system in the
FSS limit for periodic boundary conditions: (a) even chains and
(b) odd chains. The notations are F= (E Eo)/L /—2n, Eo is the
ground-state energy for even rings, ko =P (L, /2m. ) and
k ={P—~)(L/2~) measure the momenta in the two different
sectors {see the text).

(c) Free BC even lattice:

23Eo' (L)=Lj eo+ —+ + ~ ~ ~

L 2 241.'

where the surface energy is given by e&
= —0.478 09.

(d) Free BC odd lattice:

(3.8)

Hard dimer

Even chain
Odd chain

P =0 (1/L)
P =~+0 (1/L)

Ising model

Periodic BC
Antiperiodic BC

Magnetic excitations
Energy excitations

Eo (L)=L g en+ ——a o 1 C'1T + ~ ~ ~

I. 241.2 (3.9)

Comparing (3.6) and (3.7) we can conclude that the
ground state of even rings is always lower than that of
odd rings, but the situation is just the opposite for free
chains, Eqs. (3.8) and (3.9). The asymptotic behavior of
Eo (L) and Eo' (L) corresponds to (3.3) and (3.5), re-
spectively, with conformal anomaly c =

—,
' characteristic

for the Ising model. Furthermore, the finite-size
correction for odd rings in (3.7) is the same as that of the
Ising model with antiperiodic BC (Ref. 39). In the fol-
lowing we use Eo' (L) and Eo' (L) as reference energy
for periodic BC in (3.3) and for free BC in (3.5), respec-
tively. (We note that similar strategy has been used by
Alcaraz et al. " for the XXZ model. )

Next we present the operator content of the model
based on a comparison of the numerically determined lev-
els of the spectra with the known operator content of the
different sectors of the Ising model. ' ' For periodic BC
due to the AF order, the low-lying excitations are of two
kinds: with momentum 0(1/L) and with m+0(1/L).
Thus we have four sectors depending on the parity of the
length of the chain (E,P) and on the value of the momen-
tum (O,m). The first few levels of the spectrum of the
different sectors are presented in Fig. 3. These can be
identified to the levels of the spectra of the Ising model
with toroidal BC (Refs. 35 and 41) using the following
correspondence:

Thus, the operator content of the different sectors are
the following. (a) Periodic BC even lattice: The
P =0(1/L) sector is given by the irreducible representa-
tion (0,0) and ( —,', —,'), while the P =n.+0(1/L) sector is
given by ( —,'„—,', ). (b) Periodic BC odd lattice: The
P =0(1/L) sector is given by the irreducible representa-
tions (0, —,

'
) and ( —,', 0), while the P =m +0 (1/L) sector is

given by (0,0) and ( —,', —,
' ). For free BC one Virasoro alge-

bra describes the spectrum, which is the following. (c)
Free BC even lattice:

E Eo= g( ,'+r—) . ——7T
(3.10)

The spectrum is given by the irreducible representation
5=

—,'. (d) Free BC odd lattice:

E E=—g(2+r) —.0 (3.11)

In this paper the phase transition of the quantum
hard-rod system (1.1) has been studied, where the
cooperative behavior of the system is forced by an ex-
clusion principle rather than by nearest-neighbor attrac-
tion. The model exhibits a fluid-solid type phase transi-
tion, where the ordered phase has an antiferrornagnetic-

The spectrum is given by the irreducible representation
5=2. Thus, the even and odd sectors correspond to the
magnetization and the energy sectors of the Ising mod-
el, respectively.

IV. DISCUSSION
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like long-range order. The phase transition for m=2 is
found continuous with Ising critical exponents, while it is
of weakly first order for m =3. Since the ground-state de-
generacy of the ordered phase is m and by increasing
ground-state degeneracy the latent heat of the transition
generally increases, we expect first-order transition for
m )3, too.

The hard-rod Hamiltonian is a special limit of the mul-
tispin coupling Ising model with transverse and longitu-
dinal fields Eq. (1.2), thus we can use our results to com-
ment on the phase diagram of this model (Fig. 1). For
m =2 along the whole transition line, the phase transition
is an Ising type, while for m=3 we expect a (three-state
Potts) tricritical point separating the continuous (three-
state critical Potts) and first-order transition regions. For
m =4 two possibilities may occur: either first-order tran-
sition along the whole line, or four-state Potts transition
for hl ~ h&* and first order for hr & hI* similarly to the case
of the four-state Potts lattice gas. For m) 4 the phase

transition along the whole line is of first order.
Turning back to the hard dimer problem, we have

determined the operator content of the critical Hamil-
tonian for different boundary conditions and we have
identified them with those of the Ising model. For the
hard dimer model due to the quick convergency of the
numerical data one might have hope of the existence of
an exact solution. However, it is still not very likely,
since in that case one should be able to solve the problem
of the antiferromagnetic quantum Ising chain in a field
(1.2); furthermore, its classical analogy, the hard-squares
model, is still lacking an exact solution.
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