Magnetic susceptibility of Mn²⁺ ions in MgO and evidence of clustering

Brian L. Gordon and Mohindar S. Seehra

Department of Physics, West Virginia University, Morgantown, West Virginia 26506

(Received 28 December 1988)

The temperature dependence of the dc magnetic susceptibility χ , in the temperature range of 4.2-300 K, is reported for two single crystals of $Mn_pMg_{1-p}O$ (nominal p = 0.000 84 and 0.0048). The data are analyzed in terms of contributions from the single Mn^{2+} ions (monomers) and the exchange-coupled $Mn^{2+}-Mn^{2+}$ pairs (dimers). It is found that the concentration of dimers determined from a theoretical fit to the data is nearly an order of magnitude larger than that expected from the random distribution of Mn^{2+} ions, suggesting that Mn^{2+} ions prefer to form exchange-coupled clusters in the MgO host. An exchange constant $J = 22\pm 4$ K is determined from the fit to the χ versus T data.

I. INTRODUCTION

The magnetic properties of the iron-group transitionmetal ions in magnetically diluted systems have been the subject of a number of recent investigations.¹⁻¹⁷ Interesting phenomena such as spin-glass-like transitions have been observed in many systems containing Mn^{2+} ions.^{7,10,12,13-16} Many of these systems are characterized by "enhanced paramagnetism" at low temperatures, which has been tentatively attributed to the possibility of random cluster formation.^{1,10,12-14} This enhanced paramagnetism, which appears as a downturn of the χ^{-1} versus *T* curve below about 50 K, was at first linked to a spin-glass transition, but has since been observed whether a spin-glass transition occurs or not.¹⁰ It has also been pointed out that, since the χ^{-1} versus *T* curves appear to go to zero as $T \rightarrow 0$ K following the Curie law, the contribution from the single-ion moments dominates at the lowest temperatures.¹⁴

To investigate this phenomenon, we undertook a study of two very dilute single crystals of $Mn_pMg_{1-p}O$ with nominal p = 0.000 84 and 0.0048. The objective was to see whether the magnetic susceptibility of such dilute systems could be theoretically understood based on the random distribution of Mn^{2+} ions in the MgO host. This is an ideal system for such a study since both MnO and MgO crystallize in the NaCl structure, and Mn^{2+} is an S-state ion. Also, the excited states lie very much above $(\sim 10^4 \text{ cm}^{-1})$ the ground state so any admixture of excited states into the ground state by spin-orbit coupling is negligible.⁵ These simplifications allow the exchange coupling between Mn^{2+} ions to be treated in a straightforward manner. An enhanced paramagnetism, as noted above, is also observed even in these dilute systems. Analysis of the results shows that the number of dimers

 $(Mn^{2+}-Mn^{2+}$ pairs) is nearly an order of magnitude larger than that predicted by the random distribution model, and that this clustering is responsible for the observed enhanced paramagnetism. Details of these results follow.

II. EXPERIMENTAL DETAILS

The magnetic susceptibility measurements reported here were made with a Faraday balance in conjunction with Lewis coils for producing the gradient field, and a Cahn electrobalance (Model 2000 RG) for measuring the force. Some details of this system have been given in earlier publications from this laboratory.^{3,18}

The two samples of Mn_pMg_{1-p} O studied in this work were single crystals grown by W. & C. Spicer Ltd. of England, with nominal p = 0.000 84 and 0.0048, respectively. To correct for the diamagnetic contribution of the MgO host, magnetic susceptibility of a single crystal of MgO, also supplied by W. & C. Spicer Ltd., was measured. The observed value of $\chi_d = -2.05 \times 10^{-5}$ cm³/mol is in agreement with some earlier estimates.¹⁹ The magnetic susceptibilities reported below are corrected for this temperature-independent diamagnetic contribution. In all cases, these susceptibility data are given in molar susceptibility where one mole refers to Avogadro's number of $Mn_pMg_{1-p}O$ formula units.

III. THEORETICAL CONSIDERATIONS

To derive equations for the magnetic susceptibility of monomers (isolated Mn^{2+} ions) and dimers ($Mn^{2+}-Mn^{2+}$ exchange-coupled pairs), we start with the well-known Van Vleck expression

$$\chi = N_A \sum_{i} \left(\frac{(E_i^{(1)})^2}{k_B T} - 2E_i^{(2)} \right) \exp(-E_i^{(0)}/k_B T) / \sum_{i} \exp(-E_i^{(0)}/k_B T)$$

Here N_A is Avogadro's number, k_B is the Boltzmann constant, and the energy of the *i*th level in a magnetic field *H* is given by

$$E_i = E_i^{(0)} + HE_i^{(1)} + H^2 E_i^{(2)} .$$
⁽²⁾

Typically only terms up to H^2 need to be retained, as is the case in Eq. (1).

