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We study the continuum limit of the quantum nonlinear o. model in 2+1 dimensions and at finite

temperature T using both Monte Carlo simulation on large-size lattices (100 X 8 is our largest-size
lattice) and saddle-point approximation. At zero temperature, we find the critical point g, that
separates the quantum disordered phase from the phase with spontaneous symmetry breaking
(nonzero staggered magnetization). We calculate the model's renormalization group P function
close to the critical point. Using the P function, we rescale the correlation lengths calculated at
various values of the coupling constant (spin stiffness) and temperature and find that they all col-
lapse on the same curve g/a =f(T/T ) Even th. ough the lattice spacing vanishes, a finite unit of
length a and a temperature scale T is generated via dimensional transmutation. Assuming that
the nonlinear o. model and the spin- —antiferromagnetic (AF) Heisenberg model are equivalent at

low temperature, we relate the units a and T to the lattice spacing a& and the AF coupling J of
the Heisenberg model so that the correlation lengths obtained from the simulation of the two mod-

els agree. In order to achieve this agreement we find that (a) the spin- —' AF Heisenberg model

should order at T=0 and (b) the relationship between the scales a, T and a~, J is obtained, and

f(T/T ) can be accurately approximated by an exponential of T /T below g, . We obtain a

reasonable fit to the neutron scattering data of the insulator La2Cu04 by taking J= 1270 K, a value

close to that reported by Raman scattering experiments.

I. INTRODUCTION

It is the discovery of the copper-oxide superconduc-
tors' that intensified the study of certain theoretical mod-
els such as the antiferromagnetic (AF) Heisenberg model.
The belief that the superconductivity mechanism in these
materials is related to the strong correlations among
purely electronic degrees of freedom as well as neutron
scattering experiments which bring out strong two-
dimensional spin correlations have given credit to the
spin- —,

' AF Heisenberg model. Starting from one of the
simplest models to take into account electron correlations
in a nearly half-filled band such as the Hubbard model,
the AF Heisenberg model can be obtained at half-filling
by taking the strong-coupling limit. In that formulation,
the Heisenberg model

H=J $ S;.SJ,

describes interactions (that originate from virtual elec-
tron hopping processes) between the conduction-band
electrons localized in the Wannier states around nearest-
neighbor unit cells of the copper-oxide plane. Here S,. is
the spin- —,

' operator of the ith cell.
Recently we simulated ' the two-dimensional spin- —,

'

AF Heisenberg model using Handscomb's quantum

Monte Carlo method. We calculated the correlation
length and we found that it increases very rapidly with
decreasing temperature. Our results are consistent with
neutron scattering experiments. It is, however, difficult
to find an efficient quantum Monte Carlo algorithm to
study large systems and approach low temperatures.

It is believed that the long-wavelength limit of the
two-dimensional (2D) quantum Heisenberg model (1.1) is
equivalent to the quantum nonlinear cr model in two-
space one-Euclidean time dimensions. Namely, if a rela-
tionship between the parameters of the two models is ap-
propriately established, the two models are equivalent in
the parameter range where the correlation length is much
larger than the lattice spacing. More recently there was a
Soviet proposal that in the derivation of the nonlinear o.

model from the AF Heisenberg model one has to add a
topological term in order to make the models equivalent.
The consequences which such topological terms might
have in the development of the theory of superconduc-
tivity in copper oxides, as well as the mathematical beau-
ty which dresses such theories were part of the reason for
the excitement about this direction of research. Later,
however, the necessity of such topological terms became
less clear, and in fact today the equivalence between the
two models without any additional terms is still outstand-
ing.

The nonlinear o. model in 2+ 1 dimensions has recently
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been studied by Chakravarty, Halperin, and Nelson
(CHN). ' Using one-loop perturbative renormalization-
group approach, CHN relate the nonlinear o. model to
the spin- —,

' AF Heisenberg model at low temperatures and
give a good fit to the neutron scattering data taken on
La2Cu04.

Recently" we have simulated the nonlinear o. model in
two-space one-Euclidean time dimensions and at finite
physical temperature T using the Monte Carlo (MC)
method. We found that we can make contact between
the parameters of the spin- —,

' Heisenberg model and the
nonlinear o. model by comparing the behavior of the
correlation lengths at low temperatures. We also found
good agreement with the results of the neutron scattering
data by taking J=1270 K. The goal of the present pa-
per is twofold. We ofter more details about the simula-
tion of Ref. 11 with new results obtained in the saddle-
point approximation (SPA), and we also compare the re-
sults of the two diferent calculational schemes. In Sec. II
of this paper we formulate the nonlinear o. model on the
lattice, and in Secs. III and IV we describe the MC and
SPA methods and compare them. In Sec. V we take the
continuum limit of the nonlinear o. model in 2+ 1 dimen-
sions. We determine how the coupling constant of the
theory (spin stifFness) should depend on the lattice spac-
ing so that the results for the correlation length are in-
dependent of the cutoA'. We calculate the model's
renormalization-group P function around the three-
dimensional critical point that separates the quantum
disordered phase from the phase with spontaneous sym-
metry breaking (nonzero staggered magnetization). Us-
ing the P function we rescale the calculated correlation
lengths at various couplings and temperatures and find
that they all collapse on the same curve
g/a =f(T/T ). Even though the lattice spacing van-
ishes, a finite unit of length a and a temperature scale
T are generated via dimensional transmutation. In Sec.
VI, the two parameters a and T of the o. model are re-
lated to the lattice spacing aH and the AF coupling J of
the Heisenberg model. The numerical relationship be-
tween a, T, and a~, J is obtained by fitting
g( T)=f ( T/T )a to the correlation length
g(T) =gH(T/J)aH obtained from the simulations of the
spin- —,

