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Br nuclear-quadrupole-resonance line shape and Raman-induced spin-lattice relaxation
in the incommensurate phase of P-Thar4
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We performed ' Br nuclear-quadrupole-resonance (NQR) line-shape and spin-lattice relaxation
time measurements in the incommensurate (I) system P-ThBr4 over the temperature range 293—2.S

K. In addition, we extended the theory of the e6ects of Raman processes on amplitudon and
phason spin-lattice relaxation in incommensurate systems by obtaining general expressions for the
spectral densities and phason gap b

&
that are valid at all temperatures in the I phase. By measuring

T, selectively for the difFerent parts of the broadened NQR line in P-ThBr4, we separately obtained
the phason and amplitudon contributions, T&& and T», respectively. A comparison between
theory and the experimental data shows excellent agreement and demonstrates that spin-lattice re-
laxation in P-ThBr~ is dominated by Raman processes. The phason gap b«was determined to be
0.072+0.020 THz.

I. INTRODUCTION

In recent years considerable interest has developed in
studying incommensurate (I) systems. Many techniques
[neutron diffraction, ' light-scattering and infrared
spectroscopy, nuclear magnetic resonance (NMR), '

electron paramagnetic resonance (EPR) (Ref. 4 and 5),
and nuclear quadrupole resonance (NQR) (Refs. 4 and 5)]
have been successfully employed.

The incommensurate modulation wave is characterized
by two excitation modes: (1) amplitudons, describing
Auctuations in the amplitude of the wave, and (2)
phasons, describing fluctuations in its phase. Even
though amplitudon excitations are characterized by a
nonzero energy at zero-reduced wave vector (k =0),
phasons should be gapless since they represent sliding of
the modulation wave. However, in actual systems
phasons are not usually gapless, but are characterized by
an energy gap believed to arise from pinning of the
modulation wave by imperfections. Even though
scattering techniques (neutron diffraction, Raman
scattering) have been widely used in determining the am-
plitudon gap A~, they are less effective in phason gap 5&
determination, because they have difhculty in observing
frequencies that are smaller than the damping coefFicient
r.

In contrast, NMR, NQR, and EPR have been particu-
larly useful in studying both the amplitudon and phason
properties of I systems. The usefulness of NQR, in par-
ticular, is due to the fact that the I modulation wave
directly affects the electric-field-gradient (EFG) tensor
through the nuclear displacements. The static parts of
the EFG tensor are responsible for line broadening while
the Auctuating parts of the EFG induce spin-lattice relax-
ation. By exciting selectively different parts of the NQR
line and measuring the corresponding spin-lattice relaxa-
tion times TI, the phason and amplitudon contributions
to the spin-lattice relaxation rate ' ' can be determined
separately.

At the present time, the A2BX4 systems (e.g. ,
Rb2ZnC14, Rb2ZnBr4, etc. ) have been intensely studied
with magnetic resonance techniques. Both NQR and
NMR (Refs. 8 and 9) have recently been employed to
determine separately the amplitudon and phason contri-
butions to the spin-lattice relaxation as well as the phason
gap. To the best of our knowledge, both the phason and
amplitudon relaxation properties are dominated by direct
phonon processes in the I systems studied by magnetic
resonance up to now. In this paper we report the first
magnetic resonance observations of amplitudon and
phason relaxation by Raman processes in an incommens-
urate phase (P-ThBr4).

The paraelectric-incommensurate phase transition at
Tz =95 K in P-ThBr& was first observed independently by
NQR (Ref. 10) and optical spectroscopy. " The incom-
mensurate modulation is characterized by a displacement
of the bromide ions, while the thorium ions remain at
their high-temperature paraelectric-phase lattice sites. '

As a result, an NQR study of bromide nuclei allows
direct observation of the incommensurate modulation in
P-ThBr4.

