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Fast full-potential calculations with a converged basis of atom-centered linear
muffin-tin orbitals: Structural and dynamic properties of silicon
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For fast and accurate density-functional calculations we devise a small basis set consisting of
atom-centered linear muffin-tin orbitals (LMTO’s). For the test case Si, an absolute total-energy
convergence of 0.02 eV/atom is obtained with 22 LMTO’s/atom. The calculated lattice constant,
elastic constants, phonon frequencies, mode Griineisen, and strain parameters, as well as the
energy-volume curves for various crystalline phases are in accord with experimental data. This
includes the 0.43-eV/atom energy difference between the diamond and bcc phases. Compared
with pseudopotential plane-wave (PP-PW) calculations, our full-potential LMTO calculations are

at least as accurate.

In contrast with the PP-PW method, and in common with the linear aug-

mented plane-wave method, the LMTO method can treat materials with atoms of any kind. By
virtue of its 5~10 times smaller basis set, it is much faster.

It is the experience of the past ten years that structural
and lattice-dynamic properties of solids may be obtained
ab initio with good accuracy by calculating the electronic
energy as a function of the atomic positions using den-
sity-functional (DF) theory.! Four years ago, Car and
Parinello demonstrated the feasibility of molecular-
dynamics (MD) DF calculations, and herewith of ab ini-
tio simulations of the mechanical behavior of materials.?

Many interesting applications cannot, however, be
treated due to restrictions set by the standard technique
for structural DF calculations: namely, norm-conserving
pseudopotentials (PP) and plane-wave (PW) basis func-
tions.> The reasons are that only about one-quarter of the
elements in the Periodic Table have sufficiently weak
pseudopotentials to allow expansion of the pseudowave
functions in PW’s, and that even for such materials the
slow convergence of the PW basis imposes severe limits on
the number of atoms in the supercell; for Si the number of
PW’s needed per atom is of order 100, and for SiO; it is
four times larger.* Linear basis functions,® on the other
hand, are designed to treat the potential from all the elec-
trons and therefore apply to any material. But, since they
are augmented by numerical radial Schrodinger-equation
solutions (¢ and ¢) inside muffin-tin (MT) spheres sur-
rounding the atoms, and they equal analytical functions
(e.g., PW’s or spherical Hankel functions) only in the in-
terstitial region, they are more difficult to deal with. For
conventional structural calculations, the linear augmented
plane-wave (LAPW) method>® is often used when the
PP-PW method does not apply. However, here again the
largeness of the basis (50-100 LAPW’s/atom) limits the
number of atoms in the supercell. The most economical
basis functions are probably linear muffin-tin orbitals®’
(LMTO’s), but these are generally considered incapable
of providing the accuracy needed in structural energy cal-
culations. We reconsider this point in the present paper.

The extreme efficiency of the standard LMTO method
for solids>® is partly due to the atomic-spheres approxi-
mation (ASA), which uses Hankel functions with vanish-
ing kinetic energy (x2=0), eliminates the interstitial re-
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gion by substituting the muffin-tin (MT) spheres with
“space-filling” Wigner- Seitz (WS) spheres, and ignores
the nonspherical parts of the electron density. For open
structures, not only the atomic but also the interstitial (E,
empty) regions are described by WS spheres and have or-
bitals associated with them. The standard LMTO basis
set uses 9 LMTO’s/sphere. Unfortunately, only isotropic
deformations are properly dealt with in the ASA; energy
changes associated with shears, phonon displacements,
and atomic relaxations are not. Moreover, the use of E
orbitals in some and not in other structures is a source of
inaccuracy and, for MD calculations, E orbitals can hard-
ly be used. One is thus presented with the problems (i) of
devising a set of atom-centered LMTO’s, which is con-
verged to about 0.01 eV/atom for all conceivable struc-
tures; and (ii) of finding efficient ways of representing the
full charge density in all space, of solving Poissons equa-
tion, and of evaluating the matrix elements of the full po-
tential (FP). These problems have been studied extensive-
ly in connection with LMTO calculations for mole-
cules,”? ~!! surfaces, 2 and solids. '3 ™7

Concerning the problem (i) of the basis set, in recent
FP calculations for Si,'*7'® using a basis of x=0
LMTO’s centered at the Si and E sites of the diamond
structure, it was found that only with nonoverlapping
spheres do the shear elastic constants and phonon frequen-
cies agree with experiments and PP-PW calculations. The
total energy, however, was 0.5 eV/atom too high when
touching spheres (radius of 2.21 a.u.) were used, and this
indicates that the x =0 set is inadequate. To remedy this
by adjusting the k value to minimize the total energy’ is
not only cumbersome but will also be insufficient when the
E-LMTO’s are dropped and the interstitial region in-
creases even further. A double-x basis with fixed « values
may not suffice either, because although it can treat the
dependence of the kinetic energy [ex —V(r)] on one-
electron energy (e;) in the interstitial region,'? it may not
be able to treat the structural dependence of Rydberg-
sized variations of the potential ¥ (r) in this region, unless
the « values are chosen to depend on the application.®!!
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We shall consider double- and triple-x sets with fixed x
values (¢ and ¢ are the same for all x values) and we shall
use no E orbitals.

