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Equation of state for He submonolayers physisorbed in He-film surface states:
Thermal Hartree-Fock approximation
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A semiphenomenological e6'ective interaction is introduced to describe 'He physisorbed in He-
film surface states. The parameters in the e6'ective interaction are fixed by requiring that the single-
particle He states are in agreement with available experimental data. The third-sound mediated
effective He- He interaction is then obtained in second-order perturbation theory (the one-ripplon
exchange potential). The He equation of state is computed using thermal Hartree-Pock for the
one-ripplon exchange potential alone and with some account taken of the direct 'He-'He interac-
tion. In no case do we find evidence of coexisting phases (van der Waals loops).

I. INTRODUCTION

The thin-film He- He system has received extensive
experimental and theoretical attention in the past few
years. Notwithstanding, the present state of understand-
ing is still muddled.

Theoretical treatments' of the two-dimensional
He- He mixture agree that at low enough temperatures,

the system will phase separate. The phase separation in
two dimensions will be complete rather than partial as in
the bulk mixtures. ' The reason for this difference is that,
in two dimensions, He is not a self-bound system. As
discussed by Miller and Nosanow, strictly two-
dimensional He is a gas at zero temperature. An indica-
tion of a possible phase separation in the mixture film was
reported by Laheurte, Noiray, and Romagnan who
found anomalous low-temperature third-sound signals.
The results, however, are apparently not reproducible.

A layered phase separation has been seen in thicker
films (5.7 layers where l layer=3. 6 A) by Ellis, Hallock,
Miller, and Guyer. That is, the He phase separates and
Qoats on the superQuid He film as a normal-Quid blan-
ket. This layered configuration is driven by the van der
Waals field of the film substrate. No onset has been ob-
served for the transition and it is not clear whether the
theoretical treatments of Refs. 1 —3 can address this sys-
tern in some film-averaged sense. The layered
configuration has also been reported by Laheurte,
Noiray, Romagnan, and Sornette for this range of film
thickness and temperature.

Bhattacharyya and Gasparini (BG) reported apparent
phase separation in mixture films of =4 layers of He,
submonolayer amounts of He and T ( 100 mK. BG ana-
lyzed heat capacities and argued that their low-
temperature results are consistent with the formation of a
condensed two-dimensional Fermi liquid. In very recent
work, Valles, Higley, Johnson, and Hallock' reported
that NMR measurements made on a m.ixture film system
equivalent to that used by BG showed no apparent evi-

dence for a phase transition.
In this paper, we shall attempt to construct a theoreti-

cal model to help guide the interpretation of the results of
BG. The remarkable aspect of the BG results is the sug-
gestion that the fermion-rich phase is self-bound. It is
clear from Ref. 4, that if this is the case then the ( He
film) substrate must be playing a nontrivial dynamic role.
In Sec. II, we shall develop a semimicroscopic description
of the He- He effective interaction mediated by the ex-
change of third-sound quanta. The approach is analo-
gous to the phonon-mediated electron-electron interac-
tion which is so familiar from solid-state physics. In Sec.
III, we shall discuss the He-substrate effective interac-
tion which forms the basis of our numerical work. In
Sec. IV, we compute the equation of state using thermal
Hartree-Fock, and Sec. V is the Conclusion.

II. THE MODEL

%e consider a film with N4 He atoms and X3 He
atoms which is physisorbed to some solid substrate which
occupies the lower (z «0) half space. The He film occu-
pies area A and, in equilibrium, is laterally translationally
invariant with film thickness d. {We use d to represent
the height of the mobil layer above the solid surface as
would be measured in a third-sound experiment. ) The
model Hamiltonian can be written

H =H4+H3+H34,

where H4 is the Hamiltonian of a pure He film, H3 is the
Hamiltonian of the physisorbed He, and H34 is the film-
atom interaction. This starting point is familiar from
many other systems, including electrons and phonons, "
electrons on a He substrate, ' and spin-polarized hydro-
gen on a He substrate. '