In this paper, we report pure NQR line shape (includ-
ing thermal fluctuation effects) and T, measurements of

Br in P-ThBr4 powder in the I phase over the tempera-
ture range 95 K down to 2.5 K. Also, we extended the
theory of the effects of Raman processes on the spin-
lattice relaxation by obtaining general expressions for the
phason gap 6& and for the spectral densities valid for all
temperatures in the I phase.

II. EXPERIMENTAL DETAILS

The powder sample used in the experiments was ob-
tained from Anderson Physics Laboratory, Urbana, Illi-
nois. The nominal purity is 99.9% and it is reported to
be free of oxides and oxyhalides (&700 ppm H20 and
OH, as measured by the coulometric Karl Fischer titra-
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tion method). The powder sample was sealed in a quartz
ampoule in an inert atmosphere, and was not opened
after shipment to our lab, thereby guaranteeing no mois-
ture contamination. Because of strong quadrupolar
broadening we used the Hahn echo' sequence in which
we selectively excited only a small portion of the NQR
line using rf pulses of relatively long duration.

Low temperatures were obtained by the helium Aow
method. The temperature controller (Lake-Shore) uses
one sensor to control heating of the Aowing helium and
another sensor to read out the temperature near the sam-

ple. The temperature variation was typically ~ 0.10 K,
during each measurement. Temperatures between 2.5
and 4 K were achieved by pumping on the liquid helium
in the sample spaces.

III. LINE SHAPE MEASUREMENTS

const

[(v—v2 —vo)(v2+v2+vo —v)]'i (5)

for the nonlocal case. As a result, the NQR spectrum
will exhibit two edge singularities, at

for the nonlocal case. Obviously, if we can ignore the
higher-order terms, v2 will be the only term reAecting
nonlocal effects. Hence, if most parts of the nonlocal
EFG tensor are canceled out due to lattice symmetry, the
only effect of the remaining nonlocal term is to shift the
whole line by an extra temperature-dependent factor vz.

In the plane-wave approximation, where y(x) is linear
in x, which is valid throughout part of the I phase except
at temperatures very close to the incommensurate-
commensurate (I C) tr-ansition Tc, the observed NQR
frequency distribution is given by

In general, NMR or NQR line shapes of I systems are
quasicontinuous in nature because the incommensurate
modulation disturbs the translational lattice periodicity
resulting in a large number of nonequivalent individual
nuclear displacements. This essentially infinite number of
nonequivalent nuclei significantly broadens the NQR
lines.

Blinc ' and co-workers calculated the resonance line
shape for two models: local and nonlocal. The former
states that the NQR frequency v(x; ) of a given nucleus
depends only on the displacement of this &th nucleus. In
one-dimensional (1D) modulated systems, the relation be-
tween v and the displacement yields

v(x) vo+ v] cos[lp(x ) +Ipp]

+ v2 cos [g(x ) +go]+

V —Vp+ V2

and

By comparing Eq. (6) to Eq. (4) we see that v corre-
sponds to cosy(x) =0 and v+ to cosy(x ) =+1.

Figure 1 shows the NQR frequency measured as a
function of temperature from 300 K down to 2.5 K. The
splitting frequencies below Ti =95 K in Fig. 1 are very
close to those reported by Malek and co-workers, ' who
also observed NQR splittings in the I phase down to
about 65 K. The quantities v2 and vz can be obtained
from the experimental values for v+ and v since, from
Eq. (6),

where v is proportional to the jth power of the ampli-
tude of the modulation wave. In the more general nonlo-
cal treatment, effects due to the displacements of all the
nuclei are included. As a result, nonlocal effects will give
rise to different phase angles for the different terms in the
expression for the NQR frequency:

v(x ) =vo+ v, cos[y(x ) +y, ]

+v2+ v~ cos [g(x ) +g2] + (2)

v(x)=v„+v2cos y(x)+O(v4) (3)

in the local approximation, and

v(x ) =vo+ v2+ vz cos y(x )+0 ( v4)

where vp corresponds to the high-temperature normal-
phase NQR frequency. v, is proportional to the linear
term of the modulation wave amplitude [ ~(TI —T) ]
and vz (and vz) are proportional to the quadratic terms. '

The critical exponent P is determined by several different
experimental methods' to be f3=0.315 in |33-ThBr4.

