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Static Coulomb model for high-temperature superconductivity
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Superconductivity in copper oxide planes is calculated using the static Coulomb model. This
model is based upon the attractive nature of the Fourier transform of the Coulomb interaction for
wave vectors near aQ=m(+1, +1). Values of A, and b(k) are calculated at T=0 and also at T,
where the gap equation becomes a linear matrix equation. For some regions of parameter space
values of A, are near unity. The gap h(k) is anisotropic.

Many theoretical models have been introduced to ex-
plain high-temperature superconductivity. Two broad
classifications are models based upon spin fluctuations'
and upon charge fluctuations. " The present model is
neither, but relies only upon the properties of the statical-
ly screened Coulomb interaction. ' ' The standard
tight-binding model for the o bonding in the copper ox-
ide plane predicts that the Coulomb potential has regions
of Fourier space where it is attractive. Under certain cir-
cumstances, this attraction predicts superconductivity.

Our version of the static Coulomb model has two pa-
rameters. One is the chemical potential p= Aq, where
3 -2 eV is the bandwidth parameter in the tight-binding
theory, which is deduced from band-structure calcula-
tions. ' ' The parameter g-1 is dimensionless and re-
lates to the band filling. A half-filled band has g=1, and
the tight-binding bands from o. bonds allows a range of
values of 0(q (&2. The second parameter is the cou-

pling constant g =e /(eoAarr ) where a =3.86 A is the
lattice constant. Here we provide a phase diagram which
shows the superconducting regions as a function of g and
g. The presence of superconductivity is found by solving
for the coupling constant k which enters the energy
gap 5-2goexp( —1/A, ). Usually A, denotes the attractive
strength from some oscillator, while U (or p, ) denotes the
repulsive Coulomb part. Here the notation is difT'erent,
since we define A, as the total Coulomb integral, which
contains both repulsive and attractive contributions.

I. TIGHT-BINDING BANDS

We use the standard three-band model for the o. bonds.
The tight-binding model has three orbitals per unit cell:
a d 2 2 on the copper, and p„and p~ on the two oxy-

X

gens. The Hamiltonian is

Edd d +E (c c +c c )+(iA/2)dj g [sgn(5 )ci +sgn(5 )c ]+H.'c.
J 6

where j' are the oxygen neighbors of the copper atoms at j. We assume that E =Ed. The Hamiltonian can be diago-
nalized in k space. There are three bands, and the conduction band is the highest in energy. Its energy with respect to
the Fermi energy E„=A ri is g(k) = A [S(k)—r)], where

S(k)=[sin (k a/2)+sin (k a/2)]'

The other two bands have lower energy and are completely filled with electrons. The conduction band has a tight-
binding wave function given by

%k(r)=[Pd(k, r)+B„(k)P„(k,r)+B (k)P (k, r)]/ 2,
B„(k)=sin(k„a/2)/S(k) .

(2)

The functions P (k, r) with a=(d, yx) are the Bloch functions for the three localized orbitals. The wave functions
%'k(r) are used to calculate the Coulomb interaction for scattering two electrons initially in states k and k to the final
states k+ q and k' —q':

d r]d I 2
2 2

V(k, k', q)= f, , q',*+,(r, )q', (r, )q',*,(r, )q', (r, ),
r21

V(k, k', q) =(e /4eoa ) T(k, k', q) .
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In the second line the quantity e /(4eoa) is factored out to make T dimensionless. The interaction T goes as 8'/qa at
small values of q. It is periodic in reciprocal space; the interaction is unchanged if a reciprocal-lattice vector is added to
either k, k, or q. An explicit equation for T is

T(k, k', q) =t(O, q)[1+8„(k)8„(k')8 (k+q)B„(k'+q)+8 (k)8~(k')8~(k+q)8 (k'+q)]

+t(r, q)[8„(k)8 (k+q)+8 (k')8„(k'+q)]+t(z, q)[B (k)8 (k+q)+8 (k')8 (k'+q)]

+t(~„~,q)[8 (k)B (k+q)B (k')8 (k'+q)+8 (k)8 (k+q)8„(k')8 (k'+q)],

t(r, q) = g exp[iq (R r)]/~R——w~,
J

where r =a( —,', 0},a~ =a(0, —,'), and a~&=a( —,', —,').
For superconductivity we actually need T(k, —k, q).