The He-film Hamiltonian can be written

Hq=g Acok(bkbk+ —,'),
k
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where k labels the momentum of a surface mode and the
spectrum, co&, is given by' i/(r)=, ~, g e' 'ep„(z)ak „ (10)

2=COk—
u,'4(d) o ok+

m4 p4
q tanh(qd ),

q =k —co /c4) 0, (3b)

u,'4(d) =
2

m4C 3s 3CXs

d4

where a, is the van der Waals parameter and c3, is the
third-sound speed. In Eq. (3b), c4 is the bulk He speed
of sound. In the following, we shall treat the film as in-
compressible and so q =k. Below, we shall need the film
Auctuation operator which can be written

1/2

(( )
1 ~ haik tanh(kd);„. e „t t

)
g 1/2 2' pk ~kP4

The Hamiltonian for a system of noninteracting phy-
sisorbed He atoms can be written

~3 r ek, jM k, p k, p.
k, p

where

(6)

Ak +A.
2m 3

and A,„is the eigenvalue of the Schrodinger equation:

where m4 is the bare He mass, p4=m4n4 is the mass4 0

density, o-0 is the zero-temperature surface tension and
v,'4(z) is the substrate-film force. u, 4(z) is taken to be of
van der Waals form and so

Al tanh(ld )
I

2coIp
ypV

I (12)

and V/' is the two-dimensional Fourier transform of the
z-state matrix element of v 34.

V/"= jdse "(p n4v34(s, z3,z4=d)~v) (13)

(/l~ n 4v34 ~
v ) = 1 dzP„*(z)n 4u34(s, z, z4 =d )P,(z) . (14)

We can now obtain the third-sound mediated interac-
tion from Eq. (11). The equation of motion for the fer-
mion destruction operator can be written

1—i iak„+ekak„= — —g Pi (b&+b i)a

(15)

Similarly, the equation of motion for the boson operator
can be written

(where we have systematically suppressed the spin index
since the interaction is spin independent), we obtain after
some algebra

1

i/ y (I y ak+i
k, 1

P, V

+I" tak„ak+t bi ) .

The vertex function I P& is given by

P„"(z)+u3(z)P„(z)=A, P„(z) .
2m 3

(8) 1—iIibk+hcukbk = — —g I ka~ k pa~ . (16)

H34 — d r3 d p4n 4u 34(p3
—

p4, z» z4 =d )
0

X it (r3)ii(r~ g(p4), (9)

where n4 is the bulk He number density, v34 is an
effective interaction between the He and He and i/j(r) is
a fermion destruction operator. The contribution to II34
representing the interaction of the He and a static film
has been neglected.

Now using

U3 (z ) is the single-particle effective interaction due to the
substrate and film. A precise form for u3(z) will be dis-
cussed below. The eigenstates t/)„(z) represent the bound
states in the He film. In Eqs. (7) and (8), m3 is the He
effective mass which, in principle, is determined self-
consistently from the Hamiltonian of Eq. (1). The calcu-
lation of rn 3 is discussed in detail in Sec. IV. In the nu-
merical work which follows, we shall use m3 =m3 the
bare He mass.

The Hamiltonian operator representing the interaction
between the adsorbed quasiparticles and the modes of the
film can be written

where T orders later times to the left and in the interac-
tion representation

l COktbk(t)=e "bk .

The equation of motion for this propagator is

(18)

i —cu, d'(k, t t')=o(t t') . — —a
k (19)

Thus, Eq. (16) can be inverted by left multiplying by
d (k, t —t') and integrating over t':

f dt'do(k, t t')—b„(t)= 1

P, V

X a t „(t')a (t ') . (20)

We can proceed analogously for b k and thus obtain

P, V

We can now invert Eq. (16) and then pick off the interac-
tion by inspection of Eq. (15). Introduce the propagator

id ( kt;k', t')=( ~OT(bk(t)bk (t'))~ )0, (17)
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A. He surface states

The He atom feels a single-particle interaction u3(z3)
given by

x fdt'[do(l, t t')—+d (1,t —t')*]

X[a t r(t')a s(t')a~ i p(t)] .