For P-ThBr4, the bromide atoms are located in planes
of symmetry, so that the linear term (as well as higher-
order odd terms) in Eq. (1) or (2) are absent. Thus, Eq.
(1) or (2) reduces to a quadratic expression

and

and

v2=B ( TI —T) ~ .

(8)

A fit to our experimental data, using P=0.315, yields
2 =(43.9+2.5) kHz/K ~ and B =(5.83+1.0) kHz/K ~.
We thus see that 8, which is a measure of the nonlocal
effects, is only slightly more than 10% A. This relative
unimportance of nonlocal effects can be understood quali-
tatively, since the I modulate wave displaces only the
Br ions in P-ThBr4, as discussed in Sec. I. The solid
curves in Fig. 1 are obtained from Eq. (8) using the exper-

V2 —V Vp

The paraelectric-phase NQR frequency vo has linear tem-
perature dependence with a negative slope of magnitude
dvoldT=0. 65 kHz/K, as determined from the data
above TI in Fig. 1. Extrapolating this slope into the I
phase, we can obtain "experimental" values for vz and vz,
using Eq. (7). Since vz and vz are proportional to the
square of the modulation wave amplitude, they are de-
scribed by the expressions

v~= A (TI —T)2~
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FIG. 1. Temperature dependence of NQR frequency v&. Below TI, the two sets of data are the frequencies of the singularities at
&+ &o+ &a+ &z and &— &o+ &2 ~

imentally determined values for the fitting parameters 3
and B.

The excellent agreement between theory and experi-
ment observed in temperature regions far from the vicini-
ty of TI is consistent with neutron scattering and other
results' showing that p is nearly a constant in the whole
I phase. Furthermore, the line at 4.2 K is still a continu-
ous inhomogeneous line with only two singularities (Fig.
2), characteristic of a typical I phase NQR frequency dis-
tribution. The absence of any discrete multisoliton lines
indicates that we are not seeing any evidence of a nearby
transition to a commensurate phase down to 2.5 K. The
small deviation from the theoretical curve of the low-
temperature data below 10 K may very well be due to a
slight change in lattice parameter with decreasing tem-
perature.

IV. THERMAL FLUCTUATIONS NEAR TI

Below and near the P-I transition temperature TI, the
phase of the modulation wave exhibits significant
thermal fluctuations

P(x, t) =P(x)+bP(x, t), (9)

T =4.2 K

l

49.4
I

49.6 49.8
s« fMHz )

50.0 50.2

resulting in motional narrowing of the NQR line. At
temperatures very close to TI (say, within 1 K), phase

At temperatures immediately below the P-I transition
at TI=95 K, there is a small discrepancy between the
measured singularity positions v+, v and the theoretical
expression [Eq. (6)], based on the classical Landau theory.
Figure 3 shows an enlargement of the TI & T ) TI —15 K
region. The solid line is the theoretical curve for
v2=43. 9(TI —T) ~ and vz=5. 83(Tt —T) ~ with P
=0.315. Qualitatively, we see motional narrowing due to
rapid phase Auctuations' of the modulation wave. Simi-
lar phenomena were also observed in Rb2ZnBr4 by
NMR, ' RbzZnC14 by NQR, ' and in Gd +-doped P-
ThBr4 by ESR.'

