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The multitime-scaling rule for time correlation functions is shown in systems undergoing phase
separation. With the use of multitime scaling, the asymptotic form of the structural function,
S(x)xx* at small scaled wave numbers x is shown in a late state of phase separation in the
diffusional system. A numerical simulation is performed to examine the multitime scaling. We use
a discretized Cahn-Hilliard equation with the Oono-Puri free energy. The chemical potential is not
conserved at all and may satisfy multitime scaling in the late stage of phase separation. Hence the
suggested x* law of the structure function is justified.

I. INTRODUCTION

One of the central purposes for studying the dynamics
of phase separation is to clarify pattern formation and its
temporal evolution. Many studies have been devoted to
this problem to show the validity of dynamical scaling in
a late stage of phase separation. Dynamical scaling is
usually represented for the structure function, S, (¢):!' 3

S ()={|(t)*) =R()S(kR (1)) , (1.1)

where 9 is the order parameter, and k, ¢, and d are the
wave number, time, and spatial dimension, respectively.
Here R(?) is a length scale, such as an average radius of
clusters at time ¢. The growth rate of the ordered phase
is characterized by the length scale R (¢), which depends
on time algebraically:

R(t)xt?, (1.2)

where a is a constant. The explicit form of the scaling
function S depends on the spatial pattern of the order pa-
rameter. The sharp interface between two phases in the
late stage of phase separation gives the tail of the form

(1.3)

S(x)ax @D x>51 .

When the order parameter is conserved, the scaling func-
tion S(x) should vanish at zero wave number x =0, since
Y _ o is a constant of the motion, whereas S, at k70 be-
comes macroscopic [cf. (1.1)]. Thus one may expect

S(x)xx8 &>0 (1.4)

at small x. Then the structural function takes the max-
imum value at a finite wave number k,,. This wave num-
ber is proportional to the inverse length scale
k,,(t)< R "t). The tail (1.3), called the Porod law,*
reflects the interfacial effect and is valid only for large
wave numbers.>® For intermediate wave numbers near
k,, the tail may be effectively approximated by a different
exponent. If the bulk effect is important, then S(x) may
have the tail x ~2¢, which is only qualitative, however.’
The evaluation of the exponent § is interesting. When
the thermal fluctuation is effective we have §=2. Howev-
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er, when the thermal fluctuation can be neglected the
equality =2 loses its theoretical basis. Several experi-
mental and numerical investigations’ !° have suggested
somehow an unexpected value of 8, i.e., § ~4, in the late
stage of phase separation where no thermal fluctuation is
effective. Recently, Yeung® tried to show an inequality
8>4 using the Cahn-Hilliard equation, which has no
fluctuating force. The present author!! pointed out that
the following property (property 1) of the system is need-
ed to obtain the inequality 8 = 4.

Property 1: The chemical potential u(r,t) is not a con-
served quantity in the late stage of phase separation, and
the local fluctuation of u obeys the central-limit theorem.
We have also shown that the exponent § is really equal to
4, using property 1 together with property 2: The time
correlation function satisfies multitime scaling:

(A (OB_, (t"))=R(2)%Hd

X G 45 (kR (1), R(t")/R(1)) , (1.5)

where « is a constant.

Although these two properties are quite reasonable, as
discussed in a previous paper,!! and therefore the resul-
tant exponent =4 is plausible, no direct investigation of
these properties has ever been shown. Furthermore, it is
not certain if the numerical and experimental findings
really indicate a true algebraic form S(x) «x* or indicate
only approximate functions. In fact, Tomita!? showed
that the numerical solution of the Langer, Bar-on, and
Miller" type equation, which has no source for the x*
term at small x, may exhibit an approximate x *like be-
havior at small x. This suggests that the direct experi-
mental and numerical analyses of the structural function
are not sufficient to examine such a behavior as x* at
small x. The purpose of the present paper is to report the
numerical study of the foregoing two properties. For the
simulation we use the discretized Cahn-Hilliard equation
with the Oono-Puri'* free energy, which makes the nu-
merical work efficient.