(21)

Then, using d (k, co)=(co c—ok+i') ', the third-sound
mediated interaction Vz~r (co) can be obtained by inspec-
tion of (21):

cyaPr5
k

paPpr 2n 4G cok

(co+i g) ~k—

III. THE EFFECTIVE INTERACTION

Z3 dO

In his original treatment of He surface states on a He
bulk planar surface, Lekner showed that the effective in-
teraction seen by the He atom has three basic features. '

Within the bulk He and away from the surface, the in-
teraction goes to p3, the He chemical potential. In the
surface region there is a potential well preferentially oc-
cupied by the He surface state. Finally, in the region
outside of the He and away from the surface the interac-
tion goes to zero in a van der Waals manner. '

In a notable series of experiments, Gasparini and co-
workers' ' have examined the behavior of the He sur-
face state in He films by analyzing heat-capacity data.
Their experiments revealed the presence of at least two
bound states in films =4 layers thick. The system was
reanalyzed by Sherrill and Edwards, ' who showed that
the ground-state eigenfunction was localized in the film
surface and its eigenvalue was a monotonically increasing
function of film thickness.

We shall model the He- He effective interaction by a
simple function of the form

u3(z3)= f dz~ f dp34n4(z~)u34(p3~, Z3, Z4)
dp

+ f dz, f dp, 3n, u, 3(r,3)[1 f(z—3
—d )], (24)

where U, 3 is the substrate-helium van der Waals interac-
tion, and f (z —d ) is the film surface profile normalized to
unity,

f(z —d ) =n~(z)/n 4 . (25)

f'(z —d)=1/(1+e (
) (2&)

where

p(z)=P, (z —d)+P~+P3/[(z —d) +P, ]+P~/(z +P, ) .

(27)

The values for the p; and all the parameters used in u3(z)
are given in Table I.

In the approximation where n4(z) in Eq. (24) is re-
placed by a step function, n4(z)=n&0(d —z), the in-
tegrals can be carried out analytically to yield

Qs 3 0!0
u3(z3) = —,——,I (0„—00)

Z3

—
—,
' [sin(28d ) —sin(28o) ] I

This function is used to distinguish between inner-film
quantities and surface quantities. For example, the sub-
strate potential in Eq. (24) only explicitly contributes in
the outer-film region. This is to prevent the substrate po-
tential from attracting all the He atoms into the immedi-
ate vicinity of the substrate due to the absence of short-
range correlations in this theory. In the physical system
the substrate potential produces a small density gradient
in the He film which prevents the He from accumulat-
ing near the substrate.

For the film density profile, we use the form introduced
by Mantz and Edwards as discussed in Ref. 19. Thus,

P3
u34(p34 z3 z4) ii 5(134) do (z3 (d

. nO4
(23) X [1 f(z3 —d )]+pg—(z3 —d), (28)

60.O d(z, .
en~(r34+l )

TABLE I. Values of the parameters used in the effective in-
teraction.

The potential is infinite in the region of the high-pressure
immobile first layer of He. In the He superAuid film,
the interaction is a contact potential whose amplitude is
fixed at the zero-concentration chemical potential for He
in bulk He, p3, divided by the "He bulk density, n4. In
the region of the film surface and beyond, the potential is
a soft-core van der Waals with the single adjustable pa-
rameter l determined by requiring that the bulk surface-
state binding energy agrees with experiment. The quanti-
ty ao is the He film- He van der Waals parameter. We
shall now use u3& of Eq. (23) to determine u3(z) in Eq. (8)
and V/' in Eq. (13).

Parameter

P3
np,

C7p

ap
as
p2

/3~

03
/34

Value

2.785 K
0.0218 A
0.278 K/A

120 KA
1,740 KA

(1.1816+267/d ) A
—2.5

(20/4/3i) A
(267/4P, ) A

72.25 A
2.88 A
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FIG. 1. The probability densities of the ground and first ex-

cited surface state for 'He in a d=4 layer He film. Also shown
are the "He surface profile from Eq. (26) and the. 'He single-
particle interaction, Eq. (24).

