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Nonuniversal critical dynamics on the Fibonacci-chain quasicrystal
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An exact real-space renormalization-group calculation of the dynamic exponent z is given for
Ising-Glauber dynamics on the Fibonacci-chain quasicrystal. The method is first illustrated for the
simple cases of the uniform and alternating Glauber chains, which reproduce the well-known results
z =2 and 1+~J„/Js~ (J„)Js), respectively. For positive exchange interactions the critical
Glauber dynamics of the Fibonacci chain is governed by a single, unstable one-cycle (fixed point) of
the renormalization-group transformation. However, if one or all the exchange interactions are
negative, then the critical dynamics is governed by a three-cycle. In all cases the dynamic exponent
z is identical to that obtained for the alternating-bond Glauber chain.

I. INTRODUCTION

The dynamic scaling hypothesis of Halperin and
Hohenberg' relates the time scale ~ to the correlation
length g through the relation r-g', where z is the dy-
namic exponent. Furthermore, the exponent z was
thought to be universal, depending on the nature of con-
served quantities as well as those features (the dimen-
sionality of space, the number of spin components, etc.)

which determine the static universality class. It has been
seen, however, that in certain systems, such as the
alternating-bond Ising chain, the disordered Ising fer-

I

romagnetic chain, and d & l Ising systems near the per-
colation threshold, the dynamic scaling hypothesis ap-
pears to break down. More specifical1y, the breakdown
occurs near a zero-temperature fixed point in structures
where the dynamics involves thermal activation over bar-
riers. In each ease the Ising dynamics is assumed to be of
the form originally proposed by Glauber where spins un-
dergo random transitions between the values +l as a re-
sult of interactions with neighboring spins and an exter-
nal heat bath. The time-dependent probability distribu-
tion for single-spin-Rip Ising-Glauber dynamics system
satisfies a master equation of the form

d P ( cr „o~, . . . , cr ~; t ) =g W„( cr „)P ( o—, , . . . , —o.„, . . . , o.~; t ) —g 8'„(cr „) P ( cr „o2, . . . , o ~; t ),dt
n n

q„(t)= go „P( I cr I; t ), (1.2)

where

where P(cr „.. . , cr z, t ):P( I o I; t )—is the probability dis-
tribution of the spin configuration, and W„(o„) is the
probability per unit time that the nth spin Aips from the
value o.„ to —o.„. Furthermore, the expectation value
q„(t) of the spins is given by

There are various means of implementing the decima-
tion procedure. In the present context of nonlinear
Glauber dynamics, decimation has been used in the past
at the level of the master equation " (1.1), where one is
forced to make the ad hoc assumption that the nonequili-
brium probability distribution P ( I o ); t ) can be written as

P, (Io.I;t) 1++h (t)o

X—= X X X
IO'I O i=+1 CT2=+1 0@=+1

Renormalization-group (RG) methods, although ini-
tially developed to treat static critical phenomena, have
also been extended to dynamic critical phenomena. ' '

Following the development of the static RG, the dynamic
RG was essentially perturbative in nature (i.e., e expan-
sion in k space); however, an attractive implementation
of the renormalization group as applied to both statics as
well as dynamics, is the so-called real-space RG, in such
forms as decimation or blocking. Decimation methods
have proved to be useful in studying the critical dynamics
of both translationally and nontranslationally invariant
systems with a discrete scale invariance.

where P,q
denotes the equilibrium probability distribu-

tion. We shall take an alternative approach and work
directly with the equations of motion as obtained using
(1.2). This has the advantage that for one-dimensional
problems with 6nite-range interactions, this method leads
to the exact solution without the need for any simplifying
assumptions.

It has been realized that for some quite simple systems
the dynamic exponent is nonuniversal, generally depend-
ing on the system. parameters. Droz et a/. have shown
that for the periodic Ising chain with alternating ex-
change interactions and Glauber dynamics, the dynamic
exponent can assume any value greater than 2. In addi-
tion, the work of Lage' on critical Glauber dynamics has
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suggested that similar nonuniversal properties are also
present in the one-dimensional Potts model. There has,
however, been comparatively little work concerned with
the breakdown of dynamic scaling on lattices which lack
translational invariance. Achiam' has studied the criti-
cal dynamics of the kinetic Glauber-Ising chain model on
various fractal geometries including branching and non-
branching Koch curves and the Sierpinski gasket, his re-
sults indicating standard dynamic scaling. More recently
Bell and Southern' have reported a similar study of the
critical dynamics of the ferromagnetic Ising model on the
Mandelbrot-Given and Sierpinski gasket fractals. Their
results confirm the prediction of a singular dynamic scal-
ing, and cast some doubt as to the validity of the previous
work of Achiam.