For monomers, the only splitting of the ground state comes from the Zeeman energy. The energy shift due to the external field is $E = g\beta Hm_s$, where g is the g value, β is the Bohr magneton, and $m_s = -\frac{5}{2}, -\frac{3}{2}, -\frac{1}{2},$ $+\frac{1}{2}, +\frac{3}{2}, +\frac{5}{2}$ for spin $S_i = \frac{5}{2}$ of the ground state of Mn^{2+} . Using Eqs. (1) and (2), the magnetic susceptibility of monomers, χ_1 , then follows

$$\chi_1 = \frac{N_A p_1 g^2 \beta^2 S_i (S_i + 1)}{3k_B T} = \frac{C_1}{T} , \qquad (3)$$

where the expression has been multiplied by p_1 , the concentration of monomers, and g=2 for Mn^{2+} . Equation (3) is the well-known Curie law, with Curie constant, C_1 , yielding p_1 .

For dimers of $Mn^{2+}-Mn^{2+}$ coupled by exchange interaction, the additional term in the Hamiltonian is the Heisenberg exchange interaction

$$H_{\rm ex} = J \mathbf{S}_i \cdot \mathbf{S}_j , \qquad (4)$$

where the exchange integral J is positive for antiferromagnetic interaction. For Mn^{2+} in MgO, values of J_1 and J_2 , the nearest-neighbor (nn) and next-nearestneighbor (nnn) exchange constants, respectively, have been inferred to be positive and nearly equal from electron paramagnetic resonance studies ($J_1 \simeq J_2 = 28 \pm 4$ K) (Ref. 20). A similar conclusion is valid in pure MnO,

FIG. 1. Energy levels of $Mn^{2+}-Mn^{2+}$ pairs in an exchange field and in an applied field H. The zero of energy has been shifted by $-\frac{35}{4}J$ in the Zeeman levels.

where $J_1 = 10\pm 1$ K and $J_2 = 11\pm 1$ K have been inferred.²¹ So in our calculations, we only retain a single J, not distinguishing between nn and nnn pairs. From Eq. (4), with $S_i = S_j = \frac{5}{2}$, it follows that the total spin S of the pairs takes on the values S=0, 1, 2, 3, 4, and $5.^{8,22}$ The Zeeman splitting of these spin states is shown in Fig. 1, where we have redefined the zero of energy at $-\frac{35}{4}J$ in

order to simplify the calculations without affecting the results. However, the energy $-\frac{35}{4}J$, the binding energy of the pairs, has other important implications which are discussed later. Using p_2 as the concentration of dimers, the use of Eqs. (2) and (3) and the energy levels of Fig. 1, we obtain the following expression for χ_2 , the magnetic susceptibility of dimers,

$$\chi_{2} = \frac{2N_{A}p_{2}g^{2}\beta^{2}}{k_{B}T} \left[\frac{1 + 5E\left(-2J/k_{B}T\right) + 14E\left(-5J/k_{B}T\right) + 30E\left(-9J/k_{B}T\right) + 55E\left(-14J/k_{B}T\right)}{3 + E\left(J/k_{B}T\right) + 5E\left(-2J/k_{B}T\right) + 7E\left(-5J/k_{B}T\right) + 9E\left(-9J/k_{B}T\right) + 11E\left(-14J/k_{B}T\right)} \right], \quad (5)$$

where $E \equiv \exp$. It is noted that $\chi_2 \rightarrow 0$ as $T \rightarrow 0$. Neglecting trimers and higher order clusters whose concentrations are expected to be negligible in the very dilute samples studied here, the total susceptibility, χ_p , is simply the sum of Eqs. (3) and (5),

$$\chi_p = \chi_1 + \chi_2 . \tag{6}$$

IV. EXPERIMENTAL RESULTS, ANALYSIS, AND DISCUSSION

The temperature dependence of the paramagnetic susceptibility $\chi_p = \chi + |\chi_d|$, where χ is the measured susceptibility and $\chi_d = -2.05 \times 10^{-5}$ cm³/mol is the diamagnetic contribution, is shown in Figs. 2 and 3 for the two

samples with nominal p = 0.00084 and 0.0048, respectively. The solid lines are theoretical fits using Eqs. (3)-(6) with parameters given in Table I. The procedure used to obtain the theoretical fits is now described.