(b) T =BOK

49.4 49.6 49.8
s + (NIHz)

5 O.O 50.2

Fl+. 2. NQR line shapes at (a) 4.2 K, (b) 30 K. Note that no
multisoliton lines are observed.
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FIG. 3. Singularity splitting over the range TI —15 & T & TI.
The departure of the experimental results from the theoretical
curve is due to motional narrowing arising from thermal phase
Auctuations.
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fluctuations will be rapid compared to the NQR time
scale so that the motional averaging effect will result in a
smoothing of the edge singularities, thus making it
difficult to determine accurately the precise P-I transition
temperature TI. At lower temperatures, the edge singu-
larities can be seen even though the linewidth may still be
somewhat reduced by motional narrowing. In the qua-
dratic approximation, Blinc and co-workers have shown
that

—2 2v= vo+ —,
' [v~+ v~e cos(2$ )]+v~, (10)

where o =b,P is a measure of the phase fluctuations.
The singularities v+ are then given by

—2 2

v+ =vo+ —,
'

v2( 1+e ) +v2 .

( V+ )expt ( v —)expt
o- = —

—,
' ln

V+ )theor ( V —)theor
(12)

where (v+),„p,and (v+),h„,represent experimental and
theoretical values for v+. The denominator
(v+),h„,—(v ),h„,in Eq. (12) is vz and is equal to the
difference between the theoretical values (solid curves) in
Fig. 3.

Figure 4 is a plot showing the temperature dependence
of o. just below TI. We see that the thermal phase Auc-

tuations are only significant within 5 K of TI. At 10 K
below TI, the rms phase fluctuations are less than 10',
and have disappeared entirely below TI —12 K. These
results are comparable to values for o. reported in
RbzZnBr4 by NMR (Ref. 16) and in Rb2ZnC14 by NQR. '

It appears that the thermal Auctuation effect extends to

Decreasing the temperature causes o. ~0, in which case
Eq. (11) reduces to Eq. (6).

The phase-fluctuation exponent o. can be determined
from a comparison of the differences between the experi-
mental values for v+ and v with the theoretical
differences at each temperature in Fig. 3. From Eq. (11),
we see that

FIG. 4. Temperature dependence of the mean-square phase
tluctuations 0 = (b,P ) in P-ThBre.

slightly lower temperatures in our NQR measurements
than were reported for EPR (Ref. 18) measurements in a
Gd+-doped P-ThBr„crystal. This difference, which may
result from possible pinning of the modulation wave by
the dopant, reduces the amplitude of the phase Auctua-
tions. Also, the Br NQR technique may be more sensi-
tive to slight changes in local environment due to small
thermal fluctuations in the positions of the Br ions.

V. EFFECTS OF RAMAN PROCESSES
ON T) ~ AND T)p

The general theory of the contributions of damped am-
plitudons and phasons to the NQR or quadrupolar per-
turbed NMR spin-lattice relaxation in incommensurate
systems was developed by Blinc and co-workers. ' ' In
contrast to the situation of translational periodic systems
where T, does not vary over the NQR line, amplitudons
and phasons will contribute differently to different parts
of the NQR spectrum in I systems, thereby allowing the
independent determination of T& ~ and Tj&.

Starting from the pth component of the EFG tensor
expanded in a Taylor series

g2T(P)+ —,
' g u;(t)ui(t)+

i,j i J o

(13)

where u is the magnitude of u, The Auctuating part of
the EFG tensor can be expressed as
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g2T(P)
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' g — 6u;5u, + .
BU;BU.

l, J

(14)

The first term results in the direct process (absorption or
emission of one phason or one amplitudon by the spin
system) for relaxation and the second term results in the
ordinary Raman process (inelastic scattering of two exci-
tations, amplitudon or phason). From this expression, we
see that the Raman process will be significant only if the
linear term of the EFG tensor (BT'"'/Bu; )o
=0.