' AF Heisenberg model. As a consequence of the
I

assumption that the two models are equivalent at low T,
we find that the spin- —,

' AF Heisenberg model must order
at T=O. We find that we need J=1270 K to fit the neu-
tron scattering data for the spin-correlation length of the
insulator La2Cu04.

II. FORMULATION

The nonlinear o. model in two-space one-Euclidean
time dimensions is defined as '

where Q is a three-component vector field living on a unit
sphere

n, =l .
a=1

(2.2)

c is the bare (unrenormalized) spin-wave velocity,
P=(1/KsT), and in the case of our interests n=3.
Transforming this problem on the 2+1 dimensional lat-
tice we obtain

1S,s.= — g g Q(x) [Q(x+e„)+Q(x—e„)],
2g x p=]

(2.3)

where x covers the 2+ 1 dimensional space-time lattice of
lattice spacing a and size X X&, i.e., x&, x2=1, 2, . . . , N,
and x3=1, 2, . . . , Xp,

Ph'c =Nba, (2.4)

and g =Ac/poa. We have to impose a periodic boundary
condition in the Euclidean time direction, i.e.,
Q(x+N&e3)=Q(x). In this model, the average of the
field 0 is proportional to the average stagggered magneti-
zation and could describe the dynamics of the spins
within one isolated Cu02 layer.

The generating functional Z[J] defined as

Z[J]—:f g dn„(x)exp —S,s+g J (x)Q (x) (2.5)
x, ax, a

S, = f dr f dx dy[(a„n) +(a Q) +(a,n) ],2Ac 0

(2.1)

gives us the n-point correlation functions. For example, the two-point function is given by

fQ„, dn (x')n (x)n (y)exp( —S, )

G (x,y)=-
dA x' exp —5,&

1 5 Z[J]
Z[J] M (x)5J (y)

(2.6)

From the two-point function we can calculate the corre-
lation length in lattice units g&,«as a function of g and for
various values of X& and X. We have to take the limit

and keep the time dimension finite so that Eq.
(2.4) is satisfied. If, therefore, N is large enough so that

(2.7)

in physical units is given by

(2.8)

For continuum limit behavior and for eliminating finite-
size effects g'&,«must satisfy

the correlation length is only a function of X& and g, and 1«g,.„«N . (2.9)
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III. MONTE CARLO SIMULATION

We used the heat-bath algorithm because in simula-
tions of the classical O(n) models' it seems superior over
the Metropolis algorithm. In this method the field 0 at
the site x is updated as follows. We calculate the sum
over the fields at the neighboring sites,

100 &~

10

10—2

100 X6, g=1.6

3

i0(x) = g Q(x'+e„)+Q(x —e„),
@=1

(3.l)
0

Q)

0 10—4

and denote the polar and the azimuthal angles by 8 and P
with respect to a local coordinate system having the z
axis parallel to c0(x). The angle 9 is drawn from the dis-
tribution

10
I

5 10
Distance

I I I I

15 20

1P(0 )
=exp co(x )cosg

2g
(3.2)

and the P from a uniform distribution in the interval (0,
2'). Finally we find the coordinates of Q(x) with respect
to a global coordinate system.

We extract the correlation length from the projected
correlation function

G (r, r')=—(s(r) s(r')), (3.3a)

where

1s(r)—: g Q(x),
P x =1

3

(3.3b)

and r is only the space part of the vector x. The average
in Eq. (3.3a) is taken with respect to the distribution

effe ' . In our simulation we used periodic boundary con-
ditions in the space boundaries also. Typically we used
5000 Monte Carlo steps over the entire lattice for

FIG. 2. The correlation function for lattice 100 X6 and
g=1.6. This value of g is above the 3D critical point g, =1.45.
Notice that on the logarithmic scale it drops as a straight line
for several orders of magnitude up to the point where its value
is as small as the error. The solid line is the result of the fit of
the long distance behavior to the form given by Eq. (3.4).

thermalization and about 10000 for measurements. In
Fig. 1 the square root of the expectation value of the stag-
gered magnetization squared (i.e., Q ) is plotted as a func-
tion of g for N=X&=4, 8, 16, and 32. We see that the
3D critical point which is associated with spontaneous
staggered magnetization is around g=1.45. In this paper
we determine g, accurately using finite-size scaling
analysis.