In Sec. II, we present a brief review of the multitime
scaling and a subsequent derivation of the x* law for the
structural function in the late stage of phase separation in
a diffusional system. In Sec. III, the numerical model is
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presented. This is a discretized Cahn-Hilliard model
with the Oono-Puri free energy, and is equivalent to the
Oono-Puri model. In Sec. IV, results of the numerical
simulation are presented. Several properties of the chem-
ical potential are presented, focusing on the multitime
scaling of the zeroth Fourier component. These proper-
ties are sufficient to justify the x* law. Section V is devot-
ed to conclusions and remarks.

II. MULTITIME SCALING
AND DERIVATION OF §=4

In this section we shall briefly review the previous dis-
cussions!! for the multitime scaling and the subsequent
derivation of §=4. Let A4 and B be physical quantities as
a function of position r and time z. The spatiotemporal
correlation function between A4 and B is written as

G 4p(r,t,t")=( A(r,t)B(0,1"))

—{ A(r,t)){(B(0,t")) . (2.1)

Here we assume that the system is spatially homogene-
ous. The scaling rule (1.5) is derived as follows. The time
arguments ¢ and ¢’ can be characterized by the length
scale R(¢) and R (¢’) in the scaling regime. Therefore,

GAB(r,t,t')=GQB(r,R(t),R(t’)) . 2.2)

Also, the simultaneous rescalings of three lengths, r — Ar,
R(t)—>AR(t), and R(t')—AR(¢'), do not change the
functional form of G 5. Therefore,

G p(r,t,t")=A"%G ;5(Ar,AR(1),AR(1")) , (2.3)

with a being a constant. By setting AR(¢#)=1 and
Fourier transforming (2.3), we have the scaling rule (1.5).
The single time scaling such as (1.1) is given by setting
t =t"in (1.5):

G (t,)=C A (1)B_,(2))

=R(t)?*°G 45(kR(1)) . (2.4)
Equations (1.5) can also be rewritten as
G pi(t,t')=C A ()B_, (1))
XU pg(kR(t),R(t")/R(2)), (2.5)
where
U, p(kR(2),1)=1. (2.6)

Here we shall show §=4 for the Cahn-Hilliard equa-
tion:

;dt—tp(r,t)= —MVu(r,t),
d B , 2.7
Z‘l,l’k(t)"Mk ,LLk(t) ’

where M is the mobility and is assumed to be time in-
dependent, and u is the chemical potential. From (2.7)
the equation of motion for the structural function S, (z) is
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readily given as
d t ’ ’
Esk(t)ZZ(Mkz)zfo(uk(t)p_k(t ))dt' . (2.8)

Here we have assumed that ¥(r,?) is real and that in the
scaling regime

s Y _ ()Y 5> [ (g (DY _ (0)) ]
The correlation function {u, ()i _(t’)) is scaled as

((Dp () =R ()"%G (kR (1))

XU, (kR(),R(t)/R(1)) (2.9)

with

U, (kR(D,D)=1 . (2.10)

Here ¢=2—d, since u(r)«1/R in the scaling regime.
Since the chemical potential is not a conserved quantity
in the nonequilibrium state,

: 2
lim Qg (D)]?)

does not vanish. Therefore, the correlation function
(2.10) takes the form for small k

lim (dDp (1)) < R()? 72U, (' /1),
2.11)
U,

(D=1

Here
‘Uw(t’/t)=UW(O,R(t')/R(t)) ,

and we have used (1.2). From (2.8) and (2.11) we obtain
for small k&

%Sk(t)oc 2(MKk?)?R (1) "ct,
where ¢ = f (l)‘l,lw(x)dx. In a relaxational system, no os-
cillatory decay of %/ in time can be expected. Thus %/(x)
would be a monotonic function, and therefore ¢ should be
positive. From (2.12) we find §=4.