FIG. 2. The ground state and first excited state eigenvalues
as a function of inverse He film thickness.

where a, is the substrate- He van der Waals parameter as
in Eq. (4},and

Oo=—tan
—1 l

Z3 do

Od
—= tan

—1 l
Z 3

0
For the step-function model, Eq. (28), l=2.64 A as com-
pared with l=2.88 A for the model with a realistic sur-
face profile.

The potential, v3 (z), together with the ground state
and first excited state probability densities are shown in
Fig. 1 for a film with d=14.4 A (4 layers). These results
are in good agreement with the calculation of Sherrill and
Edwards. ' In Fig. 2, we show the two lowest eigenvalues
as a function of film thickness. These results indicate
that the ground-state eigenvalue, Ao, is a monotomcally
increasing function of film thickness (the decrease in ko
with decreasing film thickness is due simply to the in-
creasing importance of the substrate van der Waals field

I

on the surface state). The first excited state, A, „can un-

dergo an interesting maximum as a function of film thick-
ness as can be seen in Fig. 2 of Ref. 19. The maximum is
due to a crossover from the large d region, where A,

&
is

dominated by the gain in kinetic energy with decreasing
film thickness, to a small d region, where A, I is dominated
by the decrease in potential energy with decreasing film
thickness. As seen in Fig. 2, the maximum occurs in this
model for a very thin film. [The maximum for the step-
function model, Eq. (34), occurs at d =9 layers since in
this model the substrate potential plays a slightly greater
role in the surface region. ] In summary, we have deter-
mined l=2.88 A by requiring that v3(z} has the correct
bulk surface-state binding energy and we then demon-
strated that our simple model gives good agreement with
the calculations of Refs. 17 and 19 for the film states.

B. KfFective interaction

We first compute the vertex function, Eq. (12). Substi-
tuting Eq. (23) into Eq. (13), we find

Vi' p, P„"(d)P (d( —
—,'aok =(p„K (k[(z —d) +I ]' )

1 — (z —d) v
(k[( —d) +l ]' )

where K z is a modified Bessel function. The k ~0 limit
of Eq. (29) is of interest. Using the asymptotic forin

K z(x)=2/x —(x /8)ln(x/2)+ .

we find

&g =p3$„*(d)p (d)
——,'~o(pi[(z —d)'+I'] '[1—f(z —d)]iv), (3O)
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and V~0 is clearly nonzero. If we write the vertex func-
tions as

0

(31)

where from Eq. (12)

haik tanh(kd )
k 26)kP4

then, from Eq. (3a), lim coI, =c3,k; thus
k~O

o+
hC

Ad
lim Ck

—= k
k 0 2p4c3@

1/2

(33)
—10

Therefore,

lim r~ -O(k'"d "4) .
k~o

(34)

The vertex function vanishes like the square root of the
wave vector and increases with increasing film thickness
(the implicit d dependence in the states P„" and P has
been neglected).

In the equation-of-state calculations to be discussed in
the next section, we shall confine ourselves to tempera-
tures and densities low enough so that the excited z
states, A, &, etc. , are negligibly occupied. We shall there-
fore only consider the ground-state matrix element
p, v=0 and for clarity suppress the pv superscripts in I
and the effective interaction henceforth.

In Fig. 3, we examine Vk for d=4, 6, 8, and 10 layers.
The function becomes less negative with increasing film
thickness; however, the dependence on d is very mild.

-0.5—

—15-
0.0 0.1 0.2

k(A ')
I

0.3
I

0.4 0 ' 5

FIG. 4. The vertex function I & from Eq. (12) for He films
with thickness d=4, 6, 8, and 10 layers. As shown in Eq. (34)
I A. vanishes like k ' as k ~0.