In Fig. 2 we give the correlation function for g=1.6,
N=100, and X&=6. For periodic boundary conditions
the correlation length is extracted by fitting the long-
distance behavior of the correlation function with

—mi„, Ix —x'I
G (x —x')=A(e

—m (x—Ix —x'Ilatt
) (3.4)
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FIG. 1. The square root of the expectation value of the
square of the average sigma field over the entire lattice in the
nonlinear sigma model as a function of the coupling constant g.
This corresponds to the staggered magnetization in the
equivalent antiferromagnetic Heisenberg model. The calcula-
tion is performed at lattices of sizes 4, 8', 16, and 32 . We also
show the fixed point at g, =1.45 which we find and becomes the
critical point at T~O which correspond to the 3D critical point
of the classical Heisenberg model.

I I I I I t I I I

10 30 4020
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FIG. 3. A typical example of the correlation function below

g, . In this case the calculation is performed on a 100 X 6 lattice
and g=1.25. The solid line is a fit of the large distance behavior
of the correlation function to the form (3.4). See also Fig. 4.
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0.30

0.25

0.20

the smallest mass, i.e., the larger correlation length which
dominates the behavior of the correlation function at
large distances [imagine that G(r)= Ae ' +Be—m2r
and because m

&
)m2, G(r) =Be ' at large distances].

0. 15 IV. SADDLE-POINT APPROXIMATION

0. 10 The theory (2.3) with the field Q satisfying the con-
straint (2.2) can be obtained from the following:

0.05

ooo~'
0 10

I ~~J I I I I II
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e e
~ee~+egg~ @'@'aamaremmmaatmaaIE

S (r=g Q(x) [Q(x+e„)+Q(x—e„)]
1

2g

FIG. 4. The mass, i.e., the inverse correlation length as a
function of the distance at which the correlation function is
fitted to the form (3.4). We notice that the mass drops
significantly over a distance of about 10 sites and stays constant
for larger distances. This is the signature of the two diferent
masses present in the theory for g smaller than the fixed point

g, = 1.45. For more details see text.

size of the one space direction. The solid line in Fig. 2 is
the result of the fit. Notice that the correlation function
on the logarithmic scale drops as a straight line by
several orders of magnitude up to the point at which its
value is as small as the error. The value of g in this case
is above the critical point g, =1.45, namely, in the disor-
der phase where the n (n is the number of spin com-
ponents and in our case n =3) modes of the theory have
the same mass. In Fig. 3 we give a typical example of the
correlation function below g, for g=1.25 and the same
size lattice. The two unknown parameters 3 and the
mass m(, « =g(,«can be determined using only two neigh-
boring points of the correlation function. In Fig. 4 we
give the mass as a function of the distance of the first of
these two points from the origin. We notice that the
mass drops significantly over a distance of about 10 lat-
tice sites and beyond that it stays constant. In the region
g &g, there are two masses in the theory; namely, there
are n —1 modes which correspond to the Goldstone-
mode excitations and they become massless in the 3D
theory (P~ ~ ). They are related to the radial motion of
the average field and they give an exponentially small
mass with the size of the finite Pic. There is also a mas-
sive mode associated with fluctuations in the magnitude
(radial component) of the average field. Notice that even
though the local field lives on a unit sphere and, there-
fore, does not have radial fluctuations, the average field
over a large volume of the system can have Auctuating
direction as well as magnitude. In this paper we study

+A, (Q (x) —1) (4.1)

in the limit k~~. The additional term in that limit
gives 5(g",Q, —1), which is the constraint (2.2).
Hence, we can study the theory (4.1) and choose to take
the limit k~ ~ at the end of the calculation. Using the
identity

f d ( )e
—u[P(x}—in (x)] (4.2)

we can introduce the auxiliary scalar field p(x) in the gen-
erating functional Z[J] on every site of the lattice. Using
Eq. (4.1) for S,(r we can cancel the k(Q ) by choosing
a=A, . Finally, shifting the field Q(x) by a nonfiuctuating
vector field C(x),

Q(x) =$(x)+C(x) (4.3a)

we find

+4A[l+ip(x)]C(x)+J(x)=0, (4.3b)

C(x)=g gK '(x, y)J(y) . (4.3c)

Here E ' is the inverse of the matrix K which has matrix
elements given by

3

K(x, y)= —g (5„+, +5, —26„„)
P

—5„„{6+4Ag [1+ip(x) ]I, (4.3d)

and it is diagonal in the internal space of the components
of the field. After some straightforward algebra we ob-
tain

and choosing C(x) such that the coefficient of the term
linear in P(x) vanishes, i.e.,

—g[C(x+ e„)+C(x—e„)]1

Z[J]=C'I g dp(x) +d(t (x)exp —g P(x) QK(x, y)P(y)+Ap (x)1

X X, A X

Xexp —g J (x)K '(x, y)J (y)
X, y, a

(4.4)
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The exponent of (4.4) is now quadratic in the P field and
hence it can be integrated out to obtain

N3 =X&, and n„=0,1,2, . . . , X„—1. The volume is
V=%2%&. We define

Z[J]=C"f + dp(x)e —mo:—6+4Ag(1+ip) .