Furthermore, Raman processes should be important in
spin-lattice relaxation only if there are considerable num-
bers of excitation pairs (versus single excitations) (Ref.
19) whose frequency differences correspond to the rela-
tively low rf frequencies used in NMR and NQR. This
situation should occur only when the density of excita-
tions is peaked at frequencies much higher than the rf re-
gion, which, in turn, requires a small damping coe%eient
I (underdamped case). If, on the other hand, the excita-
tion density is peaked at lower frequencies (near the
NMR or NQR frequencies) which should occur when the
damping coefficient is larger, direct processes should
dominate the relaxation, as has been reported ' ' ' for
most of the I systems (e.g. , the A2BX4 systems) studied
so far by NMR and NQR. However, even in these sys-
tems, the amplitudon modes are not strongly over-
damped, suggesting that Raman processes may still be
significant.

P-ThBr4 has a relatively small damping coefficient'
(I =70 GHz) compared with KzSe04 for which I ~ 210
GHz. The P-ThBr„amplitudon gap b, ~ at 81 K was
measured to be approximately 230 6Hz by both Raman
and neutron scattering. '" Therefore, it is quite obvious
that the amplitudons are underdamped even at 81 K.
There is insuScient experimental evidence in the litera-
ture to determine if there is a nonzero phason gap 6&,
which may be possibly induced by lattice defects or im-
purities. The phason dispersion curve reported at 81 K
shows a maximum frequency co& „=400GHz. Since
the damping coefficient I is smaller than these charac-
teristic frequencies, there should be a large number of un-
derdamped phason modes whose frequencies are much
larger than the NQR frequency. As a result we would ex-
pect that both T, A and T,&

will be dominated by Raman
processes in 13-ThBr&. Moreover, as we mentioned in Sec.
III, the bromide atoms in P-ThBr4 are located in planes
of symmetry so that the part of the linear term in Eq. (14)
involving (BT/Bu;) is absent, thereby reducing the con-
tributions of direct processes to the spin-lattice relaxa-
tion.

If Raman processes are dominant in both phason- and
amplitudon-induced relaxation in the local approxima-
tion, the spin-transition probability in the I phase will be
given by

X [X"J„„+(1—X ) J~~

+X (1 X—)(J~~+J~„)], (15)

T 1
' = const T'J (17)

a pure phason contribution which we eall T
&y

~ At
X —+1, v= vp+ v2 aIld

T&
'= const T JAA, (18)

a pure amplitudon contribution which we call T, ~. At
both X=0 and +1, the contributions from JA& and J&A
vanish. A measurement of the temperature dependence
of T&

' can thus be used to determine whether T&A and
T,&

are dominated by Raman versus direct processes,
since the contribution of the direct process to T, will be
linear in temperature ' in contrast to the quadratic tem-
perature dependence of Eqs. (15)—(18).

P-ThBr4 is incomensurate over a wide temperature
range, from TI=95 K down to the lowest temperature
which we have investigated (2.5 K). Thus, it is very easy
to distinguish a linear from a quadratic temperature
dependence in the spin-lattice relaxation rate. Figure 5
shows the Br spin-lattice relaxation times measured
over the temperature range 293—2.5 K. In the vicinity of
TI we see a sharp dip, characteristic of soft-mode con-
densation. Below TI, TiA is measured at the higher-
frequency edge singularity v+ (at X =+1), whereas T,&

is
measured at the lower-frequency edge singularity v (at
X =0).

In Fig. 6, we replot the I phase T, data as a log-log
plot of T, ~ and T&&' versus T . The fact that both
curves have slopes equal to unity over most of the range
indicates that both T&~ and T&&' are dominated by Ra-
man processes. Below approximately 10-15 K, the T,&'

and T& A slopes becomes steeper than the T dependence,
as is typical for the low-temperature behavior of Raman
processes. Near TI, the amplitudon branch T, A' in-
creases rapidly, in contrast to T,&

which remains on the

where T~~z' is the EFG tensor component defined in Eq.
(13), X = cosy(x), p is the mass density, and
p, = ~

hm
~

= ~+1 ~, ~+2 ~, . The spectral densities for
the amplitudon and phason contributions are represented
by JAA and J&&, respectively. JA& and J&A are spectral
densities for interactions involving one phason and one
amplitudon. As we shall see in the present investigation
T, A and T,&

will be determined without requiring a prior
knowledgeof JA~and J~A. Since Tl '=W"'+8'

T, ' ~(kT) [X J„„+(1X2)2J—
~~

+X (1—X )(J„p+Jp~)].