In this paper we study the critical Glauber dynamics of
a one-dimensional Ising chain with a quasiperiodic ar-
rangement of two types of nearest-neighbor exchange
constants J~ and J~. The absence of any translational
invariance together with the new feature of quasiperiodi-
city offers the possibility of still new nonuniversality ap-
pearing in the dynamics.

The current interest in quasiperiodic systems or quasi-
crystals' stems from the 1984 discovery by Shechtman
and co-workers, ' of a quasicrystalline phase of A1Mn
and the subsequent interpretation by Levine and
Steinhardt' in terms of the aperiodic but space-filling
Penrose lattice (of which the Fibonacci chain is the one-
dimensional realization). The transfer matrix approach
introduced independently by Kohmoto, Kadanoff, and
Tang' and Ostlund and Pandit, ' has been used with
considerable success in the study of various one-
dimensional dynamical models including harmonic exci-
tations (phonons) and tight-binding electrons, for which
it is especially suited. This method involves using the Fi-
bonacci inAation rule A„~A, +&B„+&, B,~A„+& to
construct a third-order difference equation for the trace
of the transfer matrix. The electronic or phonon spec-
trum is then obtained by iterating this equation and ex-
amining the asymptotic behavior. One finds that the
spectrum is a Cantor set of zero Lebesgue measure corre-
sponding to critical eigenfunctions (i.e., neither extended
nor localized). In addition, the existence of a quantity
which was invariant under the action of the trace map
was demonstrated and used to determine exponents
describing the two- and six-cycle scaling near special
points in the spectrum.

In a recent series of papers' ' an exact real-space re-
normalization group approach has been given which pro-
vides an a pviori exact determination of the average densi-
ty or integrated density of states, as well as the full wave-
vector and frequency-dependent response function. The
decimation procedure does not rely on any translational
invariance and exploits in a very direct way the hierarchi-
cal properties of the quasicrystal.

The present paper uses the decimation technique to
provide an exact description of the nonuniversal critical
Glauber dynamics of the Fibonacci chain quasicrystal.
We arrive at the treatment of the quasicrystal via discus-
sions of two simpler systems which help to illustrate the
development of the method. The paper is organized as

II. ' THE UNIFORM ONE-DIMENSIONAL
GLAUBER CHAIN

In this section we consider a simple model which was
originally proposed by Glauber to describe the dynamics
of a system of Ising spins whose Hamiltonian is given by

Following Glauber we take our rates to be of the form

W„(o.„)= —,'a[1 —,'yo „—(cr„,+o „+,)], (2.1)

where a is the basic spin-Aip rate, taken to be unity for
convenience, and y=tanh(2K) with E=J/k&T. The
equation of motion for the magnetization q„(t) of the nth
site is obtained by differentiating (1.2) with respect to t
and using (1.1) and (2.1). It is straightforward to show
that

q„(t)= q„(t)+ ,' y[—q„ , (t) +—q„ +,(t)] .
dt

(2.2)

Finally, Laplace transforming both sides of (2.2) yields

( f1+ 1)q„=—(q„)+q„+,),n 2
n— (2.3)

where 0 is the variable conjugate to t, and q„(Q) is the
Laplace transform of q„(t). As is well known, Eq. (2.3} is
a generalized diffusion equation, and has the same form
as those describing the linear dynamics of harmonic exci-
tations (phonons), Heisenberg spin waves at zero temper-
ature or tight-binding electrons.

Real-space renormalization-group (RSRG) methods
have used in the past ' ' on equations of type (2.3) with
considerable success, yielding for phonon, magnon, and
electron systems, information on both critical exponents
as well as spectral properties (e.g. , density or integrated
density of states). One method of implementing the
RSRG (Ref. 22) would be to decimate half the sites fol-
lowed by spatial rescaling by a factor b =2, in such a way
that (2.3) retains its original form. The advantage of this
is that it isolates the static scaling [y'=(y /2 —y )] from
the dynamic scaling

20(2+ 0)
2 —y'

An alternative would be to rewrite (2.3) as

q. =1(q.-i+q. +i» (2.4}

follows: In Sec. II we brieAy outline how, using the de-
cimation approach directly at the level of the equations of
motion, the dynamic exponent z =2 for the uniform one-
dimensional Glauber chain, can be obtained with a
minimum of effort. In Sec. III we perform a similar
analysis for the alternating-bond Ising chain, where it is
shown that detailed knowledge of the renormalization-
group trajectory is required in order to extract the
nonuniversal exponent z. Finally in Sec. IV, we present
the real-space renormalization-group treatment of the
Fibonacci-Glauber chain.