Then, m o is the solution of

(4.8)

Xexp —g J (x)K '(x, y)J (y)
x, y, a

(4.5)

1 (mo+4Ag+6) =—g1 1

4n Ag 2X (1—cosp„)+m 0

and

5'=A, g p (x)+—Tr[ln(K)] .
2

(4.6)

The two-point correlation function (second derivative of
Z[J] with respect to J in the saddle-point approximation
is given by gK '(x, y) and in momentum space is given
by

p ngi —Tr(K—) =0,1

V
where

(4.7b)

Tr(K ')=g 1

2X„(1—cosp„)—I 6 +4Ag[1 +ip] I

(4.7c)
where p„=n„2m/N„, p = 1,2,.3, and N, =N2 =N,

I

We have, therefore, succeeded to eliminate the vector
field Q at the expense of another one-component field
p(x). The above expression can be the framework of a
systematic expansion in 1/n for large n. Here we restrict
ourselves to the saddle-point approximation which is the
semiclassical approximation and also the zeroth order in
a 1/n expansion. This is in very close analogy to the
Wentzel-Kramers-Brillouin (WKB) semiclassical approxi-
mation which is also the leading order in an expansion in
powers of A. Several nontrivial phenomena may be un-
derstood in terms of the semiclassical approximation
only.

From the saddle-point equation

6S' =0, (4.7a)
5p x

for a translationally invariant solution Q(x)=const], we
obtain

G(p)=
2X„(1—cosp„)+m o

(4.10)

and if mp « 1 then
—1

« —m 0 ~ (4.11b)

Taking the limit A, —+ oo we obtain

1 1=—X 2X„(1—cosp„)+m o
(4.12)

The above equation can be solved for mp numerically for
any value of g and N„and find g&,«using (4.11). We will
come back to the full solution of (4.12), but let us first
give an approximate solution. Keeping X& finite we take
the limit X—+(x) and after splitting oA' the zero mode
(p3 =0) on the right-hand side, we obtain

To find the correlation length we transform the correla-
tion function in Minkowski space and look for poles of
the form p, =pz=O, p3=m. The correlation length is
given by g&,«=m ' with m given as a solution of
2(1—coshm ) +m 0 =0. We obtain

SPA 1
(4.11a)

1==Ip+I],
ng

(4.13a)

1 ~ d p 1

2 2—~ (2') 2X„&2(1 —cosp„)+mo
(4.13b)

Np „=&

—~ (2' ) 2[ 1 cos(2m n—3 /N& ) +2X„&2( 1 —cosp„)+m o

(4.13c)

Let k be some small momentum cuto(T; so that for ~p ~
(k

we have

X 12cos(p ) 2 p /2 .

We may write

2 k d p 1Io=
Np ~o (2m. ) p +mo

2 ~ d p 1

2Np I (2m. ) 2X, z(1 —cospp)+ma 2
(4.14)
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Assuming that there is a range of g where mo —+0 as
X&~ ~, we obtain

102
I I ~l I

Io ——— ln(me )+I~,
2mXp

I2= ln(k +mo)1

2m'
p 1

&p i (2~) 2X„,2(1 —cosp„)+mo

(4.15a)

(4.15b)

x4)

0 x4)

0 x4)
00'x4)

Therefore,
—2m'm'=e0

—(I, +I2),

(4.16a)

(4.16b)

and in order to satisfy our assumption mo(X& —+ ~ ) =0,
we must have

I I I

3-

FIG. 6. Study of the finite-size effects. We plot the correla-
tion lengths calculated for lattices of sizes 50 X4 and 100 X4
by both Monte Carlo and saddle-point approximation. We no-
tice that both calculations feel finite-size efFects for g„«) 20.

1

(I, +I2)n

Hence, the correlation length

n.fiefg(T~O)=a exp
aK~ T

(4.17a)

(4.17b)

(4.18)

] 02

in the SPA approximation for g (g, .
Given values for X, X&, and g we can solve Eq. (4.12)

numerically for mo and obtain gi, «. In Fig. 5 we compare
the MC data for 50 X4 with the solution of the SPA Eq.
(4.12) for the same parameter values and lattice size. We

note that the overall behavior is similar, but there are
significant diA'erences. For small correlation lengths and
in the regions where we have strong finite-size e6'ects the
SPA and the MC results agree reasonably well. But for
larger correlation lengths with small finite-size efFects the
results are very diAerent. In Fig. 6 we give the correla-
tion length obtained from the Monte Carlo calculation
for lattices 50 X4 and 100 X4. We notice that the
correlation lengths feel strong finite-size eA'ects when
g„«) 20 which is somewhat smaller than half the size of
the smaller lattice (because of the periodic boundary con-
ditions). In the same figure we plotted the results of SPA
for the same lattices. We see that the finite-size efFects
begin at correlation lengths of about the same size.