The amplitudon and phason contributions to the spin-
lattice relaxation rate can be determined separately by
selectively measuring T& in di6'erent parts of the line. At
X = cosy=0, v=vo in the local approximation [Eq. (3)]
aIld



Br NUCLEAR-QUADRUPOLE-RESONANCE LINE SHAPE AND. . . 2337

and

cog =6g+Kk (19)

T curve, thereby indicating that Jz z is temperature
dependent but J&& is not.

The spectral densities J~z and J&& depend on the
dispersion relations for amplitudons and phasons

IO

I
Vl

I

Io

co =5 +KkK (20)

and

J„„=~ A( 1 —2b,
„

/A&a. ) (21)

where A~ and 5& are the arnplitudon and phason gaps,
respectively. Figure 7 shows sketches of co versus k ob-
tained from Eqs. (19) and (20).

In the limit where the NQR frequency v& is much less
than the phason and amplitudon frequencies, Blinc
showed that the spectral densities are

O
lo

4 IO'

I

0 IO
V)

J~~ =v A(1 2b, ~/A—&~), (22)

where A corresponds to the maximum value of the wave
vector k. This treatment assumes the same value for

los

IOO

I

IO'

7 ~(~~)
IO

I

IO4

X

I s-
I

X

looms

Tl y
~ high-T phase

FIG. 6. I og-log plot of TI& and T»' vs T over the I phase.
The solid lines at both branches have slopes of 1, indicating that
Raman processes are dominant.

A z for both phasons and amplitudons. Equations (21)
and (22) are valid in the region very close to
the transition temperature TI. However, because
= "v/2a ( TL T) is — temperature dependent,
(2b, „/A+~)& 1 and Jz„(1at temperatures far from
TI, causing Eq. (21) to no longer be valid. From pub-
lished hz data' at 81 K for P-ThBr4, we can calculate

loms

v' 2a =b,
„

/")/ TI —81 K=235/+14=62. 8 GHz/K. '

Using this value, we obtain at T=70 K th le va ue 314
z or ~. Since A&a is temperature independent for

A mpl i t U don

Phason
A max

C3

LLI

LLI

max

I

IOO
I

200 300
I

~k~=kmax k=0 )k(=k max

REOUCEO NAVE VEC TOR
FIG. 5. TTemperature dependence of the spin-lattice relaxa-

tion time TI. Below TI, T, ~ is measured at v+ and T,&
is mea-

sured at v
FIG. 7. Schematic diagram of typical I phase amplitudon

and phason dispersion relations.
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pp(co)pp(co+cog )dco

V co (co+co )N CO 6)g
(23)

Since we are interested only in J„Aand J&&, we let p=13'
and obtain

~4 pp(co)pp(co+ cog )dco

V co (co+co )Cc) CO COg

From the dispersion relations (19) and (20), we obtain

dCo Kk / [ 1 (g2/ 2)]i/2

(24)

Since

p(co)dco=( V/4~ )4~k dk,

phasons, we can use the phason value Ai/s. =400 GHz
(Ref. 1) obtained at 81 K, in which case we see that
2b, A/A&lc&1 and JAA &1. Thus, Eq. (21) is valid only
at temperatures very close to TI, for which 6 A (&Ai/Ic.