2280 J. A. ASHRAFF AND R. B. STINCHCOMBE 40

where I =y/2(1+0). The decimation by b =2 then
leads to the single recursion relation

~2n+1(~2n+1) 2~l 2~2n+1(Y ~2n+3 ~2n+2)1

(3.1b)

6r'=46I . (2.6)

which contains within it information on both the static
and dynamic scaling. The advantage of using the equa-
tion of motion in the form (2.4) is that it reduces the di-
mension of the renormalization-group parameter space
by a factor of 2, and as we shall see later this will lead to
enormous simplifications.

The recursion relation (2.5) has three fixed points
I *=—1,0, —,'. On physical grounds we know that the
critical point for this model must correspond to y =1 and
0=0, which obviously corresponds to the fixed point
I *=

—,'. Working to leading order in 6I =
—,
' —I leads to

the linear relation

where

y
—=t anh(K„+K 21)+t anh(E„Es—) .

Then in complete analogy with the steps that led to (2.4)
it is straightforward to show that the equations of motion
are given by

]Q2n —] +

92n +1 ~2q2n + ~1~2n +2

(3.2a)

(3.2b)

where I 1=@+/2(0+1) and I 2=y /2(0+1). For the
alternating-bond Glauber chain the natural decimation
scale factor is b =3 since then we can map the chain onto
an exact replica of itself with a third as many sites and re-
normalized parameters I

&
and I z given by

Now, for A « 1 and T « 1, 6I has the form

6I =0+2e (2.7)

r', r, (1—r', )

1 —2(r'+r')+r'r'+r'+r", ' (3.3a)

and so using (2.6), together with the known temperature
scaling in the form y'=y /(2 —y ), it follows immediate-
ly that

I,I 2(1 —I 2)
I"2=

1 —2(r'+ r')+ r'r'+ r'+ r' (3.3b)

0'-4A (2.8)

III. THE ALTERNATING-BOND GLAUBER CHAIN

Perhaps the best-known model exhibiting nonuniversal
critical dynamics is the alternating-bond Ising chain with
Glauber dynamics, a model in which the exchange in-
teraction J; alternates between two values Jz and J~.
Using a domain-wall argument of Cordery, Droz and
co-workers have shown the dynamic exponent to be
nonuniversal and given by z =1+J~ /Jz for Glauber dy-
namics, and z=3+2J„/Js (J~ )Js )0) for Kawazaki
dynamics. More recently t.uscombe" has given a de-
tailed analysis of both relaxational (Glauber) dynamics as
well as difFusive (Kawazaki) dynamics for the alternating-
bond Ising chain, generalizing the work of Droz et aI. to
couplings of arbitrary sign. It is of interest to note that
the value of z (z =4+ ~J~/J21), obtained by Luscombe
for the case of Kawazaki dynamics, differs from that
found originally by Droz et al. , suggesting that the faster
mechanisms for domain diffusion differ in the two treat-
ments.

The additional bond periodicity present in the
alternating-bond Ising chain necessitates introducing two
transition rates which generalize naturally from (2.1) to

~2 (~2 ) ~f1 ~2 (1 ~2 —1+3 o2 +1)] (3.1a)

implying z =2. It is worth mentioning that the particular
situation of the fixed point and the critical point coincid-
ing encountered in this example is the exception rather
than the rule, and in the next two sections we shall meet
situations where this is not the case and a procedure
based on projecting back from the fixed point must be
employed.