To solve the problem (ii), we shall use a fast FP scheme
recently developed for close sphere packings.!> It treats
the spherical-harmonics components with / <4 of the
charge density and the potential exactly inside the spheres
and, for the interstitial region plus the intrasphere com-
ponents with / > 4, it exploits the following facts: (a) The
product of two Hankel functions (e.g., LMTO tails) is
well fitted in the interstitial region by that linear combina-
tion of Hankel functions (with two chosen, negative kinet-
ic energies, A7 and A3) which matches values and slopes at
all spheres and for all / < 4; (b) with this fit to the inter-
stitial charge density, Poissons equation can be solved
analytically; (c) the integral over the interstitial region of
the product of two Hankel functions is given analytically
in terms of the structure constants and their energy
derivative. This scheme thus interpolates and integrates
over the interstitial region using the values and gradients
at the spheres. The components with />4 inside the
spheres are included as tails of the fitting Hankel func-
tions, and the charge density and potential therefore have
no jumps at the sphere surfaces. For open structures,
empty spheres are needed for the fitting but their positions
and sizes are uncritical; we shall use them in the diamond
and simple-cubic (sc) structures, but not in the B-tin
structure. Multiple-x sets pose no problem for this
scheme. For accurate fitting of the interstitial exchange-
correlation potential and energy density, we use a con-
straint based on a procedure described in Ref. 18. The in-
terpolation scheme was tested thoroughly by inspecting
the change of the total energy as A7 and Af were varied in
the range from —0.5 to —10 Ry.

In this paper, we first seek the smallest, arzom-centered
LMTO basis which gives mRy absolute convergence for
the total energy of Si in the diamond structure. Si is
chosen as the test case because the convergence of the
LMTO method is the worst for open structures, and be-
cause we can compare with extensive experimental and
theoretical PP-PW results. Having decided upon the
basis, we calculate the lattice constant, the cohesive ener-
gy, the valence-electron density, the one-electron eigenval-
ues, the elastic constants, the phonon frequencies at I" and
X, their pressure derivatives, the splitting of the LTO(I")
(where LTO denotes longitudinal transverse optical) pho-
non frequency under tetragonal and trigonal shears, and
the internal strain parameter. Finally, we use the same
basis set to calculate the energy-volume curves for crystal-
line phases of increasing close packing: diamond, simple
cubic, B-tin, bee, and fec.

To investigate the convergence of the LMTO basis for
Si in the diamond structure, we first generated an accu-
rate potential by performing a self-consistent FP calcula-
tion as described in Ref. 15, but using a double-x basis
with ¥ =0 and 3 = —1 Ry, and with orbitals on both the
Si and E sites. This is a very complete basis with 36
LMTO’s/atom. The potential was then kept fixed, and
the total energy was computed from single-band calcula-
tions using various atom-centered LMTO sets with MT
radius 2.13 a.u. Starting with a single x and only s and p
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orbitals, i.e., with a 1s1p basis with 4 LMTQO’s/atom, or-
bitals were added until reaching the 3s3p3d2f basis with
41 LMTO’s/atom. Interestingly, addition of the x, orbit-
als of a given / causes a decrease of the total energy which
is essentially independent of how complete the basis al-
ready is in the other / channels. This makes it possible to
associate well-defined energy decrements with the addi-
tion of the first, second, and third orbitals of a given /;
these decrements are given in Table I. For the third orbit-
als we used x¥=—2.3 Ry, and other similar choices for
the three x values hardly changed the decrements. It may
be seen that addition of the second s and p orbitals, as well
as the first d orbitals, are important. For convergence in
the mRy/atom range, the third s and p orbitals, as well as
the second d orbitals, must be included, but the third d
and all f orbitals can be neglected. Finally, by comparing
the energy obtained using an excessively complete triple-x
basis with 54 LMTQ’s/atom and orbitals on both Si and E
sites, it was found that the effect of adding the third f or-
bitals plus the fourth s, p, and d orbitals was less than 1
mRy/atom. We conclude that absolute convergence to
within 1.5 mRy/atom is obtained with a 3s3p2d basis of
22 LMTO’s/atom. This basis is only slightly larger than
the set of 18 LMTO’s/atom used in standard LMTO-
ASA calculations for the diamond structure, and it is an
order of magnitude smaller than the PW set of similar
precision.!” Using the 22 LMTO’s/atom basis, we have
performed a large number of total-energy calculations for
Si in various phases to determine whether the basis is ade-
quate in all cases. The MT spheres were always chosen to
be slightly smaller than touching, and extreme care was
taken to ascertain that the Brillouin-zone summations
were always converged.

