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We consider the Gutzwiller-projected Hofstadter-Slater determinant as a resonating-valence-
bond wave function in a (2+ 1)-dimensional antiferromagnet. A strong case is made that spinons in
the spin liquid state obey —, statistics when a mass gap. is present. We arrive at this conclusion from

an effective continuum limit gauge theory. When a mass gap opens up, the parity symmetry is spon-
taneously broken resulting in twofold degeneracy of the ground state. The picture is consistent with
that of the fractional quantum Hall state advocated by Laughlin.

I. INTRODUCTION

The two-dimensional quantum antiferromag net is
currently under intense investigations, largely because of
its relevance to the high-temperature superconductivity.
There is a growing amount of evidence that the
resonating-valence-bond (RVB) state, a spin liquid state,
proposed by Anderson, ' is the correct context for dis-
cussing the high-T, superconductivity. Although much
work has been done since Anderson's original work,
many aspects of the theory are evidently controversial.
The statistics of the spinons, among other things, are be-
ing hotly debated among those who are working on the
problem.

The one-dimensional analog of the spinon is known to
obey Fermi statistics. It seems natural to assume that the
spinons in two dimensions are also fermions. This gen-
eralization is, however, less obvious, since in one dimen-
sion fermion and boson can be transformed back and
forth according to the bosonization procedure. Laugh-
lin has argued that the spinon in two dimensions neces-
sarily obeys —, statistics: In the absence of the spin-spin
interactions, the elementary excitations of the spin sys-
tem consist of spin flips, which have spin 1 and are bo-
sons. The only way the system could acquire spin- —,

' exci-
tation is by charge fractionalization which then gives rise
to the fractional statistics. Laughlin's approach is closely
related to the phenomenon of fractional quantum Hall
(FQH) effect. The —,'-statistics spinon has the FQH as its
paradigm.

The equivalence of RVB and FQH states was first pro-
posed by Kalmeyer and Laughlin. Zou, Doucot, and
Shastry have later shown that the FQH wave function is
equivalent to a Gutzwiller-projected Slater determinant
and that the wave function is manifestly a spin singlet.

Parallel to the development of FQH wave function ap-
proach, there are many other proposals to characterize
the RVB state in terms of (2+ 1)-dimensional quantum
field theory. In particular, Dzyaloshinky, Polyakov, and
Wiegmann have attempted to identify spinons with in-
stantons of an O(3) nonlinear o model, and argued that a
Hopf invariant term could stablize the instanton state
and hence gives rise to the fermion character of the spi-

non. Many field theory models have been studied. Gen-
erally speaking, these models all contain a Chem-Simons
term, though it is not clear how such a topological term
might occur in real magnets. There have been many at-
tempts to derive the Chem-Simons term from the original
Heisenberg model, but most of them failed to find one in
2+1 dimensions. On the other hand, it has been shown
that the large U Hubbard model possesses a local SU(2)
gauge symmetry. Using this gauge symmetry of the
Heisenberg model in the fermion representation, the
present author has pointed out the possibility of adding a
parity-breaking term in the efFective action, namely, the
source of the Chem-Simons term in the (2+ l)-
dimensional antiferromagnets lies in the so-called parity
anomaly in 2+1 dimensions. This point of view was cri-
ticized because of the incorrect treatment of the well-
known fermion doubling problem in Ref. 9. The conven-
tional wisdom is that in taking the continuum limit, the
anomalies of the two species of fermion will cancel each
other.

In this paper, I shall show that there exists another
possibility in the presence of the two fermion species,
namely, the presence of two fermions can double the
coefticient of the topological term. As a result of this, the
quasiparticle excitations, spinons, will be —, fermions. We
discuss these assertions within the context of the SU(2)-
invariant representation of the flux RVB state. ' Al-
though the flux state was initially obtained as a saddle-
point solution of the nearest-neighbor Heisenberg model
(NNHM), it is here assumed that the Gutzwiller-
projected flux state is an exact ground state of some un-
known spin Hamiltonian whose ground state is a spin
liquid. We shall argue later that the approach developed
in this paper is vali'd for a class of RVB wave functions,
namely, the Gutzwiller-projected Hofstadter-Slater deter-
minants, independent of the way we obtain the flux state.
The Hofstadter model" is essentially a tight-binding
model with a strong uniform magnetic field. The flux per
square measured in the flux quantum is rational:
Plgo=p/q and p, q are mutual primes. A typical hop-
ping matrix element is of the form

t exp i Ads (l)
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%(r„r2, . . . , rN ) =Det( 1t(k, r. ) J . (2)

The variational wave function of the spin Hamiltonian is
taken to be the Gutzwiller projected Slater determinant

+G(rl r2 ' ' rN ) G+(rl r2

= g (1—n;~n;t)% .