There are two directions to improve upon the saddle-
point solution: (a) We can take into account small fiuc-
tuations around the saddle point by writing

p(x) =po+y(x) (4.19)

101

&00

I I I I

2 3 4

and expand 5' in powers of g(x) and keep terms up to
g (x). The integrals in the fiuctuating field y(x) are
Gaussian and they can be carried out explicitly. (b)
There may be nontranslational invariant solutions to the
saddle-point equation with nontrivial topological struc-
ture. It is not known, however, how to calculate the en-
tropy of all possible classical nonconstant configurations.

In the rest of this paper, however, we would like to
focus on our results obtained by means of a nonperturba-
tive method such as the Monte Carlo simulation. We will
only use the results of the SPA for comparison and as a
guide.

FIG. 5. Comparison of the correlation lengths as calculated
from MC simulation and the SPA. Both calculations are per-
formed at a finite lattice of size 50'X4 to make the comparison
meaningful. We note that they have similar overall qualitative
behavior but they have significant quantitative differences. For
small correlation lengths and in the region where we have
strong-finite size effects g') 20) MC and SPA agree. For corre-
lation lengths in the region close to the fixed point which is the
interesting region close to the fixed point which is the interest-
ing region we notice significant disagreement.

V. CONTINUUM LIMIT
OF THE NONLINEAR o. MODEL

DIMENSIONAL TRANSMUTATION

First, let us keep the physical temperatuare constant.
Using Eq. (2.4) we obtain
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FIG. 7. The corrrelation lengths in lattice units calculated
with Monte Carlo for lattice sizes 50 X N with N =2 4
function of g.

FIG. 9. The ratio b =
&,« '&, 1.e., the correlation lengths in

units of a&=—(Ac/EBT) as calculated in the saddle-point a-
proximation. Notice that all the l f

rough the same point (g„b*)=(1.325+0.01, 0.98+0.05)~ ~ ~

k.«(g»p) ac
Np I):ii T

In order to kee ~& cp ~& onstant at a fixed temperature we
should keep the ratio

kl «(& ~p)
Np

(5.3)

(5.2)

constant. b is the h sicp y ical value of the correlation length
at temperature T in units of a =(fi /K T .c i) ). In Fig. 8

Incr easin X we
'

g p e approach the continuum limit (a —+0)
at constant tern erperature. To keep the correlation len th
( constant in h'n p ysical units for any a, we should find th

n eng

value of wh hg which gives the same value of g. This is
u n e

achieved through Eq. (2.8) which d fi h

g a . n Fig. 7 we lot
e nes t e function

F . p g),«(g, Xp) for lattice size
50 XXp where Xp= 2, 4, 8. The combination of E . (2.8)
and Eq. (5.1) gives

we give b as a function of g for several values of X . We
notice that tthe lines for various N& pass through the

o &. e

same point (g„b*)=(1.45+0.01, 0.80+0.05). Let us say
that we would like to -define th the eory s coupling con-
stant at the value b =b shown

' F' . 8. Th0 in ig. . e line b=bo
intersects the various curves for different N 's i.e.
case with con

i eren & s i.e., in this
constant temperature for different a' s) d h

1 gs at the intersections define g(a /X ). W
note that

az- &
. e

lim g(aT/Xp)=g, .
Pfp~ oo

(5.4)

k.«(g»p)
)fc

Np

at g„we obtain

This valueue corresponds to the curve with infinite slope at
g=g, . Note that if we choose to d fi th h
b =b* thenthen g(aT/Np) =g, for large Np, i.e., for small a.

10.0 I

0.15

0.10 1.00(2)—

ba 0.05

0.5
0.00

—0.05

FIG. 8. The ratio b =~& /N—
~&,«/. '&, I.e., the correlation lengths in

units of aT =—(Ac/Kz T) as calculated by Monte Carlo simulation
for lattices of sizes 50 XN& with N =2 4 8.

e ines or difFerent N
) = (1.45+0.01 +

~ pass through the same point (

, 0.80 0.05). The solid line is obtained b oin-
gci

ing the data points by straight lines.

—0.10
1.4

FIG. 10. The renoenormahzation group P function calculated in
the SPA around the Axed point. The values of t e
depicted on the raon e graph correspond to a linear fit to the form
PRo = P)(s' g. ). — —
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Ac

E~T '

where b*=0.80+0.05. Notice that at T=O this point
turns into a critical point (this is the critical point of the
3D classical Heisenberg model). We have also performed
calculations for lattices with sizes 100 XX& with various
values of g. Table I lists the values of the correlation
lengths obtained for 50 XX& and 100 XX& sized lattices
with X&=2, 4, 6, 8 as a function of g.