Before closing this section, it is interesting to examine
the effect of the thermal fluctuation on the asymptotic be-
havior of the structural function. From (2.7) we observe

S (1) ~2ME* ()Y (2))¢

at small k. When there is no thermal fluctuation as we
discussed here, the driving force is the surface tension
and the quantity {u,(¢)¥_,(¢)), which has the dimension
of energy, is of the order (kR)’0R ¢! at small kR. Here
o is the surface tension and is of the order kpT,£'79,
where kp is the Boltzmann constant, T, is the critical
temperature of the phase separation, and £ is a micro-
scopic length scale associated with the thermal fluctua-
tion such as the thermal correlation length in one phase.
When the thermal fluctuation is effective, (u,¥_, ) is of
the order of thermal energy k T. Strictly speaking, kg T’
comes from the fluctuation-dissipation relation.! Then
we have another asymptotic behavior S(x)~x2. The
crossover from one to the other occurs at

k~0, (2.12)
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(kR)*0R® ' ~kyT,ie., at

d—1
T

2 2 2
k*R (t)*=x,(t)"~ T

c

_&
R (1)

Namely, we may find S(x)~x2 for x <x,, whereas we
may find S(x)~x* for x > x., where x =kR. Hereafter
we do not take the effect of the thermal fluctuation into
consideration, i.e., we consider only the case of large
R(1).

III. NUMERICAL MODEL

To solve numerically the Cahn-Hilliard equation (2.7),
this equation is discretized as'#4 ™16

Yt +7,n)—(t,n)=—7LA({P}) .

Here n indicates a lattice site n in the discrete space, 7 in-
dicates a discrete time interval, and L is the discrete La-
placian. The quantity #f is proportional to u: #=Mpu.
Hereafter we set M =1 and thus we do not distinguish #
from pu. The chemical potential in the discrete space is
written as

p=pol{¢})+gL(t,n) ,

where g is a constant representing the strength of the in-
teraction. Usually the noninteracting part of the scaled
- chemical potential, u,, takes the form

- 3
“0_¢_¢ >
where we have omitted a trivial proportionality constant

on the right-hand side of (3.3). Oono and Puri'* intro-
duced another type of chemical potential:

o= A tanh(y)—¢ .

With the chemical potential (3.4) we can use a very large
time interval 7~1 without any undesirable instabilities
due to the discretization.!* Therefore, if we employ (3.4),
then we can treat (3.1) as essentially a discrete model
different from the original continuum model (2.7). Thus,
the numerical computation becomes efficient. It is ex-
pected that there is no. essential difference between the
continuum model and the discrete model in the scaling
regime where the characteristic length and time scales
are much longer than those of model equations and any
meaningful changes in space and time are regarded as
continuous.

Let us consider instabilities in the preceding discretized
model.!® We may define the discrete Laplacian .L as

(3.1

(3.2)
(3.3)

(3.4)

APLF(,n) =1 (Fa)—F (3.5)
Z NN

where Fyy is F in the nearest-neighbor sites and Ar is the

lattice constant and z is the number of nearest-neighbor

cells (z=4 and 6 for the square lattice and the simple-

cubic lattice, respectively). Linearizing and Fourier

analyzing (3.1), we have a transformation equation

6¢k(t+T)=Hk8¢k(t) .
The system becomes unstable when |H,|>1 for any
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value of the wave number k. The instability H, > 1 cor-
responds to the spinodal decomposition, while the insta-
bility H; <—1 has no counterpart in the continuous
equation. This seems to suggest that we must choose
H, > —1 for all values of k. The former instability
occurs at small wave numbers, whereas the latter occurs
at large wave numbers. To avoid the latter instability for
all wave numbers we may set

T

Ar ’

This is because the first instability occurs at the largest
wave number ( 7/Ar,7/Ar,/Ar).'® In this sense the
latter instability gives rise to an antiferromagnetic-like
pattern. The foregoing condition gives, for the chemical
potential (3.3),