In Table II we compare the experimental static and
dynamical properties of diamond Si with the results of our
calculations (FP-LMTO) and with those of PP-PW calcu-
lations.'” ™22 As for the static properties, we obtain the
correct lattice constant, but our cohesive energy is too
large. This is a well-known failure of the local-density ap-
proximation (LDA), rather than of our method, and the
size of the discrepancy depends somewhat on the parame-
trization used.! Figure 1 shows our calculated valence
charge density which is very similar to the ones obtained

TABLE I. Decrease of the diamond-Si total energy with in-
creasing basis size in mRy/atom. The two values for each orbit-
al are the minimal and maximal energy changes found depend-
ing on the completeness in the other / channels. The MT radius
was 2.13 a.u.

Orbital First Second Third
s s 24.5 12.0
13.1
p coee 83.8 4.4
88.6 5.4
d 25.7 3.0 0.1
28.8 5.1 0.2

f 0.8 0.4

1.4
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TABLE II. Static and dynamic properties of diamond Si.

Expt. FP-LMTO PP-PW

Lattice constant (A) 5.432 5.41  5.45%/5.40°
Cohesive energy (eV/atom) 4.63* 523  4.849/5.28°
Elastic constants

Bulk modulus (Mbar) 0.98f 0.99 0.98%/0.93°

Ci1—Ci2 (Mbar) 1.02f 1.02  1.078/0.98°

Cas (Mbar) 0.80f 0.83 0.85¢
Phonon frequencies

LTO(I') (THz) 15.532 15.47 15.168

kxy: (eV/AY) -35.1f  —38.7 —32.88

TO(X) (THz) 13.90* 13.75 13.488

LOA(X) (THz) 12.322 11.82 12.168

TA(X) (THz) 4.49* 4.50 4.458
Griineisen parameters

LTO) (TH2) 0.98" 0.99 0.928

TO(X) (THz) 1.5" 1.51 1.348

LOA(X) (THz) 0.9" 1.03 0.928

TA(X) (THz) ~1.4b —1.42 —1.508
Strain parameters

¢ 0.54i 0.51 0.53°¢

5100 0.24) 0.23 0.13°

Si —0.93’ —1.45 —0.90°

3L andolt-Bornstein: Numerical Data and Functional Relation-
ships Science, edited by O. Madelung, New Series, Vol. 22a
(Springer, New York, 1987), p. 19.

bReference 19 using 90 PW’s/atom and Wigner LDA.
“Reference 22 using 90 (4180 downfolded) PW’s/atom and
Wigner LDA.

dReference 19 using 200 PW’s/atom and Wigner LDA.
“Reference 21 using 200 PW’s/atom and Ceperley-Alder LDA.
fH. J. McSkimin and P. Andreatsh, J. Appl. Phys. 35, 2161
(1964); 35, 3312 (1965).

gReferences 3 and 20 using 70 PW’s/atom and Wigner LDA.
hB. A. Weinstein and G. J. Piermarini, Phys. Rev. B 12, 1172
(1975).

iC. S. G. Cousins, L. Gerward, J. Staun Olsen, B. Selsmark, and
B. J. Sheldon, J. Phys. C 20, 29 (1987).

iM. Chandrasekhar, J. B. Renucci, and M. Cardona, Phys. Rev.
B 17, 1623 (1978).

FIG. 1. Calculated valence-electron density of Si in the (110)
plane. The contour unit is 0.001 electrons/(a.u.)>.