In Fig. 9 we give b calculated in the SPA for %&=2, 4,
6, 8 and X large enough so that the data shown are free of
finite-size e6'ects. We notice the same behavior. In this

dg (a)=——a
da

(5.6)

can be calculated from the results of the SPA or MC cal-
culation. The curves of Figs. 8 and 9 for %&=2, 4, 6,
correspond to lattice spacings aT/2, aT/4, and aT/6, re-
spectively. At a fixed value of g we can find the intersec-
tions g(aT IN&) and take the derivative (5.6). We can re-

approximation g, =1.325+0.010, smaller than the MC
value, and b*=0.98+0.05 which is bigger than the MC
value.

The renormalization group (RG) P function,

TABLE I. The values of the correlation lengths g~,«(g, N, N&) in lattice spacing units as calculated
from the Monte Carlo simulation of the nonlinear sigma model. The calculation was done on a
N XNp with N =50, Np =2, 4, 8 and N= 100, Np=2 4, 6, 8 and at several values of g.

0.125
0.25
0.375
0.5
0.625
0.75
0.875
.0.9375
1

1.0625

96(5)
65(3)
49(4)
41(2)
33(2)
29(2)
24(2)
19.4(7)
14(3)
8.8(7)

93(6)
74(4)
60(3)
51(3)
45(3)
37(3)

32(3) 49(6)

N =100
Np=4 Np=6 Np=8

1.125
1.1875
1.25
1.275
1.3
1.3125
1.325
1.35
1.375
1.4

1.4375
1.5
1.5625
1.625
1.6875
1.75
1.8125
1.875
1.9375
2

2.125
2.25
2.5
2.75
3
3.25
3.5
3.75

6(2)
4.0(4)
3.3(6)

2.4(2)

1.83(8)

1.5(2)

1.16(6)

0.98(7)

0.9(2)

0.9( 1 )

0.653(9)
o.s94(s)
o.ss1(7)
0.52( 1)
0.49(2)
0.47( 1)
0.47(2)
0.435{9)

26(3)

18(2)

s.7(8)

2.3(2)

1.6(3)

1 ~ 12(3)

0.95( 8)

0.82(3)

0.77{7)
0.73{8)
0.61( 1)
0.56(2)
0.52(2)
0.51(2)
0.48(2)

33(3)

2o(2)

7.4(8)
3.5{6)
2.3(2)
1.9(2)
1.5( 1)
1.2(3)
1.1(2)
0.99(9)
1.o{2)
o.9(2)

0.70( 1)
0.62(2)

3.3(3)
2.75(7)
2.60(9)

2.33( 8)
2.00(3)
1.92{2)
1.77(3)

29(3)
26(2)
16(2)

12.0(7)
9.1(8)
s.7(2)
s.o(2)

43(2)
44(3)
43(2)

32(2)
22{4)
14(2)
10.2(9)

27(3)
21(2)
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peat this for various g's. The results for /3Ro obtained us-

ing the correlation lengths in the SPA behave as shown in
Fig. 10. At g=g„pRo changes sign. At T=O, g, =~,
and for g &g, the system enters to a phase with spontane-
ous symmetry breaking, where the staggered magnetiza-
tion is nonzero. We see that close to the critical point
PRo(g) is clearly linear and

—1/Pl To
&p= lg

—g, I
(5.1 la)

er parameters. Namely, its value wi11 be determined from
the phenomena which this theory is assumed to describe.
This operation is the goal of the next section of this pa-
per.

Combining Eqs. (2.4) and (5.10) we obtain

PRO(g) = P—&(g g,—)+ (5.7) where

In the case of SPA, we find g, = 1.33+0.01 and

PI = 1.00+0.02.
In Fig. 11 we present the pRo(g) obtained from the MC

calculation using correlation lengths up to b=2.5. We
see a similar linear behavior giving g, =. 1.450+0.003 and

P I
= 1.28+0.05.
We can integrate Eq. (5.6) to obtain a(g)

A'c
E~T

a
(5.11b)

a
T

T
(5.12a)

Substituting a(g) and N& from Eqs. (5.10) and (5.11a) in-

to Eq. (2.8) we obtain
r

ga =a exp
PRdg)

(5.8) where we have defined f as follows:

a =a exp
g dg

&Ro(g)
(5.9)

remains finite. In field theory, the phenomenon in which
a vanishing length scale (a~0) and a dimensionless pa-
rameter (g) produce a dimensional quantity (a ) with
units of length is called dimensional transmutation. '

Using the linear approximation [Eq. (5.7)] close to the
critical point we find

~(g) =~.Ig
—g, I

1/Pi
(5.10)

The constant a is determined by the physical value we
assign to the correlation length at given values of the oth-

where a is a constant of integration. The above equa-
tion defines the function g(a) which characterizes the
continuum theory. a is a characteristic parameter of
the theory and the cutoA' should be removed in such a
way that the combination

f(TiT. ) =—gi.„g,lg
—g, l

(5.12b)

f(t)= A exp(B /r) . (5.13)

Since the constants a and T are independent of g and g
is also independent of g in the process of removing the
cutoff, the function in Eq. (5.12b) is only a function of the
ratio t=T/T . In Fig. 12 we show the function f(t).
The data points in the figure are those of Table I with

g&,«( 25 and they correspond to various g &g, and N&
values. We see that all scale to a universal curve. Again,
we emphasize the occurrence of dimensional transmuta-
tion where, although the lattice spacing is removed to-
gether with g we obtain correlation lengths in units of a
finite constant a as a function of temperature t in units
ofT .