As noted above, $\chi_2 \rightarrow 0$ as $T \rightarrow 0$ K. Therefore, at the lower temperatures, χ_1 dominates and a plot of χ_1^{-1} versus T yields a straight line [Eq. (3)] with slope yielding C_1 and hence p_1 . This also gives χ_1 for all T, allowing the determination of $\chi_2 = \chi_p - \chi_1$. These data for χ_2 are then fitted to Eq. (5) with J and p_2 as adjustable parameters.

According to Eq. (5), χ_2 peaks at a temperature determined by J, whereas its magnitude varies linearly with p_2 , the dimer concentration. Plots of χ_2 versus temperature for a fixed p_2 but different J values are shown in Fig. 4

FIG. 2. Temperature dependence of the paramagnetic susceptibility, χ_p , and that of χ_p^{-1} for the $Mn_pMg_{1-p}O$ sample with nominal p = 0.000 84. The solid lines are theoretical fits. See text for details.

FIG. 3. Temperature dependence of the paramagnetic susceptibility, χ_p , and that of χ_p^{-1} for the $Mn_pMg_{1-p}O$ sample with nominal p=0.0048. The solid lines are theoretical fits. See text for details.

along with the experimentally determined values of χ_2 . Major features of χ_2 are well reproduced by the theoretical curves. It is noted that near the peak temperature of 50 K, the magnitude of χ_2 is only about 10% of the total χ_p , so that agreement in Fig. 4 between theory and experiment is quite reasonable. In Fig. 5, we have plotted the monomer, dimer, and total susceptibility versus temperature on a semilog plot. It is evident that on a relative scale, the contribution from the dimers is greater at higher temperatures than at lower temperatures. This, then, is the reason for the downward turn of χ_p^{-1} versus T and "enhanced paramagnetism" noted in the Introduction. For both samples, a good fit between the calculated susceptibilities and experimental data is obtained in the whole temperature range (Figs. 2 and 3).

As noted earlier, Coles *et al.*,²⁰ using the temperature dependence of the intensity of the electron paramagnetic resonance spectra of $Mn^{2+}-Mn^{2+}$ pairs in MgO, determined $J = (28\pm4)$ K. The magnitude of J determined in this work (Table I) is in very good agreement with this value, providing additional confidence in the analysis used in this paper. The difference in the J values of

 Mn^{2+} in MgO and those in pure MnO (Ref. 21) are presumably due to the difference in the lattice constants of MnO and MgO.

Next we consider the magnitudes of p_1 and p_2 determined in this work, and their magnitudes expected from the random distribution of Mn^{2+} in the MgO lattice.²³ For the face-centered-cubic (fcc) lattice of MgO, the probabilities, p_1 and p_2 , based on random distribution, are given by²³

$$p_1 = (1-p)^{12}$$
, (7a)

$$p_2 = 12p \, (1-p)^{18} \,, \tag{7b}$$

where p is the concentration of Mn^{2+} ions. (It is noted that the density of trimers for the concentrations used in this work are expected to be nearly two orders of magnitude lower than that for dimers,²³ and hence their contribution is expected to be negligible.) Using the nominal $p = 0.000 \, 84$ yields $p_1 = 0.989 \, 97$, $p_2 = 0.009 \, 93$, and $p_2/p_1 = 0.01$. Similarly, for p = 0.0048, one gets $p_1 = 0.9439$, $p_2 = 0.052 \, 82$, and $p_2/p_1 = 0.056$. The ratios p_2/p_1 obtained in this work are $p_2/p_1 \approx 0.15$ for the

TABLE I. Parameters of the fits used in Figs. 2 and 3. Theoretical p_2/p_1 refers to the random distribution model.

Nominal $p (10^{-6})$	$p_1 \ (10^{-6})$	$p_2 (10^{-6})$	p_2/p_1 (Expt.)	p_2/p_1 (Theor.)	J (K)
840	793	122	0.154	0.010	20±4
4800	1880	840	0.447	0.056	24±4

FIG. 4. Theoretical plots of the dimer susceptibility, χ_2 [Eq. (5)] vs temperature for different values of J, and the experimentally determined values of χ_2 .

p = 0.000 84 sample, and $p_2/p_1 = 0.447$ for the p = 0.0048 sample. These experimental ratios of dimers to monomers are nearly an order of magnitude larger than the values predicted by the random distribution model. Since our samples are single crystals, one should not expect such large clustering occurring simply due to sample preparation techniques. We now examine possible

FIG. 5. Semilog plot of the susceptibility due to monomers (χ_1) and dimers (χ_2) , and $\chi_p = \chi_1 + \chi_2$ vs temperature for the higher concentration sample with p = 0.0048 in Mn_pMg_{1-p}O.

sources for this clustering.