The important feature of this state is that the long-
wavelength fluctuations consist of fermions coupled to a
gauge field which implements the Gutzwiller projection.
For the simplest flux state, namely, the nearest-neighbor
hopping model, the long-wavelength excitations are
massless fermions. We shall first use the flux state in our
discussion for the purpose of motivation. After integrat-
ing out the long-wavelength fermions, one obtains an
effective action for the gauge field with a Chem-Sirnons
term' of abnormal "parity" 8W[A]. It is well known
that the action is periodic in 0~0+2m. . However, in
2+ 1 dimensions, the state with 0=2+ and the state with
0=0 correspond to two physically very different states.
The reason is that the Chem-Simons term in 2+ 1 dimen-
sions has the dimension af mass for the gauge field. It is
the only gauge covariant form for the mass of the gauge
field. Thus 0=0 describes a massless gauge field, and
0=2~ a massive gauge field. Whether 0=0 or 2m in our
effective gauge field action should be determined dynami-
cally. For 0=2m. we obviously have confinement of the
gauge field and the system is in the disordered liquid
phase. The excitations in this state are vortices and they
obey —,

' statistics as we shall discuss in Sec. IV.
In order to see how the fermion doubling can lead to

the fractional statistics of the spinons, we must first ad-
dress the important question of the symmetry, namely, is
there any symmetry spontaneously broken in the RVB
state? What is the degeneracy of the ground state? We
find that the unit cell is doubled. Kivelson and Rakhsar'
have pointed out that the time-reversal symmetry break-
ing seems necessary for the fractional statistics. Authors
of Ref. 14 have recently considered a model with next-
nearest-neighbor hopping, which breaks the time-reversal
symmetry. In this case, the ground state is twofold de-
generate from time reversal. That the spontaneous sym-
metry breaking of the ground state and that the ground
state is disordered, namely, the gauge field acquires mass,
mandate the presence of a Chem-Simons term which ex-
plicitly breaks parity and provides a mass term for the
gauge field simultaneously. The fact that we have two
fermion species merely means that 0=2~ and the spinons
obey —,

' statistics.

where the "magnetic field" is specified in our case to cor-
respond to p/q =

—,'. The flux state discussed in Ref. 10 is
a special case of the Hofstadter model in which t, is
nonzero only for nearest-neighbor hopping. In general t;
can be nonzero for long-ranged hopping as well. We can
form a Slater determinant on the basis of the eigenfunc-
tions of the model (1): jg(k, rJ)), where r~'s are coordi-
nates of the jth particle,

II. THE FLUX STATE AND ITS CONTINUUM LIMIT

We shall focus our discussion on the flux state which is
obtained by a mean-field solution' of the nearest-
neighbor Heisenberg model (NNHM). We do not expect
this solution be the ground state of the model, but we as-
sume it to be the exact ground state of some unknown
Hamiltonian. It remains a challenge to find a spin Harn-
iltonian for which the Gutzwiller-projected Hofstadter
state is the exact ground state. The only important
feature relevant to our discussion is the existence of fer-
mionic excitations before the Gutzwiller projection. We
shall show in Sec. VI how the result obtained can be gen-
eralized to a whole class of RVB wave functions, the
Gutzwiller-projected Hofstadter states.

The Heisenberg model can be written in terms of elec-
tron operators as

H=J g X; X, +const,
(ij )

where

(4)

Jg ~ CIoCj

IX;~ lexp l f A ds c; cJ
(i,j )o-

where e' is a factitious charge. Because of this "magnet-
ic" field, the unit cell is doubled or the Brillouin zone is

The fermion operators are subject to the constraint of one
particle per site, g c; c; = l. One can also add frustra-
tion terms into this model such as next-nearest-neighbor
antiferromagnetic coupling. ' The flux state is obtained
by making a mean-field approximation with "order pa-
rameter" &x; &. The phase of the order parameter is
chosen as g =ig . The single-particle excitation spec-
trum in this mean-field theory is given by

Ek =+(cos k„+cos k )'

This spectrum is gapped everywhere except at
k=(+~/2, +sr/2). But this spectrum is not gauge in-
variant. A U(1) gauge transformation' on the link vari-
ables y; have the effect

E(k„,k ) +E(k +p, k —+q) .

This does not, however, lead to any inconsistence, since
there is a local SU(2) gauge symmetry and only particle-
hole excitations are allowed by the gauge symmetry.