The curve f (t) can be approximated by an exponential

4 I I I I

I
I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I
5.0

g =1.450(3) PI=1.28(5)

0.0
1.0

0.5

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1.2 1.3 1.4 1.5 1.6 1.7 1.8
g

0. 1
0

I I I I I I I

2
t. = v/v.

FICx. 11. The renormalization group P function calculated
using our Monte Carlo data around the fixed point. The values
of the parameters depicted on the graph correspond to a linear
fIt to the form Pao = —P, (g —g, ).

FIG. 12. The rescaled correlation lengths [i.e., the function

f (t), see text] in the o model using the calculated renormaliza-
tion group P function. Even though the lattice spacing van-
ishes, dimensional transmutation occurs giving rise to a finite
unit of length a and unit of temperature T .



2214 EFSTRATIOS MANOUSAKIS AND ROMAN SALVADOR 40

0.0

I I I

I

1 I I I

I

I I I I and

6!IT—T
Ig(T)=Ce (6.2)

—2.5

—5.0

and we found that the latter form fits better and conclud-
ed that our simulation indicated that topological excita-
tions may play an important role in the dynamics of the
spin- —,

' Heisenberg antiferromagnet. Following our
findings for the o. model we attempt to fit our numerical
results for the Heisenberg model to

g/aH =
AH exp(BH J/T ) . (6.3)

—10.0
3 4 5

a=v/v.

FICz. 13. A demonstration that the function T/
T ln[f(T/T )] fits to a straight line.

g(g»g, )=f(g)a(g) . (5.14)

The function g(g) is independent of T and therefore can
be determined by performing the calculation at T=O.
Finally, for g (g„ i.e., in the region which is character-
ized with order at T=O (where g= ae ), g is growing fas-
ter than 1/T with decreasing T The SPA .solution and
our numerical data suggest an exponential increase with
P=1/T [Eqs. (4.18) and (5.13)].

These results confirm the crossover phase diagram
given by CHN. ' In their more recent paper, they also
use the exponential form for g with a constant prefactor.
They also obtain the relation (5.5) and find b*= l. 1 a
value close to our SPA result but somewhat higher than
our MC result.

To demonstrate this, in Fig. 13 we plot the function
t ln[f (t) ] and we see a straight line which intersects the y
axis at B =4.31 and has a slope ln(A )= —2.53. In Fig.
12 the solid line corresponds to the exponential (5.13)
with the above parameters. We would like to remind the
reader that in SPA we also found an exponential form
[Eq. (4.18)].

In the next section we shall attempt to make contact
between this model, the spin- —,

' AF Heisenberg model and
the experiment. To close the discussion about the non-
linear o. model, going back to Fig. 7, we may notice that
gi,«(g, N&) =f(g) for g ))g„ i.e., a function independent
of N&. Hence, Eq. (2.8) yields that g is only a function of
g~

A~a~= 3 a

B~J=B T

(6.4)

(6.5)

From Eq. (6.4) we obtain a =3.14aH, from Eqs. (6.5)

2.5

A„= 0.25

0.0

This form, i.e., without the 1/T prefactor, fits our data
equally well as the form (6.2), as shown in Fig. 14. The fit
gives (see dashed line labeled l=O in Fig. 7 of Ref. 6)
AH0. 25~ 0.01 and BH =1.4+0.05 (see Table II of Ref. 6
and BH=2nb in the notation of Ref. 6). In Fig. 14 we
plot the function T/J 1n(g/aH) using the results of our
calculation. ' The intersection with the T=O axis gives
BH and the slope ln(AH). The straight line fit gives
3I =0.25 and B~=1.43. In the last section we saw that
the nonlinear o model has three different phases: (1) a
phase with g &g„where the correlation length is a con-
stant independent of T, (2) a critical point at g =g, where
the correlation length is proportional to 1/T, and (3) a
phase with spontaneous staggered magnetization at T=0
for g (g„where for finite T the correlation length grows
approximately exponentially with 1/T as the temperature
is lowered. Among the three forms the exponential fits
better to the g(T) of the spin- —,

' AF Heisenberg model.
Furthermore, assuming that the two models are
equivalent at low T we conclude that the spin- —,

' AF
Heisenberg model should order at T=O and the results of
our simulation ' may also be consistent with spin-wave
theory and existence of an ordered state at T=0.
Equivalence between the two models requires

VI. NONLINEAR o MODEL, SPIN-2
HEISENBERG ANTII ERROMAGNKTIC MODEL

AND EXPERIMENT
—5.0

We would like to discuss the possibility of making con-
tact between the spin- —,