The recursion relations (3.3) have two fixed points
(I *, , I 2 ) = ( —,', —,

'
) and (

—
—,', —

—,
' ). However, for positive

couplings J~ ~ J~)0 we expect, on physical grounds,
that the critical points should correspond to (I 1,I 2)
=(—,', —,') and (1,0). Whereas the isotropic critical point
(—,', —,

'
) coincides with the fixed point, the more interesting

anisotropic critical point (1,0) clearly does not. Lineariz-
ing about the fixed point (—,', —,

'
) leads to a largest eigenval-

ue k =9 and the scaling field formed from the eigenvector
associated with this largest eigenvalue only describes the
deviation from criticality for the isotropic situation,—2K~
yielding Q=Q+2r " for T (&1 and 0 &(1 and hence
z =2. In contrast, the deviation from criticality for the
anisotropic case is measured by the quantity
r = (1—I, ) /I 2, criticality corresponding to being on the
line I p=1 I ] ~ Indeed, it is easily checked that starting
anywhere along this critical line, the system scales, ac-
cording to (3.3), into the fixed point ( —,', —,

' ). Assuming we
deviate only slightly from this critical line then after
many scalings we arrive at a neighborhood of the fixed
point, where the system experiences the repulsive effect of
the eigenvalue A, =9, and so it is the quantity
g=r —r, =r —1, which must be taken to scale with the
eigenvalue A, =9. It is straightforward to show that this
scaling field has the low-temperature form Q=Qe21/e„,—2K
where e =e . Then using the known scaling of g
(g'-9g) together with the scaling of r (which can be de-
duced from the known scaling of the correlation length g)
it is easy to show that z = 1+Jz /Jz. The remaining
three critical points (I;,I 2) =(0, 1), ( —1,0), (0, —1) can
be treated in a similar manner and lead in all cases to the
results z = 1+

~ J„/Js ~
(J„)Js ) and z = 1+

~ Js /J„~
(Js )J„). In Fig. 1 we show the parameter space
spanned by (I „I2) together with the fixed points the
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FIG. 1. The renormalization-group parameter space for the
alternating-bond Glauber chain.

equations of motion are given by

q„=I &(q„,+q„+, ), if n HX

q„=i-,q„,+ r3q +&, if n EL~,
q„=I 4q„,+I 5q„+&, if n HX

(4.2a)

(4.2b)

(4.2c)

where I &=y/2(1+0), I &=I ~=y+/2(1+0, ), and
I 3=I 4=y /2(I+0). Note that although I 2=I ~ and
I 3 I 4 initially, an extension of parameter space occurs,
and as a result they dift'er even after the first stage of de-
cimation. It is thus necessary to start with the most gen-
eral situation where they are diFerent.

In contrast to the pure and alternating Glauber chains
where, because of the periodicity any rescaling factor b
can be used, the discrete scale in variance of the
Fibonacci-chain quasicrystal under the irrational length
scale factor b =~, dictates that only special sites are ever
eliminated. ' In Fig. 2 we illustrate the decimation for a
Fibonacci chain containing nine sites. The recursion re-
lations one obtains for such a decimation are given by

critical points, the critical trajectories, and the RG Aow
along these trajectories.

IV. THE FIBONACCI-GLAUBER CHAIN

We now consider the Fibonacci-chain quasicrystal
whose dynamics is assumed to be of the Glauber type.
The statics of this model have been studied in the
past ' and are completely determined by the Ising
Hamiltonian

I 2I 3I 4I]=
3 I 4(r2+ I 3)

I 2I4r,—,
r,r,

I 3(1—I 2I 4)

(4.3a)

(4.3b)

(4.3c)

(4.3d)

where it is assumed that the exchange interactions J; are
arranged according to the Fibonacci sequence. In what
follows it is convenient to imagine the Fibonacci chain as
a lattice X of sites which is the union of three distinct
sublattices X, X&, and X, such that X=X UX&UX,
where the distinction between sites in these sublattices is
made entirely on the basis of their local environments. '

The dynamics of the model is introduced through a set of
transition rates W (o ), which may assume one of three
values W (o „), W&(o „), Wr(o „), depending on the
nearest neighbors of site n. To be specific we write

W (o „)= —,'a[1—
—,
' oy'„(cr„& a+'„&+)] if n EX

(4.1a)

W&(o „)=—,'a[1 ,'cr„(y+o—.„—,+y o „+,)]

where we have used the fact that I 2'"'I 4"'= I ~z"'I 5"' for all
n to reduce the dimensionality of our RG parameter
space by one.