We extended Blinc and Zumer's treatment ' to obtain
more general expressions for J~ z and J&&, valid over
most of the I phase, provided that the plane-wave ap-
proximation is valid. They expressed the spectral density

Jpp, where P and /3' can be either 3 or P, in terms of the
excitation (phason or amplitudon) density p& as

two branches should be different and these differences be-
come negligible only when 6& is very much less than

co&,„,which occurs in the amplitudon branch only for T
very close to TI. We thus see that Blinc's expressions for

J~z and J&& are approximations which are valid very
close to T;, whereas our modified expressions should be
valid over most of the I phase.

VI. PHASQN GAP A~

There exist relatively few examples of I systems in
which a nonzero phason gap has been detected by direct
experimental techniques (like neutron diffraction or opti-
cal spectroscopy), since phason excitations are usually
overdamped (I &) b,&) near k =0. For )c)-ThBr4, neutron
scattering data are ambiguous" ' about the existence of
a nonzero phason gap, but suggest that the gap, if it ex-
ists in P-ThBr4, should be at most 70 GHz. '

Because of this difhculty in observing 6& by the
diffraction method, Blinc and co-workers studied several
328X4 systems by spin-lattice relaxation measure-
ments. ' ' ' " All these studies assumed that both T»
and T,&

are direct processes, in which case,

(28)
JQp

we get

pp(co) = IC co [1—(Ap/co) ]'~, co& 4p,
—3/2 2

P 2 P

=0, co~Ap . (25) (29)

For Raman-dominated relaxation processes, we now
derive a similar forrnu1a which can also be used to deter-
mine b,

&
in those systems. Using Eq. (26) we get

T1A JAA ~/max(~A max ~A )

~A max(~Pmax ~P)
—1 2

Jpp~K' 1
67

2

cop,„„—26p+
~Pmax

(cop,„—b.p)—K
~@max

(26)

This result shows that J&& is always positive, as it should
be.

(b) The gap Ap(&co&, so that pp(co) =( V/vr )~ ~2co is
the Debye result and we get

There are two physically interesting limits for which we
can evaluate Jz~.

(a) The gap b«&) co&, in which case co )&co(i and
m+~g =~. We then get

~cIt max

A max

1/2
1$

T —1

(30)

Theo."etically, this formula is valid at any temperature
in the I phase. However, it is preferable to perform mea-
surements in the I phase at temperatures far below TI for
several reasons: (1) The dispersion relations [Eqs. (19)
and (20)] are more valid at lower temperatures. A more
general treatment' results in a power series expansion

co' ' .=a
I TI —T I+ G (k)

assuming A~ and 6& are much larger than ~&. The
phason gap can then be calculated in terms of experimen-
tally measurable quantities,

Jpp K d 6) —K COp max

Our result is more general than that of Blinc in two
respects: (1) We kept the b,p/cop, „

term in Eq. (26),
which is very small for T very close to TI, but is not
small for the amplitudon branch when T is far from TI,
(2) we kept co A,„andco&,„distinct and did not assume
them to be equal. From the dispersion relations Eqs. (19)
and (20), we know that the maximum frequencies of the

(31)

where G(k)=ao+a2k +a4k . . . , U(k)=a3k
+o.~k . . . , and the + and —signs are associated with
amplitudons and phasons, respectively. Only at lower
temperatures will the terms involving a

I TI —T
I be

sufficiently larger compared with G(k) and U(k) that the
higher-order terms in the expansion can be neglected. In
this case, Eq. (31) will reduce to Eqs. (19) and (20), keep-
ing only terms quadratic in k. (2) Temperature measure-
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ment inaccuracy can be a significant source of experimen-
tal error close to TI, where T&z is changing rapidly with
temperature (Fig. 6). However, at lower temperatures,
we see that the temperature dependence of the ratio
T,„'/T,&' is greatly reduced.

Evaluation of the phason gap by means of Eq. (30) re-
quires knowledge of 6z, m ~ „,and co&,„,which is easi-

ly obtained from other experimental measurements. In
particular, neutron and Raman scattering measure-
ments" at 81 K give A~ =0.23 THz and co& „=0.4
THz. By combining these results with our lower-
temperature values for T» and T,„,we can use Eq. (30)
to determine 5&.