' AF Heisenberg model and the
nonlinear o. model. In Refs. 5 and 6 we simulated the
former and we found it to grow much more rapidly than
1/T. More precisely, in Ref. 5, we fit the correlation
lengths to two different forms:

(6.1)

—7.5

—10.0 I I I f I t I I I I I

1 2 3
t.=T/J

t I t I i t i I I I l I f

4 5

FIG. 14. A demonstration that the function
T/Sin[$0(T/J)] fits to a straight line.
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FICx. 15. Comparison with the neutron scattering data (Ref.
3) (open circles with error bars) taken on the insulator La2Cu04.
The solid line represents our results for both the nonlinear o.

model and the spin- —' AF Heisenberg model taking J= 1270 K a
value, close to that obtained by Raman scattering experiments
(Ref. 17}.

T =0.325J, from (5.11b) we obtain Pic=1.04JaH. In
Oguchi's calculation' for a spin-S antiferromagnet, the
renormalized spin-wave velocity is

iiic„=2+2s(1+0.158/2s) JaH .

For a spin- —,
' antiferromagnet, its value Ac„=1.64JaH, is

lower than our value for the bare spin-wave velocity
which enters in the nonlinear cr model. More recently
Gomez-Santos, Joannopoulos, and Negele (GJN) (Ref.
15) have performed similar simulations of the spin- —, AF
Heisenberg model. They find overall agreement with our
results at higher temperatures reported in Ref. 5, but
they find smaller correlation lengths at lower tempera-
tures. GJN argue that the origin of the discrepancy may
be that their new algorithm searches the phase space
more e%ciently. We, however, believe that the discrepan-
cy may also be due to finite-size eAects: their correlation
lengths at low temperatures increase with the lattice size
(see Fig. 6 of Ref. 15) whereas in our calculation finite-
size effects appear at larger correlation lengths (somewhat
lower temperatures). This difference could be due to the
diff'erent way of calculating the correlation function in
the two calculations. Hence, it is possible that our results
represented by the dashed line in Fig. 6 of Ref. 15, ap-
proximate better the infinite lattice. Using their values
for AH=0. 32 and BH -—1, we obtain Ac =0.93Ja~ which
is somewhat lower than ours. If, on the other hand, we
use the most recent form of Chakravarty, Halperin, and
Nelson' who found A&=0.467 and BH=0.94, we find

4c =1.27JaH.
In Fig. 15 we plot the inverse correlation length versus

T as observed by neutron scattering experiments. The
solid line corresponds to our Eq. (6.1) which fits both the
nonlinear o. model and the spin- —,

' AF Heisenberg model
using J= 1270 K, a value close to that reported by Ra-
man scattering experiments.

VII. CONCLUSION

We have studied the quantum-mechanical nonlinear o.
model in 2+1 dimensions on a lattice. We have deter-
mined what should be the dependence of the coupling
constant (spin stiffness) of the theory on the lattice spac-
ing so that the results for the correlation length at any
fixed physical temperature are independent of the cutoQ'
in the continuum limit. At T=O we found the critical
point g, that separates the disordered from the ordered
phase of the o. model. As T~0 and at g =g„
/=0. 8(A'c/k iTi). By calculating the model's renormal-
ization group /3 function we rescale the calculated corre-
lation lengths at various couplings and temperatures and
find that they all collapse on the same curve
g/a =f(T/T ). Even though the lattice spacing van-
ishes, dimensional transmutation occurs giving rise to a
finite unit of length a . Both parameters a and the tem-
perature scale T =Pic/a (c is the unrenormalized spin-
wave velocity which enters as a parameter in the parti-
tion function of o. model) of the theory cannot be deter-
mined within the 0. model. We need to make contact
with either the parameters of a microscopic model or
with the experiment whose physics the o. model is as-
sumed to describe.

The parameters a and T of the o. model can be relat-
ed to the lattice spacing aH and the AF coupling J of the
spin- —,

' AF Heisenberg model. The numerical relation-
ship between a, T, and aH, J is obtained by fitting the
g( T)=f ( T/T )a to the correlation length g( T)
=gH(T/J)aH obtained from the simulations of the spin-
—,
' AF Heisenberg model. ' ' As a consequence of the as-

sumption that the two models are equivalent at low T we
find that (a) the spin- —,

' AF Heisenberg model must order
at T=O and (b) the unrenormalized spin-wave velocity c,
a parameter of the o. model, is obtained as
Pic = T a =1.04Ja~. The value of A'c obtained this way
is not far from the value of the renormalized spin-wave
velocity obtained from spin-wave theory of the spin- —,

'

quantum Heisenberg antiferromagnet.
Having obtained a common curve which fits the spin- —,

'

AF Heisenberg model and the nonlinear o. model we find
that we need J= 1270 K to fit the neutron scattering data
for the correlation length in the insulator La2Cu04. This
value of J is close to that estimated by Raman scattering
experiments. ' Smaller values of J will bring our results
closer to the data in that region but further away at
higher T.
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