For positive-exchange interactions J„and Jz, the criti-
cality of the Fibonacci-Glauber chain is governed by the
fixed point (2,r, r ', r ') of the recursion relations
(4.3), where r=(1+&5)/2 is the Golden mean. Howev-
er, on physical grounds we expect the transition to occur
at T =0 and 0, =0 and so clearly the critical points must
be (I &, I z, I'3, I 4)=( —,', 1,0,0), ( —,', 0, 1, 1), and ( —,', —,', —,', —,')
corresponding to Jz & Jz & 0, Jz & Jz & 0, and Jz =Jz
=0, respectively. I.inearizing about the Axed point leads
to the largest eigenvalue of ~, however, as encountered

1f n&Lp ~

Wr(o „)=—,'a[1 —
—,'o „(y o.„,+y+o „+,)]

(4.1b)

if n EX, (4.1c)

where y=tanh(2E„) and

y
—=tanh(K„+K~ )+tanh(K~ E~ ) . —

Then using (1.2) it is straightforward to show that the
FIG. 2. The decimation procedure for a Fibonacci chain

with nine sites.
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in the previous section, the fixed point and the critical
points do not coincide, and so the scaling field construct-
ed from the eigenvectors corresponding to the eigenvalue

will not describe any deviation from criticality for
any physically accessible situation.

We have been able to identify the critical RG trajecto-
ry connecting all the critical points. For the case of
positive-exchange couplings the critical trajectory is a
line in the four-dimensional parameter space, defined by
ihe equations

(4.4)

1 Cycle

2 2, 2, 2

(.
-' 0, &, &) (-i 0, 1, 1)

3 Cycle

2, 2, 2 2 2, 2, 2, 2

(- I 0, -1, -1)

Starting at the critical point ( —„1,0, 1) we fiow, in one

step, to the critical point ( —„0,1, 1); a further iteration
takes us to the isotropic critical point ( —,', —,', —,', —,') from
which we Bow, after infinitely many iterations, to the
fixed point (2t,r, r ', r. '). The identification of the
scaling field 1tj associated with each of these critical
points, namely that combination of the variables (I, ,
i =1, . . . , 4) which will scale according to the eigenvalue
~, is made in a similar way as in Sec. III. In the case of
the isotropic critical point one finds that 1ttl = I 2+ I ~

—1

which, for T ((1 and fl ((1 has the form given in (2.7)
yielding z=2 as expected. For the anisotropic critical
point ( —,, 1,0,0) we find that the deviation from criticality
is proportional to r=I"3/(1 —I z) leading to a scaling
field which, for T « 1 and 0« 1, is given by

QEii /Eg, yielding z = 1+J„/Jii as found previous-
ly in Sec. III, for the alternating Glauber chain. Similar-
ly, we find z =1+Jz/J~ for the other anisotropic critical
point ( —,,0, 1, 1), again identical to the result obtained for
the alternating Glauber chain.

We have also investigated the case where some (or all)
of the exchange interactions are negative, and find that
the critical dynamics is no longer governed by a simple
one-cycle (fixed point) as was the case just described, but
instead by the following three-cycle:

(4.5)

Linearizing about this three-cycle yields the largest eigen-
value of k =~ which, as expected, is the cube of the one-
cycle eigenvalue. For the remaining five critical points
we find the dynamic exponent to be given by
z= 1+~J„/J~~ (J„)Jz) and z= 1+~J~/J„~ (Jz) J~ ),
excluding the remaining isotropic critical point corre-
sponding to J„=J~&0 for which z=2. In Fig. 3 we in-

(-' 1, o, o) (-I -1, 0, 0)

FIG. 3. The critical points for the Fibonacci-Glauber chain
and their relation to the one-cycle (fixed point) and three-cycle.

dicate all eight critical points and their relations to the
one- and three-cycles [note that the points ( —,', —,', —

—,', —
—,
' )

and ( —
—,', —

—,', —,', —,
'

) are not critical points].

V. CONCLUSIONS
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In conclusion, we have presented an exact real-space
renormalization group (decimation) calculation of the dy-
namic exponent z for the Fibonacci-chain quasicrystal
with Ising-Glauber dynamics. The method is illustrated
using the well-known uniform and alternating-bond
Glauber chains, where we reproduce the standard results.
For the aperiodic Fibonacci-Glauber chain we found the
dynamic exponent to be nonuniversal and identical to
that obtained for the alternating-bond Glauber chain. It
can be verified that domain-wall arguments, along the
lines given by Droz et al. , also give the same result.
However, in light of the work of Luscombe, methods
based on the diffusion of domain walls should be used
with caution.

The method presented here is particularly well suited
to linear systems with interactions of finite range, where
in most cases, it enables one to obtain exact results
without the need for ad hoc assumptions. Furthermore, a
straightforward extension of the decimation method also
allows one to extract the correlation functions, and this is
currently being investigated.
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