The order parameter of the flux state &X; & is not in-
variant against a U(1) gauge transformation c; —+e' 'c,
However, the elementary plaquette variable

P(~ jk ~)= &X;,X',l, X'klXl; &

is gauge invariant and observable. P(i,j,k, l) is essential-
ly the flux enclosed within the plaquette, which is equal
to ~ in the flux state. Upon recognizing this, we see that
the saddle-point effective Hamiltonian of the flux state is
equivalent to the Hofstadter model" on the square lattice
with —,

' flux quantum per square



Z. ZOU 40

halved. The eigenstates of (7) form a representation of
the magnetic" translation group.

Let us choose a Landau gauge for the magnetic field
A =(0,8x, 0). The usual translation operators do not
commute with the Hamiltonian in the presence of the
magnetic field. Instead one introduces the magnetic
translation operators T(a ) (j=1,2), a 's are the basis
vectors of the square lattice. The magnetic translation
operators form a so-called magnetic translation group'
satisfying

T"(a) )T™(a2)= ( —)" f'(n a) +m az ) .

The phase factor (
—)" ensures the correct group multi-

plication. f'(a) ) and f'(a2) both commute with the
e6'ective Hamiltonian

[T(a ),H,(r]=0 (j =1,2)

but not with each other since

where a = 1,2 correspond to the two independent massless
fermions,

1',=(1'0 )') r»=(~i &»~))

and P=(I(ty0.
Since the lattice model possesses the local SU(2) gauge

symmetry, the continuum limit should also preserve this
symmetry. The only way to implement the gauge sym-
metry in the continuum limit is to introduce a vector
SU(2) gauge potential A„((((,=0,1,2). The spatial com-
ponents of A„ live on the link (ij ) through the line in-
tegral

A: A.ds .

[The factitious magnetic field A defined earlier is not to
be confused with the SU(2) gauge field defined here]. Un-
der an SU(2) gauge transformation, A„ transforms as

I 2g( P/Po)T(a()T(ai) = T(a2) T(a, )e (10) g[A„—a„]g-) . (16)

where p/$0 is the flux per square measured in flux quan-
tum p0. The magnetic translation group is well defined
only if p/$0=p /q, where p and q are mutual primes. For
our flux phase p/q =

—,', T(a, ) commutes with T(2a2).
Thus we can define a simultaneous eigenstate and two
wave vectors k1 and k2 by

H,sg(k, r) =E(k)g(k, r),

The SU(2) gauge group is acting on the SU(2) doublet

C)
Pe (0) C)

(17)

namely the SU(2) transformation mixes up-spin electron
and down-spin hole. Thus we may write our Lagrangian
as

T(a, )g(k, r) =-e ' (t(k, r),
T(2ai)g(k, r) =e ' '1((k, r) .

The wave vectors k, and k2 are confined within the range

O(k
a,

(12)

and

2

f d x f,y„(B„+iA„)g,

Cy
Pa P & Pe(0)

0 C)

O~k2 +
a2

(tj(k, r), T(az)g(k, r) . (13)
Whether or not the projected many-body wave function
(3) is also degenerate due to the magnetic translation is
very subtle, and we simply do not understand it.

We note that the most important feature of this mean-
field theory is that the low-energy effective theory is a
(2+ 1)-dimensional relativistic quantum field theory.

We may introduce a two-component Dirac fermion
g=(g„p0); here g, and $0 denote fermions on the even
and odd sites, respectively. Consequently, the Brillouin
zone is halved. Therefore, only two Fermi points are ine-
quivalent, say(+7r/2, ~/2). If there were no gauge field,
the low-energy theory would be described by Lagrangian

f d x g, y„I3„$, ,
a=1

(14)

It is easy to see that T(a2)g(k, r) is also an eigenstate of
H, T(a, ), and T(2az), and that T(a2)f is orthorgonal to
g. Thus each state is twofold degenerate and they are re-
lated by a magnetic translation along the a2 direction (in
our particular gauge):

We note that the f, contains SU(2) indices as well as
"chiral" (even or odd) indices.

One may also derive this continuum action directly
from the SU(2) gauge-invariant lattice model. This was
done by the author in Ref. 9. In contrast to the Ref. 9, a
more careful derivation gives rise to two fermion spices,
which are, of course, consistent with our flux phase pic-
ture. This fermion doubling problem is well known in the
lattice gauge theory, where when going to the continuum
limit an extra fermion appears. Here in our case, the fer-
mion doubling is necessary to account for the correct
low-energy degrees of freedom. It is a consequence of the
reduction of the Brillouin zone.

