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Temperature-dependent ultrasonic attenuation measurements in the Ho-rich magnetic supercon-
ducting system Er,_,Ho,Rh,B, show broad maxima at temperatures around 10 K. A two-energy-
level model is proposed and expressions are derived to elucidate the nature of these relaxation-

attenuation maxima.

Studies of the interaction between long-range magnetic
order and superconductivity of RRh,B, (R: rare earths)
in recent years have revealed that crystalline electric
fields (CEF’s) (Refs. 1 and 2) play an important role in the
physical properties of these magnetic superconductors.
The CEF removes the degeneracy of the Hund’s rule
ground state of rare-earth ions in RRh,B, (Refs. 1 and 2)
at low temperatures and therefore results in the appear-
ances of Schottky anomalies in specific heat,® strong
magnetic anisotropy,* and deviation of magnetic transi-
tion temperature from the trends normally expected.?>
The split of the rare-earth ions’s ground states may also
affect the propagation of sound waves in these materials.

Temperature-dependent ultrasonic attenuation mea-
surements have been performed on six samples of the
Er,_ Ho,Rh,B, system® with x=1, 0.912, 0.813, 0.6,
0.295, and 0 at 15 MHz from 1.5 to 20 K. Except in the
regime where the ultrasonic behavior was affected by the
onset of the superconducting state, the low-temperature
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attenuation data of all the samples but ErRh,B, displayed
a broad maximum at temperatures close to 10 K, and the
temperature position (7,) of this maximum depends on
the Ho concentration (x) (ErRh B, has this maximum at
5 K). The same measurements on Erg, 37Hoq 5;3RhB,
and HoRh,B, at higher sound frequencies show that T,
moves to higher temperatures as the frequency is in-
creased. Such a dependence of T, on frequency can be
the result of an acoustic relaxation process occurring at
low temperatures. To find a mechanism for describing
this relaxation process, a theoretical model is proposed
that considers the effects arising from oscillating the lat-
tice. The derived theoretical results will be compared
with the experimental data in this paper.

The temperature-dependent ultrasonic attenuation
curves at 15 MHz in zero magnetic field for samples with
x=1, 0.912, 0.813, and 0.6 are shown in Fig. 1. The at-
tenuation curves are normalized in the following way:
Taking the attenuation at 20 K as the reference of zero
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FIG. 1. Temperature-dependent ultrasonic attenuation of Er,_,Ho,Rh,B, with x=1, 0.912, 0.813, and 0.6 at 15 MHz.
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attenuation, the attenuation value on each curve at any
temperature below 20 K is determined relative to this
reference attenuation, and then normalized to the max-
imum attenuation value of the respective curve. Several
features of the attenuation curves can be observed from
the figure: (1) The position T, of the bell-shaped relaxa-
tion maximum on each curve shifts to a lower tempera-
ture as the concentration x of the Ho atoms decreases.
(2) The ratio of the attenuation at the magnetic-phase-
transition temperature 7,, to the maximum attenuation
on each curve increases as x decreases. (3) For the sam-
ple with x=1, and x=0.912, the valleylike relative
minimum on the low-temperature side of the bell-shaped
maximum of each curve is located at the Curie tempera-
tures of these samples, which are 6.4 K and 6.2 K, re-
spectively. However, for the sample with x=0.813 and
x=0.6, there is a steplike change in attenuation at each
Curie temperature, which are 4.95 K and 3.5 K, respec-
tively, and there is a relative minimum at each supercon-
ducting phase transition temperature 7.;, which are 6.0
K and 6.7 K, respectively. (4) For the reentrant super-
conductors, the attenuation increases when the tempera-
ture is lowered from T, to T,,. (5) In the ferromagnetic
state, the attenuation of all the samples increases as the
temperature is lowered.

The bell-shaped attenuation maximum located at tem-
peratures close to 10 K for all the measured samples of
the Er,_ Ho,Rh,B, system except ErRh,B, indicates
that this maxima is associated with Ho*" ions instead of
Er*"; however, when x is decreased, the effect from Er™
ions becomes stronger, and the temperature-dependent
attenuation curve exhibits a second maximum associated
with Er*" ions at lower temperatures, such as those
shown on the attenuation curves of the sample with
x=0.295.7 In addition, Tp ’s of all the bell-shaped maxi-
ma stayed unchanged when a constant magnetic field up
to 6 kOe was applied.® Experimental results of the other
features in the curves shown in Fig. 1 have been analyzed
and reported elsewhere,® % and because the same mecha-
nism could be applied to the maxima contributed by
Ho’" and Er’" individually, let us concentrate the fol-
lowing discussion on feature (1) of the Ho-rich samples.