This quantity is easy to calculate using Ewald summa-
tions for t(r, q). For small values of q one finds that
T= Sm/qa, as expected. But for values of
q-Q=m(+1, +1)/a, then T is negative. The precise
value depends upon k. It is the factor t(O, Q) which is
negative.

The Fermi surface in two dimensions is a closed loop
which we call the Fermi line (FL). For g-1 then Q is
the vector which spans the FL. The Coulomb interaction
is attractive for exchange scattering of two electrons
across the FL. It is this feature which is the basis for our
static Coulomb model of superconductivity. So far, our
remarks pertain to the unscreened interaction. The role
of screening is always important. Here it plays a crucial
role in our model of superconductivity, as is explained
later.

II. SCREENING

space. We attempted to solve (3) by using the approxi-
mate expression V= V/e where the dielectric function is

d k
e(q) =1—I V(k, k—, q)L(kq), ,

(2m }

L(k, q)= —25(g„) .

(4)

gg m/2

2(2 —g ) 0 [1—m sin (a)]'

This choice has the virtue that it does behave as
e= 1+c/q at small q, and is also periodic in reciprocal
space. This dielectric function has another interesting
property. It is less than unity for the spanning vectors
aQ=n. (+1,+1). The screening makes the interaction
across the FL more attractive, while making the small-q
interactions less repulsive. Screening increases the ten-
dency for superconductivity:

In the random-phase approximation (RPA) the
screened interaction is the solution to the integral equa-
tion

V(k, k', q) = V(k, k', q)

d2+ "',Vkpq Vpk'qL pq(2' )'
(3)

nF(k ) +F(kp+q )
L(p, q)=2

F+e

The quantity which enters the gap equation is
V(k, —k, q). The unscreened quantity V(k, —k, q) is
negative for wave vectors in the region around
Qa =rr(+1, +1).

The dielectric function must be introduced carefully.
For inhomogeneous systems the susceptibility y(r, r') is
doubly Fourier transformed and inverted to give the
dielectric function e(q, q'). We lack the resources to do
this quickly. Instead we tried to construct a simple
dielectric function e(q) which is a periodic in reciprocal

X g 'r(k, —k, q) .

where m = [q /(2 —g )] if g ( 1. The summation is over
the star of the wave vector k, where one point for g & 1 is
given by

sin(k a )=csin(m/4 —a/2) .

In (5) we have given the dielectric function for q ( 1. For
g) 1 change g to 2 —g - except in the prefactor of g.

For g-1 the integral becomes large because of the
large density of states at the Fermi energy. For values of
q near the spanning wave factor aQ=rI(+1, +1) the in-
tegral is negative. Since it is both large and negative then
e(Q) (0. Figure 1 shows a phase diagram calculated for
this model in terms of the two parameters g and g. To
the right is a region of high values of g where e( Q ) (0.
This region is separated by a solid line. Since e(q) is
periodic in wave vector, we assume that the most nega-
tive point is at q=Q. This feature was verified for every
case we investigated, but we have no proof that it is al-
ways true. A negative values of the dielectric function in-
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I I I I gion is where we find a superconducting phase, as de-
scribed in Sec. III.