The large k asymptote is given by the contact interaction
contribution and is ——0.6 K. In Fig. 4 we show the
vertex functions I k for the same systems as in Fig. 3,
d=4, 6, 8, and 10 layers. The coupling function Ck, Eq.
(32), forces the I I, to zero as k ~0 with a square-root-
type cusp as shown in Eq. (34). In the limit kd »1,
CI, -O(k '

) and I I, vanishes very slowly. The excita-
tion spectra col, are shown in Fig. 5 [cf Eqs. .(3a) and

0.05 —'
15-

0.04

—1.0
0

0.02

O.O1

0.0
I

0.2
I i I

0.4 0.6
k (A-1)

I

0.8 1.0

FIG. 3. The function VI, from Eq. {29) for He films with
thickness d=4, 6, 8, and 10 layers.

0.00 .
0.0100.0020.000 Q.OQ4 0.006 0.008

k(A ')
FIG. 5. The He-film excitation spectra from Eqs. (3a) and

(3b). The softening in the spectrum with increasing d is only
evident at very small values of k as shown by the inset.
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In Fig. 6, we show Vz for the systems d=4, 6, 8, and 10
layers. The OREP is manifestly negative as is to be ex-
pected from second-order perturbation theory. In the
limit k ~0, it is straightforward to show that

(Vod) —O(d'), (36)
Pl4C 3s

lim V„=—
k~O

if we ignore d dependence in the matrix element Vo.
Thus, the interaction becomes long ranged in real space
as d gets large. Vk is very short ranged in k space (e.g. ,
the d=10 potential increases from —18 000 K at k =0 to
—1.4 K at k= 1 A ').

In the following section, we shall utilize the OREP in a
thermal Hartree-Fock approach in order to compute the
He equation of state. In addition, we shall augment the

OREP with two models to account for the direct He- He
interaction and the induced He- He interaction due to
the He background.

(3b)]. There is a crossover wave vector, k,
—:(3a,n4/o. o)d, such that for k (k, ()k, ) the spec-
trum is dominated by the substrate (surface tension) re-
storing force. For d=4 layers, k, =0.01 A ', thus the
spectra are basically identical (i.e., independent of d) for
k )0.01 A ' for the systems we have considered in Figs.
3 and 4 above. The spectra out to 2 A ' are shown in the
inset to Fig. 5, whereas Fig. 5 concentrates on the k & k,
region. The softening of the small k spectrum with in-
creasing film thickness is evident.

In the static limit, the one-ripplon exchange potential
(OREP) from Eq. (22) can be written

2n,'d
~
I „'

(35)
ACOk

IV. THERMAL HARTREE-FOCK

(Zs +1) f dk 13(E& p—)—
i3 (2~)'

(37)

where s= —,
' for He, Xk is the proper self-energy in the

Hartree-Fock approximation,

dkq
Xk = 2S+1 VO

—Vk nk
(2m. ) 12 2

n k is the average occupation number,

1
nk =

p(~„—~)
e

(38)

(39)

~k ~k+ ~k (40)

where ek is the free-particle spectrum, P is the inverse
temperature and p is the chemical potential. Thus, for a
given density and temperature one can self-consistently
solve Eqs. (38)—(40) for the self-energy and chemical po-
tential. These quantities then yield the equation of state

As discussed by Mermin ' and des Cloizeaux, one can
readily generalize the usual zero temperature, variational,
mean-field Hartree-Fock theory to finite temperatures.
Thermal Hartree-Pock (THF) is the natural place to be-
gin in describing a system like adsorbed He interacting
weakly through an OREP since the usual problem with
HF, its inability to deal with strong short-ranged correla-
tions, is of no consequence.

From Ref. 22, the (spreading) pressure can be written

P=( 2s+I) f n&X&
dk

(2~)
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0.10—
OJ
a+

Q)

(h
Q)
Q

o.o5—

—15000

-20000 —,
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0.00 0.01 0.02 0.03

na (A )

0.04 0.05

FIG. 6. The one-ripplon exchange potential, Vk, from Eq.
(35) for He films of thickness d=4, 6, 8, and 10 layers. The
long-ranged behavior as d increases is evident [cf. Eq. {36)].