Figure 2 displays the attenuation as a function of tem-
perature of HoRh,B, at three different frequencies. As is
shown, T, of each curveis 11.1 K, 13.6 K, and 15.2 K for
15 MHz, 50 MHz, and 81.3 MHz, respectively. That is,
the temperature position of the bell-shaped maximum is
frequency dependent and it moves to higher temperatures
as the frequency is increased. The same behavior was
also exhibited by Erg 5,Hog 3;3RhB, with T)’s of 9.9 K
and 13 K for 15 MHz and 52.5 MHz, respectively.’

Basically, this frequency-dependent behavior can be
qualifgtively described by a relaxation-attenuation equa-
tion,

a(T) /Aoy =20 T) /[ 1+ *A(T)], (1)

where a(T) is the temperature-dependent ultrasonic at-
tenuation; «,,, whose material-dependent parameters
will be discussed in detail later, is the maximum of at-
tenuation at angular frequency w; and 7(7) is the
temperature-dependent relaxation time which is an in-
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FIG. 2. Temperature-dependent ultrasonic attenuation of
HoRh,B, at 15, 50, and 81.3 MHz.

trinsic property of the material. As described in Eq. (1),
the temperature at which a relaxation-type attenuation
maximum occurs will be determined by the product of w
and 7. Whenever wr=1, a will reach its maximum value
at an angular frequency equal to 1/7. However, 7 is a
temperature-dependent quantity, implying that for one w,
there is one corresponding 7 which makes w7 equal to 1,
and thereby 7 determines the temperature at which
a=a,,, In fact, we found that 7 is a monotonically de-
creasing function of increasing temperature. Hence, at
higher frequencies, a,,, is located at higher tempera-
tures.

The energy dissipation of sound waves due to the relax-
ation process occurring in HoRh,B, can be qualitatively
explained as follows. The 17-fold degeneracy of the
Hund’s rule multiplet of the Ho>" ions is lifted by the
CEF’s. The strength of the CEF is determined by lattice
symmetry, the lattice charge distribution, Steven factors,
and radial integrals.!'! Therefore, when a stress wave is
traveling in the sample, the deformation of the lattice will
alter the CEF strength and result in a periodic variation
of energy difference between the energy levels. Conse-
quently, the electron populations of each energy will
change as well. The lack of instantaneous return of the
overpopulated and the underpopulated electron levels to
their instantaneous equilibrium states causes the elec-
trons to relax out of phase with respect to the coming
stress wave, and results in energy dissipation of the
waves.

To quantitatively describe this relaxation attenuation,
we begin with a two-level model. Let the energy
difference between the two energy levels be €, and let the
population densities for the higher-energy level (level 2)
and the lower-energy level (level 1) in the equilibrium
state be n,y and ny, respectively. The transition rates
from level 2 to level 1 and from level 1 to level 2 in the
equilibrium state will be denoted by k9, and k9,, respec-
tively. The presence of a sound wave alters the relative
numbers of electrons in the two states as well as the tran-
sition rates. We denote the number densities and the
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transition rates of electrons in the nonequilibrium state
for level 1 and level 2 by n,,k,, and n,,k,;, respectively.
Then the rate of change of the population in the excited
state can be written as

dn,/dt =nk;,—nyk,; . ()

By introducing An =n,—n,, and Ak,;,=k,;,—k$,, and
using the Boltzmann relation n,y/n,,=exp(—e/kyT),
we find that

An =[(nykd re)/(1+ioT)]
X[(AT/T)—(Ae/e)(1/kgT) , (3)

where Ae and AT represent deviations from their equilib-
rium values due to the passing of a sound wave, and we
have used (dAn/dt)=iwAn, with o being the angular
frequency of the sound wave. Here 7 is defined as
1/(k9,+k9,).10

To simplify our notation, we introduce the quantity

Coz(nzokngng)/(kB TZ) ’

which is the Schottky-type heat capacity of a two-level
magnetic system at constant volume ¥ and at zero fre-
quency (0 =0), and we define

Clw)=Cy/(1+iwT) .
Equation (3) now becomes
eV An =C(0)T(AT /T —Ae/¢) . 4)

We consider HoRh,B, to be composed of two subsys-
tems; the internal (rare-earth f electrons) subsystem and
the external (background thermal phonons) subsystem.
The variation of electron occupation number of the mag-
netic sublattice energy levels causes sound-wave energy
loss, and variations of the occupation numbers of the
background phonons will also contribute to the dissipa-
tion.