Hk>'“l at k_,k

x> My>

k,=

(2g —Ar¥)r < Art, (3.6)
and for (3.4),
[2s—(A—1)Arlr<Art. (3.7

We use the following values of parameters throughout
the present work:

g=1, Ar=1, A=13. (3.8)
Then for the square lattice, (3.6) and (3.7) become 7> —2
and 7<5, respectively. Thus, with 7=1 no
antiferromagnetic-like instability is expected to occur for
either (3.3) or (3.4). Actually, however, an
antiferromagnetic-like instability is observed for (3.3),
whereas it is not observed for (3.4) (see Fig. 1). The
essential difference between (3.3) and (3.4) seems to be the
difference between asymptotic forms of pu, at large values
of the order parameter. Oono and Puri'* explained the
equation (3.1) with 7=1 as a nonlinear mapping equation
for ¥(t). With (3.4) this mapping gives a rather smooth
approach of 3 to its nonzero fixed points +j,, whereas
with (3.3) the approach is oscillatory. If we use
wo=€yp—1* instead of (3.3), then such an oscillation can
be removed for a small positive value of €, and no
antiferromagnetic-like instability occurs even for a finite
7(=1).'7 The Oono-Puri model [7=1 and (3.4) for ) is
essentially a discrete model, but it must give results essen-
tially equivalent to those by the continuum model in the
late stage of phase separation.'®

IV. RESULTS

We studied numerically the discretized equation (3.1)
with 7=1 and with (3.4) for u, with a periodic boundary
condition. Throughout the present study we used the
values of parameters (3.8). The parameter 4 =1.3 gives
the fixed points g ~=+1. Oono and Puri'* used g=1
and A4 =1.3, for which, however, we encountered an
antiferromagnetic-like instability and a subsequent diver-
gence in numerical computation. Such a divergence can
be removed if we use a spherical discrete Laplacian on
the square lattice:'*

LF(t,n)=13 (Fan)+ 5 S (Fanw)—F » 4.1)
NN NNN
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(a)

v u (b)

FIG. 1. Spatial patterns of the order parameter ¢ (left) and
the chemical potential u (right) at time 10 (7=1) on the square
lattice, generated by (3.1). Asterisks indicate lattice sites with
¥ >0 or u<0. (a) Case of (3.4) with the discrete Laplacian (3.5)
and parameters (3.8). No antiferromagnetic-like pattern is seen.
(b) Case of (3.3) with (3.5). In this case the antiferromagnetic-
like patterns are seen clearly for the chemical potential. Shortly
after, the numerical computation encountered the divergence.

where Fynn 1S F in the next-nearest-neighbor sites. In
two dimensions we have used the spherical discrete La-
placian (4.1). But we have found no essential difference
between (4.1) and (3.5) with the values of parameters
(3.8). In three dimensions we have used the discrete La-
placian (3.5), only.

One reason to use a value of g such as (3.8) is that our
three-dimensional system (30X30X30) is not so large.
The system size is effectively larger for a smaller value of
g. The simulation was done in two and three dimensions
(on the square and the simple-cubic lattice) for the time
interval 0 =t < 30007 (r=1).

Quenches are done at the center of the miscibility gap:

(¢)=0.

Initial values of the order parameter on lattice sites are
randomly set between —0.25~0.25. In Fig. 2 we show
two-dimensional spatial patterns of the order parameter
and the chemical potential on a square lattice in early
and late stages of phase separation. The system size is
60X 60. Asterisks indicate lattice sites with >0 or u <0
in each figure. In the early stage of phase separation, the
pattern of the order parameter resembles that of the
chemical potential. This indicates that the chemical po-
tential may be approximately proportional to the order

4.2)
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3000 il

FIG. 2. Early time (upper: ¢=40) and late time (lower:
t=3000) spatial patterns of the order parameter (left) and the
chemical potential (right ) for the discrete model (r=1) with
(3.4) and (4.1) (Oono-Puri model). We used parameters (3.8)
throughout this work.