Since b „(T) =+2a ( TJ —T), we can express b, ~ at an
arbitrary temperature in terms of its value at a particular
temperature To by

l. 5

I.O—
I

49.2
l

49.4
l I

49.6 49.8

bq (MHz)

~ %o
I

50.0 50.2

&~(T)=&~(To)[(TI—T)l(TI —To)]' ' . (32) 50—
I
lA

The maximum phason frequency co&,„and6& should be
independent of temperature. The temperature depen-
dence of co„,„canbe expressed in terms of b, z ( T) and

~ymax:

ro ~,„(T) =[xk,„+b, ~ ( T)] ' ~

—= [co&,„+b,„(T) ]'~ (33)

, the replacement of Kk „byco&,
„

is

just1 fled.
Using our measured relaxation times at T =50, 42, and

25 K, we obtained corresponding va1ues for 6& of O.OS5,
0.088, and 0.087 THz, respectively. Our average value
for b,

&
(0.072 THz) is in good agreement with an upper

limit for 6& of 0.070 THz, estimated using other tech-
niques. ' The existence of a phason gap of this size strong-
ly supports our contention that Raman (rather than
direct) processes determine the relaxation, since

b,~))cog(=2m. X50 MHz) .

VII DETERMINATION OF T] VERSUS VQ

OVER LINK SHAPE

It is important to consider the possibility that our
spin-lattice relaxation is dominated by acoustic phonons
(rather than amplitudons and phasons), which could alsa
involve both direct and Raman processes. This possibili-
ty can be ruled out by a careful measurement of T, over
the inhomogeneously broadened line shape since acoustic
phonons should cause the same spin-lattice relaxation for
all parts of the NQR line, whereas amplitudons and
phasons will result in different values for T, for different
parts of the line. Accordingly, we measured T& versus

v& at 4.2 and at 25 K over the whole line. Figure 8
shows a very strong dependence on v&, thereby ruling
out appreciable contributions from acoustic phonons.

49.6 49.8

b'o (MHz)

50.0 50.2

FICx. 8. T, ' vs v& measured over whole NQR line (a)
T =4.2 K, {b) T =25 K.

VIII. CONCLUSIONS

In this paper we extended the general theory, originally
developed by Blinc, ' of the effects of Raman processes
on amplitudon and phason spin-lattice relaxation in in-
commensurate systems. In particular we obtained gen-
eral expressions for the phason and amplitudon contribu-
tions to the spectral densities that are valid at all temper-
atures in the I phase, not just near the transition temper-
ature TI. Also, we developed a general method for ob-
taining the phason gap 5& in systems in which the spin-
lattice relaxation is dominated by Raman processes.

We applied these techniques to Br NQR in the in-
commensurate phase of P-ThBr~ and found excellent
agreement between our theoretical and experimental re-
sults, thereby demonstrating that spin-lattice relaxation
in the incommensurate phase of this substance is indeed
dominated by Raman processes. We measured the
phason gap 6& to be 0.072+0.020 THz, in good agree-
ment with estimates obtained from other experimental
techniques.

We observed an incommensurate phase fram TI (=95
K) down to our lowest temperatures (2.5 K). In particu-
lar, the absence of any sudden change in the line shape or
spin-lattice relaxation time indicates the absence of any
commensurate (C) phase over this temperature range.
The absence of multisoliton effects and the constancy
with temperature of P=0.315 (Ref. 14) suggest that there
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may not be a commensurate phase except possibly at
significantly lower temperatures. However, if P-ThBr4 is
a type-II incommensurate system, multisoliton eAects
would not appear above the I-C transition temperature
T&, hence, it is possible that a commensurate phase
might exist slightly below our lowest temperature. More
experiments at substantially lower temperatures are need-
ed to resolve this question.
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