1.2—

(go)C0

III. SUPERCONDUCTIUITY

The superconductivity energy gap b, (k) in weak cou-
pling obeys the equation at zero temperature of'
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E(k) = [g(k) + b.(k) ]'
(6)
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FIG. 1. Phase diagram for the static Coulomb model. The
parameter q denotes the chemical potential, while g is the
Coulomb coupling coefficient. The line g=1 is a half-filled
band where the two-dimensional density of states is singular.
The solid line divides the region on the right where e(Q) &0,
where Qa =n(+1, +1), from the region on the left where
e(Q)) 0. The right-hand region with e(Q) &0 is unstable and
must change to another phase. The shaded region on the left
denotes the region of superconductivity as determined by the
condition that A, ~O. The coupling constant A, is calculated at
zero temperature using (8).

The overbar on the potential denotes a screened in-
teraction. In solving the gap equation (6), the wave vec-
tor coordinates are changed to a line integral dkI around
the FL and a wave vector dk~ perpendicular to the FL,
d k'=dkldk~. We assume that the gap function b, (k)
and Coulomb interaction are slowly varying near the FL.
Thus the main contribution to dk~ is from the kinetic en-
ergy

1 4g
1fdki, = In(2(o/b, ),

(3(kl ) = co(sP)sin( ka )+sin(P)sin(k~a ),

dicates an instability. The nature of this instability has
not been investigated. To the left of this line is the region
where the dielectric function is positive. The region of
positive E(q) has been investigated here. The shaded re-

where go- A is a cutoff'energy, P is the polar angle dur-
ing the FL integral, and (k, k ) are the wave vectors at
the FL of that polar angle. The gap equation (6) can be
rewritten as

b(k, )= —gg —f dk/'b(k, ')In(2$o/h)T(k', —k', k —k')/[f3(k, )e(k —k')],

g=e (/e os~ ) .
(7)

The coupling constant g is one of the two important parameters of the theory. The other is the dimensionless Fermi en-
ergy —1. In order to estimate g, we choose a =3.68 A, 3 =2 eV from the bandwidth, ' ' and co~@ =3.' For
so=3 we find g =0.06, which represents the maximum possible value of the coupling constant.

The preceding line integral has no solution for the case of no screening [e(k —k ) =1], since the integral is always
positive. The weak attractive regions across the FL are insufhcient to overcome the strong repulsive regions at small
values of q=k —k'. Screening is needed to overcome this strong repulsion at small q.

The existence of superconductivity is inferred by calculating the average value of A, around the FL

T k' —k' k —k'

k(ek —k

where all integrals are around the Fermi line. The shaded regions in Fig. 1 denote where k is positive. Note that the
calculation has been carried to values of g about twice the expected maximum of 0.06, in order to find the limits of su-
perconductivity for this type of model.

Values of k are largest, and approach unity, near the line denoting where e(Q) =0, while the other boundary is where
A, =O. The regions of high-temperature superconductivity are near the line where e(Q) =0. Here one has that e(q) & 1

for the regions of large q, and the attractive interactions across the FL are increased. The decrease of the small-q repul-
sion and the increase of the large-q attraction both tend to make the integral in the gap equation (7) more negative, and
hence enhance superconductivity. The existence of superconductivity in this model depends in a sensitive way upon the
two parameters g and g.
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The parameter A, , and the phase diagram for superconductivity, has been calculated a second way. At the transition
temperature T, for superconductivity, the gap equation becomes a linear integral equation

b, (k) = —f h, (k')tanh(P, (z, /2) V(k', —k', k —k')/2/k. ,
d k'

where P, = 1/kit T, The integral d k' is evaluated as before by separating it into an integral dkI around the FL plus an
integral dgk perpendicular to the FL. The latter integral is defined as 1/A, :

1/A, =f dg'tanh(P, g'/2)/g'=21n(1. 134/+, ),
k' —k' k —k'0=f dk, ' X5(k, —kt')—,' ' 6(kl') .

4p( kl')e(k —k')

Equation (9) cast the gap equation into the form of a
linear integral equation. The parameter k is the largest
eigenvalue. The integral equation was solved by chang-
ing the continuous integral to a summation over a finite
number of k points. It is then a matrix equation which is
solved by matrix inversion to obtain the eigenvalues and
eigenvectors. Because of the periodicity of b(k) around
the FL, the matrices have rather small dimension.