parameter, and therefore the Cahn-Hilliard linearized
theory may be valid in the initial stage. In the late stage
the spatial pattern of the chemical potential is not the
same as that of the order parameter. This suggests that
the chemical potential is not a conserved quantity. This
can be more clearly seen in Fig. 3. Here we plot the fol-
lowing quantities (zeroth Fourier components) on the
simple-cubic lattice:

N N
N7'2S g(n,t), N7V uln,t),

n=1 n=1

where N is the number of sites.

We examined the Fourier transformation of the same
time correlation function, {|u,(#)?|). This quantity is
scaled as [cf. (2.4)]

(U ?]) < R(D74G (KR (1)) , (4.3)

where $=2—d. The wave number k means the spheri-
cally averaged one.'® In Fig. 4, {|u,(#)|?) at kK =0 in two
and three dimensions are plotted as functions of time in
log-log scale. Although these quantities are very fluctuat-
ing, the simulation is consistent with

(po()?) <R(2)™%, ¢=2—d (4.4)
and

R(t)c2l/3, 4.5)
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FIG. 3. Temporal evolutions of zeroth Fourier components
of the order parameter ¥ and the chemical potential u for the
three-dimensional Oono-Puri model with (3.4) and (3.5).
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FIG. 4. (|u(2)|*) at k=0 as functions of ¢ (a) Two-

dimensional case. Data are averaged over 37 runs on the square
lattice of size 60X 60. (b) Three-dimensional case. Data are
averaged over 32 runs on the simple-cubic lattice of size
30X 30X 30. The straight line indicates the slope 1.
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Figure 5 shows three-dimensional scaling functions Guu
and S (=G,) in log-log scale (the system size in this
case is 20X20X20). Here we employed (4.5) and calcu-
lated the scaling function simply by

G () =R | (0)[*)

with x =kR (¢). The shapes of the two scaling functions
are quite different from each other at small wave num-
bers. This is because the chemical potential is not con-
served, whereas the order parameter is conserved.

We also calculated the normalized autocorrelation

function of the zeroth Fourier component of the chemical
potential, i.e.,

(D ()
U, (tt')=——————— ,
o U)o

To examine the scaling property of (4.6) we divided the
region of time ¢ into six subregions:

t>t . (4.6)

500(p —1)<t <500p, p=1,2,...,6

and we averaged (4.6) for a given value of t'/t (<1) in
each subregion to get U,,(t'/t,p). Here t, <t'<t, where
to~50. U, (t'/t,p) indicates the average decay of the
correlation from each time subregion as a function of ¢'.

~
B
= 8o
E A &
o ° Copt® ¥o
of” 28
[=] 3
— L]
o
o
o
e
0'
%
OD
J L 2
7 LA
o
log x
%t o
v
2
g ?A
it 5%
= ? 0.6
S ]
LI
° °
L °
o
o
8
o
o
M ° 1
oo
log x

10

FIG. 5. Three-dimensional scaling functions G, (x) (upper)
and S(x) (lower) in log-log scale. The scaling unit is arbitrary,
but the vertical and horizontal units are the same. The data are

averaged over 29 runs on the simple-cubic lattice of size
20X20X20.
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FIG. 6. Three-dimensional autocorrelation function (4.6)
averaged in time subregions 500(p — 1)<t =500p
(p=1,2,...,6). Here numbers on the figure indicate p. The
same data as for Fig. 4(b) are used.