For simplicity we adopt Barett’s model'? for the effect
of sound waves on thermal phonons, i.e., we regard the
external subsystem of thermal phonons to be lumped into
a single effective mode. Let the frequency of this mode be
®,, with corresponding energy level e,=hw,, and let An,
be the variation of the phonon occupation number for
that mode due to the presence of the sound wave. By ex-
tending our analysis for the electron subsystem to the
case of the phonon subsystem (see also Ref. 12), we can
obtain an expression like Eq. (4). Thus, for each subsys-
tem, we can write

g,V An,=Ci(o)T(AT/T —Ag; /¢;) , (5)

where i=1 refers to quantities for the electron subsystem
and =2 refers to quantities for the phonon subsystem.
In particular, for the phonon subsystem

Cy(0)=Cy/(1+inr,) ,

where C,, is the lattice heat capacity (at ®=0) and 7, is
the phonon relaxation time.

The heat dQ produced in the material as a result of the
electron and phonon population variations can be ex-

pressed as'’

dQ=TdS= Y TdS;, (6)
i=1,2
where
TdS;=¢;VAn,=Ci(o)T(AT /T —Ag; /€;) ,
i=1,2. (D

Introducing the Gruneisen constant
I';=—0ln(g;)/01In( V)
=—(V/g;)0e; /dV) ,
we have
TdS,=C/(o)T(AT/T+T;AV/V), i=1,2. (8)

Since sound-wave propagation is basically an adiabatic
process, it follows that 3, ,T dSi=0, and Eq. (7) then
yields

AT/T=—(AV/V)[(C,T,+C,T,)/(C,+C,)], )

where, for notational simplicity, we have written C; for
C;(w). Substitution of expression (9) into Eq. (6) yields

€, An,=C,T(AV/V)
X[T;,—(C,I'}+C,T,)/(C,+C,)] . (10)

The mean energy loss of the sound waves in one oscil-
lation can be expressed as

< > An;(dAg; /dt)> ,

which implies that
(dQ/dt)=—173 wIm(An; Ae})

=(w/2)|AV /VI?T(I'|—T,)?
XIm[C,C,/(C;+C,)], (11)
where we have used the relation
Ag;,=—¢, T, AV/V .

Here Im (X) means the imaginary part of X, and Ag} is
the complex conjugate of Ag;.

The relationship between the ultrasonic attenuation
coefficient a and the energy loss is

a={dQ/dt ) LAV /V|pv})" !,

where p is the mass density and v, is the speed of sound.
It follows that

a(T)=AwT Im[C,C,/(C,+C,)], (12)
where

A=(I|—T,)?%/pv} .
Explicit evaluation of the factor

Im[C1C2/(C1 +C2)]
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leads to the final expression
a(T)= A(TC,yCyy/C)0** /(1 +0?7*?)] , (13)

where C;;=C;(0), and we have defined C,=Cy+Cy,
which is the total heat capacity of the system, and

T* =(C1072+C2071 )/Ct ,

which is an effective relaxation time.

Note that a(T) has the characteristic relaxation-
attenuation form and that is a function of temperature,
sound frequency, and the specific heat as well as the re-
laxation time of each subsystem.

By using Eq. (13), there are two ways to find the tem-
perature dependence of 7* from our data. The first is to
take the experimental attenuation results of HoRh,B,,
and the heat-capacity data of HoRh B, and LuRh;B,
(Ref. 14) to calculate the relaxation time of HoRh B, at
temperatures between 7 and 20 K (at 6.7 K, HoRh,B, un-
derwent a magnetic phase transition). The other ap-
proach is to take the ratio of the attenuation at different
frequencies. By doing so, the ‘term f(T)
(= ATC;C,,/C,) will be canceled and 7* can be deter-
mined without employing empirical specific-heat data.
Before calculating 7* by following either of these two
ways, we assume that the background attenuation linear-
ly depends on temperature for each frequency, and the at-
tenuation a which arises only from the relaxation process
is determined by the expression a=a,—ST +a, (a is
the attenuation shown in Fig. 2. S is slope of the straight
line for this linear background-attenuation—-temperature
relationship and is proportional to the frequency of sound
wave. T is temperature. «, is the constant background
attenuation whose value does not depend on frequency).
Figure 3 shows three curves of the natural logarithm of
the 7* obtained by using three attenuation ratios. These
curves are quite close to each other, especially at temper-
atures below 15 K, which is an indication that Eq. (13) is
applicable for interpreting the observed relaxation at-
tenuation. A single function 7*(7T) can in fact be chosen
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FIG. 3. Relaxation time (7*) of HoRh B, as a function of
temperature. i, represents the curve obtained by using the ra-
tio of attenuation at 15 MHz to that at 50 MHz. 3 is that for
50 MHz and 81.3 MHz. 7 is that for 15 MHz and 81.3 MHz.
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FIG. 4. Comparison of experimental attenuation curves
(solid lines) with that of calculated values (dashed lines).