with the LAPW method?® and from experiment.?* Our
one-electron eigenvalues agree to within a few hundredths
of an eV with pseudopotential results obtained using 200
PW’s/atom.'® Returning to Table II we now discuss the
results obtained for deformations of the crystal. Our bulk
modulus and shear elastic constants are in as good, or
even better, agreement with experiments than the PP-PW
results. The same is true for our phonon frequencies, ex-
cept for the LAO(X) mode (where LAO denotes longitu-
dinal acoustic optical). We note that both calculations
correctly describe the difficult, soft transverse acoustical
TA(X) mode. The anharmonicity constant k,,, for the
LTO(I") phonon is numerically a bit too large in our cal-
culation and too small in the PP-PW calculation. Our
Griineisen mode parameters (logarithmic volume deriva-
tives of the phonon frequencies) seem to be more accurate
than the PP-PW results, especially in view of the inherent
uncertainty in measurements involving the LAO(X)
mode. Next, we discuss the internal strain parameter §
and the tetragonal and trigonal shear-splitting constants
s100 and s;,1, which describe the splitting of the LTO(I")
phonon frequency under shear. Our value for { agrees
with the new experimental result as well as with the pre-
diction of Nielsen and Martin.?2 As regards 500, We are
in better agreement with experiment than they are, but for
s111 the situation is reversed. It order to provide some
feeling for the importance of the latter discrepancy, we
note that within a classical model using anharmonic
valence-field force constants,?’ the trigonal shear-splitting
parameter and the internal strain parameter are related
by 5111 =+ + (1 — ¢) X const, where the constant is propor-
tional to k,y,. This shows that there is a large cancella-
tion, and that small relative errors in { and ky,, could
have considerable effects on s;;; (this is not the case for
s100). Therefore, the discrepancy that we find is hardly
dramatic, and is consistent with our overestimation of
Kxyz.

yAs a final demonstration of the capability of our 22
LMTO’s/atom basis, we show in the left-hand side of Fig.
2 the energy-volume curves calculated for various crystal-
line phases of Si. The right-hand side gives the PP-PW
results of Yin and Cohen,'® who used the same PW cutoff
of 11.5 Ry for all volumes; this corresponds to using
(V/Vy) x90 PW’s/atom. The structures considered are,
in order of increased packing: diamond, B-tin, sc, bee, and
fcc with, respectively, 4, 4+2, 6, 8, and 12 nearest neigh-
bors and interstitial regions taking up more than, respec-
tively, 66, 48, 48, 32, and 26% of the cell volume. For a
given volume, we expect an atom-centered LMTO basis to
be least complete for the most open structure (provided
that / convergence is no issue) and, for this, our set is mRy
converged at the normal volume. What may go wrong in
an energy-volume calculation is that the convergence of
the basis deteriorates with compression. However, the
LMTO method is particularly suited for pressure studies
because it uses numerical volume-dependent radial func-
tions inside the MT spheres; only, as outer core states
broaden into bands, may it be necessary to include more
than one € panel in the calculation.?® The present calcu-
lations employed one panel. Both FP-LMTO and PP-PW
calculations correctly reproduce the pressure-induced
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FIG. 2. Energy-volume curves for crystalline phases of Si cal-
culated by Yin and Cohen using the pseudopotential method
(Ref. 19) and by us using the FP-LMTO method. ¥y is the ex-
perimental equilibrium volume and Eo is the calculated
minimum energy in the diamond structure.

phase transition from the diamond to the B-tin structure,
whereby our pressure for the onset of the transition of 115
kbar is closer to the experimental value of 113 kbar (Ref.
27) than the 99 kbar (Ref. 19) [93 kbar (Ref. 28)] ob-
tained from PP-PW calculations. For the B-tin phase we
used the experimental c¢/a ratio. We calculate the energy
difference between the bee and the diamond phases to be
0.43 eV/atom. This is in good agreement with a thermo-

dynamic estimate of 0.46,%° but in less satisfactory agree-
ment with the PP-PW result of 0.53 eV/atom. This
discrepancy is the most pronounced difference between
the results of the two calculations. Only 0.02 eV/atom of
this is caused by the use of different LDA parametriza-
tions. Our own PP-PW calculations for the diamond and
bec structures with 11.5-Ry PW cutoff confirm the result
of Yin and Cohen.'® However, increasing the cutoff to 24
Ry and using the same LDA parametrization, we repro-
duce the FP-LMTO result to within 0.01 eV/atom.

In conclusion, we have presented an atom-centered
3s3p2d LMTO basis with 22 orbitals per atom, which
gives absolute total-energy convergence within 0.02
eV/atom for Si in the diamond structure at normal
volume, and which can be expected to yield equally (or
more) precise results for other structures of similar (or
closer) packings. By extensive calculations of static and
dynamic properties of diamond Si, as well as of the
energy-volume curves for several crystalline phases, we
have found that our method is at least as accurate as, and
much faster than, the PP-PW method. Since the LMTO
method applies to materials containing atoms from any
part of the Periodic Table, new applications of structural
DF calculations are made possible.

Useful discussions with M. Cardona about pressure and
strain dependencies of phonon frequencies, with J. Tersoff
about the phase stability, and with K. Kunc about PP-PW
calculations are gratefully acknowledged.
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