Figure 2 shows the value of A, calculated with this for-
mula compared with the previous results using (8) at zero
temperature. The solid line is the result from (9), while
the dashed line is the result from (8). Both curves are for
g =0.060 and are shown as a function of the filling factor

The upper limit of this curve terminates where
e(Q) (0. The two curves are obviously very similar. The
two definitions of the gap equation give similar results for
other values of g.

The solid line in Fig. 2 ends at g=0.92. Below this
value we find that the eigenvalue X is small and complex.
The interaction matrix is real but asymmetric, which per-
mits complex eigenvalues. This generally happens when
the eigenvalue becomes small. Initially we worried about

the behavior of A, in this region. Finally we realized that
this region did not show high-temperature superconduc-
tivity because of the small values of A, . We adopted an ar-
bitrary cutoff of A. )0. 1 which avoided the question of
complex eigenvalues, which always happened at smaller
values. Figure 3 shows a phase diagram for superconduc-
tivity obtained by solving Eq. (9). The shaded regions are
superconducting, as defined by the two limits that
e(Q) )0 and A, )0. 10. This result should be compared
with the similar diagram in Fig. 1. The difference in the
two diagrams reAects the different behavior at small
values of A, . In Fig. 1 the outer boundary was defined
where Eq. (8) had A. )0, while in Fig. 3 it is where Eq. (9)
had A, )0.10. The difference in the diagrams is mostly
due to the different cutoffs for k, rather than to the
different equations for A, . As shown in Fig. 2, the
different calculations of A, differ little except when the ei-
genvalue is very small.

Equation (9) also provides information regarding the
eigenfunctions, which predicts how the gap varies around

~2
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FIG. 2. A graph of A, vs q for g =0.060. The solid line is cal-
culated at T, as the largest eigenvalue of Eq. I,'9). The dashed
line is calculated at T =0 using (8). The two calculations agree.

FIG. 3. Phase diagram for the static Coulomb model calcu-
lated at T, . The solid line marks the boundary where e(Q) (0
to the right. The superconducting region is shown as shaded.
The other boundary is found from the condition that A, & 0. 1

where A. is the largest eigenvalue of (9).
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FIG. 4. A graph of the gap anisotropy parameter r=A&/60
vs the filling factor g for g =0.060.

=50[1+rcos(4$)] .

The variation in the gap h(k) around the FL has been
fitted to a simple cos(4$) law. This fitting provides the

the FL. Our theory assumes s-wave symmetry, so that
the gap has the same values in the +x and +y directions.
However, it can and does vary between these points. For
a square lattice the most general form for a Kubic har-
monic expansion of the gap is

b, (P) = g b „cos(4ng) =ho+ b, ,cos(4$)

parameter r, which is the ratio r =4&/ho. the magnitude
of the gaps Ao and 6& varies with temperature and is zero
at T, . An example of our results for r is shown in Fig. 4
as a function of g for the case that g =0.060. Values of r
with magnitude greater than 1 signify that the gap can be
zero at eight points around the FL. This only happens in
our calculations when A, is small. Comparing Fig. 2 for A,

with Fig. 4 for r shows that we have r -0.5 in the region
of high T, where A. is large. This gap anisotropy should
be evident in electron tunneling, as is discussed else-
where. For other values of g we find an r of similar mag-
nitude, but with either sign. These results for r depend
somewhat on the size of the matrix which is inverted. So
Fig. 4 should be regarded only as an indicator of the type
of anisotropy which may occur in the energy gap.

In summary, we have used the static Coulomb model
to calculate a phase diagram for superconductivity in
terms of the parameter of the model. We show that
values of X near unity are predicted, which does predict
high-temperature superconductivity. We also calculate
the anisotropy of the energy gap.
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