to give a reasonably consistent description of the three
measured attenuation curves. The following simple func-
tion accomplishes this:

T(T)=2.27X 10" 8exp[ —0.26(T —6)] . (14)

This function is a rather good straight-line fit to the 775
curve in Fig. 3. If the relaxation time of the background
phonon subsystem is relatively small or tends to zero,
then, 7 ~C,,7;/C, and would be expected to decrease
with increasing temperature. Qualitatively, this is con-
sistent with expression (14).

Inserting expression (14) for 7* into Eq. (13), and using
the measured a(T), three sets of functions of f(T) can be
calculated. By taking the average of f(7) at each tem-
perature and using expression (14) for 7* in Eq. (13), we
can calculate the ultrasonic attenuation and compare it
with the experimental data. The results are shown in Fig.
4. If a 5% experimental error is assumed, the calculated
values agree with experimental data quite well. Thus,
Fig. 4 shows that the data can be fit with a single 7* and a
single £ (T) in the relaxation-attenuation expression (13).

As displayed in Fig. 5, the values of f(T) which are
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FIG. 5. Comparison of the average of f(T) (solid line) with
TCyC,/C, obtained by employing the experimental data of
specific heat (dashed line).



40 RELAXATION MECHANISM OF ULTRASONIC ATTENUATION . ..

obtained by the procedure stated in the preceding para-
graph do not match well with those calculated by using
the experimental values of specific heat, C,y, C,y, and
C,,'* and an appropriately assigned value of A. This
disagreement may be attributed to our simplified model.
For the Schottky specific heat,

Co~(e/kpD%e 8T s 3 1) .

If € is 40 K and 60 K (Refs. 1 and 14) which are the ener-
gy differences of the first and second excited states from
the ground state of Ho>" ions, respectively, and T is be-
tween 10 and 20 K, the magnitudes of C, from both
states will be of the same order, which implies that the 60
K energy level contribution can be a large fraction of
C,o- Whereas, for attenuation,

v a~CloT*/(1+w2T*2) ,

and 7* for the higher-energy level is expected to be much
smaller than that of the lower-energy level. It follows
that the 60 K level would not contribute significantly to a
at low temperatures. Thus, while the two-level energy
model describes the behavior of relaxation ultrasonic at-
tenuation rather well, the temperature dependence of
specific heat involves other excited states with higher
values of energy.

We should also mention that a microscopic theory of
the influence of CEF effects on ultrasonic attenuation in
metallic systems has been given by Becker, Thalmeier,
and Flude.!® These authors obtain an attenuation of the
form w?F(T), where F is a function depending on the de-
tails of the CEF-split states. This form is compatible
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with the relaxation-attenuation expression (1) in the
oT<<1 regime, but does not appear to cover the experi-
mental data presented here where w7 varies over a wide
range of values. In principle, the theory of Becker et al.
contains all interactions involving electrons and phonons
except for the phonon-phonon interaction. Our model
effectively introduces phonon-phonon interaction via a
Gruneisen parameter and a relaxation time, and this is a
significant difference between our approach and that of
Becker et al. However, they pay considerable attention
to the magnetic field dependence of the magnetoelastic
interaction, and therefore such magnetic field data should
be analyzed with their model in mind.

In summary, the CEF-split ground states of the mag-
netic sublattice in Er,_,Ho,Rh,B, contribute to the
relaxation-type ultrasonic attenuation at low tempera-
tures. A theoretical model which considers the oscillat-
ing energy levels as a result of the propagation of sound
waves in the samples yields a relaxation-type ultrasonic
attenuation which is related to the Schottky specific heat.
The effective relaxation time which is obtained from our
model decreases monotonically with increasing tempera-
ture, and this is consistent with the experimental attenua-
tion results.
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