In summary, the generalized flux states, namely, the
states belonging to the same representation of the mag-
netic translation group defined previously, the single-
particle states are twofold degenerate as indicated in (13).
This seems rather obvious from the way the flux is con-
structed. When next-nearest-neighbor hopping is includ-
ed in the Hofstadter model, ' the time-reversal symmetry
i.s then broken. We note that in Euclidean space the time
reversal does not reverse x3= —it =~, but simply com-
plex conjugates c numbers and transforms the fermion
fields according to
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(20)

namely,

e

fo
(21)

So we see that TE interchange two "chiral" components
of g: fo~g„ i.e., TE has the effect of permute even and
odd lattice sites.

III. EFFECTIVE ACTON AND THE 0 TERM

We now want to integrate out the ferrnion degrees of
freedom. We have two fermions coupled to an SU(2)
gauge field. In order to calculate the fermion deter-
minant, we need to introduce regularization scheme. The
conventional method is to introduce a parity-preserving
mass term for the two fermions:

g g, y„(d„+iA„)f, +m (P,P, — P f ) . (22)

As a result of this, no parity-violating topological term
can arise in the effective gauge field action I,s[ A ]. How-
ever, we argue that there is another possibility which
seems more consistent with our preceding discussions.

As discussed in Ref. 14, the time-reversal symmetry
can be spontaneously broken in the presence of
sufficiently strong frustrations. Integrating out low-

energy fermions in the background of the gauge field can
not restore the broken symmetry. Therefore, it seems to
us that the parity-preserving regulator in (22) is incon-
sistent with the fact the parity has already been broken in
the mean-field theory. Thus, the physically sensible way
to regulate the fermion determinant is by the Pauli-
Villars regulator with the same sign for the two fermion
mass terms. These fermion mass terms can be thought of
as being dynamically generated due to frustrations.
These mass terms can also stablize the Aux phase against
the dimerization due to the amplitude (~y,j. ~) fiuctuations
as suggested by Dombre and Kotliar. '

Therefore, using the Pauli-Villars regulator, the
effective action for the gauge field becomes'

signs and they would have canceled each other. Whether
or not the 0 term is zero (in our case 8=2vr) implies very
different physical properties. 8'[A] is the mass of the
gauge field which is not gauge invariant under a large
gauge transformation with winding number n, but the
effective action changes by 2mn. It is well known that S,ff
is periodic in 0~0+2~n, but the actual value of the 0 is
determined dynamically. In the present case 0 is fixed to
be 2m because of the two fermions. For 0=0, the gauge
field is massless and the excitations of 3 field will interact
with each other via the long-range force. For 8%0, the
gauge field is massive and the long-range force between
quasiparticles is pure gauge force. In the next section, we
shall see that 0=2~ causes the spinons in the RVB obey-
ing —,

' statistics.

IV. ~
STATISTICS OF THE SPINONS

Under a topologically nontrivial gauge transformation

A ~As =g '(A„—B„)g,
the variation of &[A] is given by'

(25)

0= - d xe" ~A F
8n

where A„ is a U(1) gauge field and

This identification is made possible by introducing the
SU(2) representation of the gauge transformation g„:

ZJ Zp

Zp Z
(28)

1

24m J d x e'" ~Tr[g B gg B~g 'Bp], (26)P

which is just the winding number of the transformation g.
Wu et a1, ' have shown that this variation is identical to
the Hopf invariant in 2+ 1 dimensions

where

=So[A]+ 2m W[A]
/m/

=So[A]+2vrR'[ A],

S,it[ A ]=2 ln Det[y„(d„+iA„+m]

(23)

with z, , z~ satisfying

Iz, I
+ Iz I

=1,
and the gauge potential A„can be written as

A„=i (z"B„z), z =(z„z~) . (29)

W[A]= — d x Tr[ 'e" ~A "F ~ ,'e" —~A "A A~] —.
1

8~

(24)

So[ A] is the part of the action containing a higher order
of derivatives. The + signs in front of 8'[ A] correspond
to two degenerate ground states, respectively. The
coe%cient 2 comes from the fermion doubling and from
our parity-breaking regularization scheme. Should we
use the regularization scheme (22), the Chem-Simons
term W[A] from two fermions would have opposite

We recogonize that this representation is the same as that
of the CP' form representation for the nonlinear o model
with n =z~a.z.

We now create spinons in the Gutzwiller-projected
Slater determinant. The spinons can be obtained by first
creating a hole in the Slater determinant and then mak-
ing a Gutzwiller projection. The spinons are nothing but
the ordinary projected holes. When the mass of the
gauge field is large enough, we can regard the spinons as
pointlike particles jo(x)—6(x —xo). They interact with
the gauge field via the standard coupling j„.2„. In one
spinon sector, the effective action is taken to be
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X=j„A„+2~H=j„A„+ F." ~A„F (30)
%'(ri, rz, . . . , r~ ) =PG Det I g(k, r~ ) I, (36)

The first term describes the coupling between spinon
current and the gauge field. The equation of motion for
A„gives

(31)

where @=1/m. The zeroth component of this equation
relates the "charge" of the spinon to the Aux

Jo =PI' &z

Thus we see

e"= Jd'xg ,=p.rds .P„.