In Fig. 6 these quantities in three dimensions are shown
as functions of (¢'/¢)!'>. If the decay of the autocorrela-
tion function is, for instance, a modified exponential func-
tion

exp(_,ytll.S) ,

then the scaling t'—t'/p gives the scaling of the damping
coefficient, y—p!3y, and therefore, the slope of
U,,(t'/t,p) for p=6 may be 6'>=14.7 times larger than
that for p=1. However, Fig. 6 shows a different
phenomenon. That is, the autocorrelation function
U, (t'/t,p) is rather independent of p:

1.0
<
-
B
=3
=
0.5
b c
a
g
8] 0.5 1.0

(tr/tyl-5

FIG. 7. Three-dimensional scaling autocorrelation functions
U, (t'/t) on simple-cubic lattices. a: The system size is
30X 30X 30, and the same data for Fig. 6 and Fig. 4(b) are used.
b: The system size is 20X 20X 20, and data are averaged over 30
runs. ¢: The system size is 15X 15X 15, and data are averaged
over 15 runs.
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U, /t,p)=U,(t' /1) . 4.7)

The multitime-scaling function U,,,(¢' /1) [see also (2.11)]
is calculated in the same way as U, (t'/t,p) for the
whole time interval ¢y <¢ =<3000. In Fig. 7, scaling func-
tions for different system sizes in three dimensions are
shown. We find that the system size effect is not impor-
tant. The scaling autocorrelation function ‘Llw(x) in

three dimensions exhibits a simple algebraic decay
-1.5
Uy (x)~x , x<1. (4.8)

However, in two dimensions we could not find such a
simple decay law (Fig. 8).

V. CONCLUSIONS AND REMARKS

The purpose of the present study was to clarify statisti-
cal properties of the chemical potential in the system un-

1.0
a (a)
S
~
.
3
4
=
0.5
3
i
2
0
0 0.5 1.0
(tr/1)%-7
1.0
2 (b)
~
%
p=1
=X
=
0.5
a
0 0.5 1.0
(tr/)°7

FIG. 8. Two-dimensional scaling autocorrelation function on
the square lattice of size 60X 60. The same data for Fig. 4(a) are
used. (a) Autocorrelation function (4.6) averaged in time subre-
gions 300(p —1)<?=500p (p=1,2,...,6). Here numbers on
figure indicate p. (b) Corresponding scaling autocorrelation
function.
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dergoing phase separation. In the later stage of phase
separation the chemical potential is not a conserved
quantity at all. We found that the multitime scaling may
hold for the fluctuation of the chemical potential. The
multitime scaling is a natural extension of a single time
scaling such as (1.1). Statistical properties of the chemi-
cal potential studied here are sufficient to justify the
asymptotic behavior of the structural function, S(x)« x*
at small x. The study of the multitime scaling at finite
wave numbers for the chemical potential and also for oth-
er quantities is left as a future problem.

The order parameter depends on the values of the
chemical potential at earlier times. Thus the chemical
potential may approach the scaling behavior faster than
the order parameter. However, it should be noted that
the fluctuation is larger in the chemical potential than in
the order parameter. Therefore, it is not always easier to
examine the scaling behavior by the chemical potential
than by the order parameter.

So far all quenches are done at the center of the misci-
bility gap. This would not lose the generality of present
conclusions. For a quench near the coexistence curve the
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cluster shape is rather spherical, whereas it is intercon-
nected near the center of the miscibility gap. However,
the statistical nature of the fluctuation of the chemical
potential would be the same. That is, the fluctuation of
the chemical potential is nonconservative and obeys the
central-limit theorem. In fact, we have numerically as-
certained these properties of the chemical potential for
the quench near the coexistence curve. Due to the small
system size and the elongation of the time scale of the
fluctuation, we could not examine the multitime scaling
of the chemical potential for the quench near the coex-
istence curve.

We have considered a model for a solid system. Essen-
tially the same conclusion is expected for the viscous
fluid. This is because we expect that the cluster mobility
may have a nonvanishing zeroth Fourier component
M(t) also for the fluid, that the driving force corre-
sponding to the chemical potential may be nonconserva-
tive, and that the order parameter would obey a general-
ized diffusion equation like the Cahn-Hilliard equation.
These three are the main factors for all conclusions ob-
tained in this work.
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