FIG. 7. The equation of state of adsorbed 'He in the thermal
Hartree-Fock approximation using only the OREP, Eq. (35).
Isotherms at T=O, 0.5, 1.0, 1.5, and 2.0 K are shown. There is
no evidence for coexisting phases.
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from Eq. (37).
It is important to point out that, for this system, there

are no so-called tadpole diagrams which correspond to
the direct term in Eq. (38) [i.e., V(k:—0)=0]. Physically,
we certainly do not expect that a uniform displacement of
the surface could lead to an enhanced interaction. A
rigorous discussion of this point can be found in the Ap-
pendix.

In the following we shall present three calculations of
He equations of state. The first equation of state shall be

computed using only the OREP. In the second, we shall
incorporate some features of the direct He- He interac-
tion by using a hard-core form for the He chemical po-
tential. Third, we shall adapt the bulk He- He effective
interaction as introduced by Owen to the surface mix-
ture. We shall search for condensation by looking for the
appearance of van der Waals loops as is typical of mean-
field theories.

o+
hC

I
U)
COI

CL

4—

d=4 layers
Hard core

A. OREP potential

n, (T) =1—
n4

(41)

The superAuid density is only mildly temperature depen-
dent until temperatures approach the region of the k
point. However, since our theory is in any case inapplic-
able in that region, we feel Eq. (41) is sufficiently accurate
for our purposes.

We have also included the T ripplon contribution to
the He surface tension. Thus, the surface tension in
Eq. (3a) is replaced by

o.( T)=o o
—(4.72 X 10 )T (41a)

0
where T is in K and the surface tension is in K/A .
There are also less important third-sound and He-
concentration effects which have been omitted.

In Fig. 7, we show the pressure as a function of density
at a series of temperatures between 0 and 2 K. The equa-
tions of state are concave functions. There is no evidence
of coexisting phases.

The OREP used for these equations of state is tempera-
ture and concentration dependent through the third-
sound spectrum. Any dependence which can cause the
spectrum to soften can have an important inAuence on
the magnitude and range of the potential, Eq. (35). For
example, Eq. (4) has a coefficient of n, ( T ) /n ~, the
superffuid fraction. As T~Tq, n, (T) +0, and so—the
spectrum softens as the temperature is raised. We model
this temperature dependence by extrapolating the low-
temperature phonon dominated behavior to higher tem-
peratures:

0—
I

0.000
1

0.010
I

0.020 0.030
ns (g-2)

I

0.040

where a, is a hard-core excluded area. For definiteness,
we set a, =no.„J where o.LJ=2.556 A is the Lennard-2

Jones length parameter. The equation of state, Eq. (36),
is computed after solving Eqs. (37) and (42) self-
consistently. The results are shown as Fig. 8.

The effect of the hard-core repulsion on the pressure is
evident. However, there is, once again, no evidence for
van der Waals loops and coexisting phases. The system
in Fig. 8 has d=4 layers and on this scale of pressures,
differences in the isotherms from T=O K to T=2 K are
barely discernible.

C. Owen's effective interaction

Using a variational ansatz, Owen was able to write
down an effective interaction for two He atoms in a bulk
He system. In the following we shall make a simple

adaptation of his results to the surface system.
Owen showed that the He- He interaction due to the

direct (Lennard-Jones) interaction plus the induced in-
teraction due to the He background could be written

FIG. 8. The equation of state of adsorbed 'He in the thermal
Hartree-Fock approximation using the OREP, Eq. (35), and a
chemical potential determined with an excluded area, Eq. (42).
There is no evidence for coexisting phases.

B. Hard core

An approximation of the effects of a hard core in the
He- He interaction can be incorporated into the THF

approximation by demanding that the chemical potential
be determined by

W»(r) =g»(r)[v33(r)+t(r)+w(r)],
where v33(r) is the direct (Lennard-Jones) interaction,

2
d

(g33(r) )
Pl 3 dT

(43)

(44)

n3

1 n3a~
is the correlational kinetic energy and the Fourier trans-
form of tv (r) is
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tu(k) =— fi k
[$3~(k)—I ]

4m„n~$4q(k)

2772 4
$44(k) —1

Pl 34
(45)

S &(k)o.,P= 3,4, the liquid structure factors, are the
Fourier transforms of the radial distribution functions
g &(r). Here,

1 =
—,'(1/m3+ I /mz )

tPl 34

and for definitions of the distribution functions see, for
example, Ref. 1.