For Mn^{2+} - Mn^{2+} pairs in MgO, at least two mechanisms can affect the energy. First, the exchange coupling which we have shown in this work to equal $\frac{35}{4}J \simeq 200$ K, is quite significant and it favors clustering of Mn^{2+} ions during sample preparation. Nagata *et al.*¹² reached a similar conclusion in the $Hg_{1-p}Mn_p$ Te system, although their system was more heavily doped. The second source of clustering could be the change in the lattice energy with Mn^{2+} doping since the Mn^{2+} ion (radius $\simeq 0.97$ Å) is slightly larger than the Mg^{2+} ion (radius $\simeq 0.86$ Å), leading to lattice constants of 4.44 Å and 4.22 Å for MnO and MgO, respectively. However, we do not know whether the lattice energy is actually lowered by the substitution of Mn^{2+} in the MgO lattice. This is an interesting problem which we hope will attract the attention of theorists.

V. CONCLUDING REMARKS

The results and analysis presented in this paper have established that in the $Mn_pMg_{1-p}O$ system, Mn^{2+} ions tend to cluster due to exchange coupling. This exchange clustering explains the enhanced paramagnetism observed at low temperatures in this system, and may be the explanation for similar observations in other magnetically diluted systems.

ACKNOWLEDGMENTS

Useful conversations with P. Khowash and J. S. Kouvel are gratefully acknowledged.

¹J. R. Anderson, M. Górska, L. J. Azevedo, and E. L. Venturini, Phys. Rev. B 33, 4706 (1986).

D. Khattak, J. K. Furdyna, and P. H. Keesom, Phys. Rev. B 22, 3331 (1980).

- ²C. E. Deshpande, P. P. Bakare, M. N. S. Murthy, N. Y. Vasanthacharya, and P. Ganguly, Proc. Indian Acad. Sci. (Chem. Sci.) **91**, 261 (1982).
- ³R. Kannan and M. S. Seehra, Phys. Rev. B 35, 6847 (1987).
- ⁴J. C. Gómez Sal, F. Rodríquez, M. Moreno, and J. L. Tholence, Phys. Rev. B 37, 454 (1988).
- ⁵Kuang Xiao-Yu, Phys. Rev. B **37**, 9719 (1988).
- ⁶Yu Wan-Lun and Zhao Min-Guang, Phys. Rev. B 37, 9254 (1988).
- ⁷M. Escorne and A. Mauger, Phys. Rev. B 25, 4674 (1982).
- ⁸T. M. Giebultowicz, J. J. Rhyne, and J. K. Furdyna, J. Appl. Phys. **61**, 3537 (1987).
- ⁹M. S. Seehra, J. C. Dean, and R. Kannan, Phys. Rev. B **37**, 5864 (1988).
- ¹⁰S. P. McAlister, J. K. Furdyna, and W. Giriat, Phys. Rev. B **29**, 1310 (1984).
- ¹¹C. M. McDonagh and B. Henderson, J. Phys. C 18, 6419 (1985).
- ¹²S. Nagata, R. R. Galazka, D. P. Mullin, H. Akbaryadeh, G.

- ¹³H. Savage, J. J. Rhyne, R. Holm, J. R. Cullen, C. E. Carroll, and E. P. Wohlfarth, Phys. Status Solidi 58, 685 (1973).
- ¹⁴U. Sondermann and E. Vogt, Physica **86B**, 419 (1977).
- ¹⁵J. Spalek, A. Lewicki, Z. Tarnawski, J. K. Furdyna, R. R. Galazka, and Z. Obusyko, Phys. Rev. B **33**, 3407 (1986).
- ¹⁶Ven-Chung Lee, Phys. Rev. B 34, 5430 (1986).
- ¹⁷H. Lettenmayr, W. Jantsch, and L. Palmetshofer, Solid State Commun. 64, 1253 (1987).
- ¹⁸M. S. Seehra and M. S. Jagadeesh, Phys. Rev. B 20, 2897 (1979).
- ¹⁹M. S. Seehra, in *Basic Properties of Binary Oxides*, edited by A. Dominquez-Rodriquez, J. Casting, and R. R. Marquez (University of Seville Press, Seville, Spain, 1983), p. 179.
- ²⁰B. A. Coles, J. W. Orton, and J. Owen, Phys. Rev. Lett. 4, 116 (1960).
- ²¹M. E. Lines and E. D. Jones, Phys. Rev. 139, A1313 (1965).
- ²²E. C. Svensson, M. Harvey, W. J. L. Buyers, and T. M. Holden, J. Appl. Phys. 49, 2150 (1978).
- ²³R. Behringer, J. Chem. Phys. 29, 537 (1958).