(32)

(33)

The conclusion is that the "charged" particle is also a
Aux tube carrying 2 Aux, of magnitude

O=q /2p, =~/2, (35)

namely, wheri interchanging two spinons at large dis-
tance, the wave function is accompanied by a phase e ™2.
Thus the spinons are —,

' fermions. We emphasize that
0=m/2 results from the fact that we have two species of
fermion in (23) and that we have used the parity-breaking
regularization scheme that is consistent with the ground-
state degeneracy. Should one of the fermions be absent,
the spinon would be a fermion.

It is worth noting that one can also arrive at the same
conclusion from a U(1) gauge theory. In the U(1) gauge
theory, we would have four fermions, two from the
reduction of the Brillouin zone and two from the spins.
But the coefficient of the Chem-Simons term for the U(1)
field is —,

' of that for the SU(2) field. ' Thus the final re-

sult is identical. The relation between SU(2) and U(1)
theories was clarified in Ref. 19.

V. CONCLUSIONS AND GENERALIZATION

We have so far discussed only the flux phase with —,
'-

Aux quantum per square. We want to stress again that
the term "flux state" really means the Gutzwiller-
projected Hofstadter-Slater determinant,

(34)
P

Here we have set the factitious charge e * to unity
(e*=1). The field strength F vanishes at large distance
())p ') from the fiux tube. The remarkable result of Eq.
(34) tells us that the spinon also carries the fiux of the
gauge field, i.e., a spinon is a charged (spin) particle at-
tached to a flux line. Thus the spinons are also vortices
of the gauge field.

Suppose the bare charge of the spinon is qo. Because
of the screening e6'ect of the gauge field in the presence of
the Chem-Simons term, the effective charge of the spinon
will be reduced to q

=qo /2. This subtle point was
clarified in Ref. 20. Charged particle (q =qo/2) moving
around the flux tube with Aux N =m acquires Aharonov-
Bohm phase. We therefore conclude that the spinons
obey 0 statistics with 8 given by

where the entries of the determinant are the Hofstadter
states corresponding to —,'-Aux quantum per square
(p/q= —,'). This is obviously a spin-singlet RVB wave
function. We have shown that this state is at least two-
fold degenerate when the time-reversal symmetry is bro-
ken.

Although it is first obtained by a mean-field theory for
the nearest neighbor Heisenberg model (NNHM), we do
not expect this state be the ground state for NNHM.
The purpose of this work is to study the properties of the
wave function (36) in the continuum limit, the statistics
of the quasiparticle excitations in particular. The impor-
tant feature of this wave function is that before the
Gutzwiller projection, the free Hofstadter state possesses
two low-energy fermion excitations, which is described
by relativistic quantum field theory. The Gutzwiller pro-
jection in this work is implemented by coupling the fer-
mions to an SU(2) gauge field. The equivalence of the
G.utzwiller projection and the SU(2) gauge symmetry was
explicitly demonstrated in Ref. 8. Therefore, the low-
energy physics is described by a relativistic quantum field
theory involving fermions coupled to a gauge field. This
enables us to utilize some of the well-known field theory
results, especially the result on anomaly.

Although the anomaly in the modern gauge field
theory is still poorly understood, it is commonly believed
that the anomaly has its origin in spontaneous parity
breaking. The ground state is at least twofold degenerate
in the presence of the anomaly. One conclusion drawn
from this work based on the analog with the continuum
theory is that the spinons in the fiux state (3) obey —,

'

statistics when parity symmetry is broken and the ground
state is then at least twofold degenerate.

Our approach can be generalized to other Aux states
with Plgo=p/q. It was proved by Hofstadter" using
numerical calculation, and recently by Wen and Zee ' us-
ing topological argument that for even q, the correspond-
ing Hofstadter model possesses q gapless Fermi points,
which correspond to q families of Dirac fermions in the
continuum limit. In this case, one can prove that the
single-particle states are q-fold degenerate and that the q
degenerate ground states are related by the magnetic
translations

+, &(ap)~II, . . . , 'r~ '(ap)%', (37)

one can immediately conclude that the quasiparticles
obey 0 statistics with 0 given by

(38)

Thus, for q=4, we would have —,
' fermion.
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