The numerical work was carried out using a
parametrized product of pair functions as described in
Ref. 28. We substituted the Jackson-Feenberg form for
the correlational kinetic energy, Eq. (44), and augmented
the small-k behavior of $~~(k) and $3~(k) to agree with
experiment. We find excellent agreement between our
tU(k) and the results of Owen.

We can now model the surface system as a uniform
slice of bulk by identifying the Fermi circle of a two-
dimensional surface system as a great circle of the Fermi
sphere of a model three-dimensional system. Thus we
find

n3b =—', (2n 3 /m )'

Thus, within our model, the surface equivalent of
Owen's effective interaction can be obtained from

%'k= f dse'"'W', s(s), (47)

where k and 8 are two-component vectors and

W, tr(s) = J dz J dz'n3(z)n3(z') 8'33(s, z —z') . (48)

In Fig. 9, we illustrate 1Hz for d=4 layers and n3 =0.07
0
A . This interaction can be added directly to Vk, the
OREP, in Eq. (37) for the self-energy. Then once more
solving Eqs. (38)—(40) self-consistently, we obtain the
equation of state in the THF approximation. In Fig. 10,
we show the results of these computations for d=4 lay-
ers. The slight rippling at high density is artificial and
can be removed by utilizing a finer grid in the parameters
for the radial distribution functions.

The isotherms are once more monotonic with no evi-
dence of van der Waals loops. The isotherms appear
similar to ideal fermi-gas isotherms. In order to display
clearly the inhuence of interactions, we show in Fig. 11
the chemical potential difference between the computed
system and an ideal Fermi gas at the same temperature
and density. The temperature dependence is clearly
much weaker than the density dependence.

The He surface effective mass can be obtained from
Eq. (40):

where n3b is the number density of the model bulk sys-
tem. We note that Eq. (45) was derived in the zero- He
concentration limit; however, the effective interaction as
implemented in this work depends indirectly on n 3

through the distribution functions g &.

or

1

m'kF d«kF

m dX=1+
dk

(49)

30- I I & I
I

I f 1 I
f

I & I ~

I l 1 1 I

0.15 -'

20
d=4 layers

10 0.10—

—10

hC

e
L

(0
40
Q
~ oo5—

-30—
l I

0.00 0.50 O. T50.25 1.00
I I I I I I t i I I I I I I I I I 1 I

0.00 —,

0.00 0.0 1 0.02 - 0.03

ns (A 2)
0.04

I

0.05

FIG. 9. Owen's effective interaction from Eqs. (43)—(48).
The results shown are for a He film with thickness d=4 layers

0
and adsorbed He at density n, =0.07 A

FICx. 10. The equation of state of adsorbed 'He in the
thermal Hartree-Fock approximation using the OREP, Eq. (35),
and Owen's effective interaction, Eqs. (43)—(48). There is no
evidence for coexisting phases.



EQUATION OF STATE FOR He SUBMONOLAYERS. . . 2117

0.5 —'

d=4 layers d=4 layers

0.0—

0.02

~ -1—
H

0.04

0.08

—1.0—

—1.5 —,

0.00
I

0.0 1

I i I

0.02 0.03
nz (A-2)

I

0.04 0.05
l I

0.0 0.5

k(A i)
1.0

I I I I I I l I I I I

FIG. 11. The chemical potential differences between the ad-
sorbed He and an ideal two-dimensional Fermi gas showing the
inhuence of the attractive effective interactions. The data
shown are at T=0„0.5, 1.0, 1.5, and 2.0 K. The T =0 K result
is the maximum positive curve at small n3.

In Fig. 12, we show m/m* as a function of n3 for
d=4, 8 layers. In recent work, Wang and Gasparini
have reported measurements of the He effective mass in
He surface states. For d=4 1ayers and n3=0.02 A

we find m /m *=1.45 which is in reasonable agreement
with —1.55 reported in Ref. 29. The results in Fig. 12
also indicate that m/m' monotonically increases with
increasing n3 (Wang and Gasparini do not report density

FIG. 13. The proper self-energy for He systems with
n3=0.02, 0.04, 0.06, and 0.08 A on a d=4 layer He film.
The vertical arrows mark the positions of the Fermi rnomenta.

dependencies for the effective mass). The effective mass
of the d=8 layer system is negative at small densities, a
result which we attribute to the breakdown of the appli-
cability of the OREP as will be discussed in the next sec-
tion.

It is useful to examine Xk for the d=4 and 8 layer sys-
tems in order to see the basis for the differences in the
effective masses. In Figs. 13 and 14, we show Xk for d=4
and 8 layers, respectively. The four results are for

I
'

I
'

I 2- I I I I
)

I I I I

d=8 layers
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l, I, i, I
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FIG. 12. The He effective mass as a function of areal density
for He films with d=4 and 8 layers.

FIG. 14. The proper self-energy for He systems with
n3=0.02, 0.04, 0.06, and 0.08 A on a d=8 layer He film.
The vertical arrows mark the positions of the Fermi momenta.
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pl 3 0.02, 0.04, 0.06, and 0.08 A . The positions of the
Fermi wave vector (k+=2mn3) are denoted by arrows.
The slopes at k =kF are all negative and so m /m * & 1.

lem and to J. G. Dash, M. J. Schick, and C. J. Pethick for
interesting and helpful discussions. Both authors ac-
knowledge the support of the Research Corporation.

V. CONCLUSION APPENDIX

In this paper we have computed in second-order per-
turbation theory the He- He effective interaction due to
the exchange of third-sound quanta. The equations of
state computed in the THF approximation show no van
der Waals loops.

The limits of validity of the theory can be argued as
follows. The He surface states are computed with a
model in which the He superAuid film is treated as a uni-
form slice of the bulk. Thus the theory is not applicable
to He in low-thickness films where Krotscheck showed
that there was an appreciable structure normal to the
substrate. The theory is also not applicable in the limit of
large-thickness films as the induced interaction Vz, Eq.
(35), becomes too attractive. Krotscheck, Saarela, and
Epstein ' have argued that the proper d dependence in
the matrix element I k cures that problem.

In very recently published work, Krotscheck, Saarela,
and Epstein have reported calculations of the He- He
effective interaction in He films. Their calculations pro-
ceeded from a variational, microscopic point of view with
no adjustable parameters. Our adaptation of the Owen
interaction, Fig. 9, is in good, qualitative agreement with
their results. The basic difference is their result has its
first maximum at k —1 A ', whereas ours has its first

0
maximum at k -0.8 A

Our approach is semiphenomenological in that we take
advantage of some of the known experimental results in
order to determine our wave function as compared to the
correct but much more complicated task of Krotscheck
et al. ' of computing everything from a given Hamil-
tonian. In further work, we shall amend our theory to
give proper d dependence and shall then go beyond
Hartree-Fock to compute the equations of state.
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In the text the tadpole diagram was ignored on the
basis of physical argument. The vanishing of the tadpole
diagram can also be shown analytically from the momen-
tum dependence of the He-ripplon vertex as calculated
from Eq. (9). When the integration in that equation is
carried out with respect to p3

—
p4 and p4 the conserva-

tion of film mass requires that

d P4 P4

since g(p4) is the deviation of the surface from the equi-
librium configuration at position p4. Consequently for la-
teral momentum

r~.=o .

limVk~r (co=a)=(VO~)(V(I' )
Ad

k~o 2p4c3s

X
Ac3,

(n4d ),

this is not the effective potential of the tadpole or direct
term of the Hartree-Fock energy. Conservation of
momentum in the fermion loop of the tadpole diagram
requires an identically zero momentum for the ripplon
propagator and consequently vertices which are identical-
ly zero and which cannot be compensated for by the
divergence of the ripplon propagator.

Equation (16) implies, therefore, that bo is a constant of
the motion and is not dynamically linked to the fermion
operators a and a through Eq. (15).
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