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In the usual treatment of the dynamical diffraction of x rays, one considers a plane wave which is
incident on a crystal giving rise to a reflected plane wave. This work extends that theory by consid-
ering an incident bounded beam of x rays. We evaluate the resulting Bragg-reflected beam for both
symmetric and asymmetric reflections and show that the reflected beam undergoes a lateral shift
and that incidence at the edges of the range of total reAection results in a lateral wave traveling
along the surface. This is analagous to the Goos-Hanchen effect for total internal reAection of an
optical beam. In addition, if the incident beam is spectrally wide, the reflected beam is distorted
and broadened, as well as shifted.

I. INTRODUCTION

It is well known in optics that when a bounded beam
undergoes total internal reflection, the reflected beam is
laterally displaced from the position predicted by
geometric optics and may exhibit an altered cross-
sectional energy distribution as described in Refs. 1 —6.
This so-called Goos-Hanchen effect arises because a
bounded beam consists of waves which are incident at
slightly different angles and which are reAected with
different phases. The superposition of these reAected
waves results in a reflected beam which is the sum of the
wave expected from geometric optics and a lateral wave
which travels along the surface and radiates energy in the
reflected direction (the faint "trailing illumination" ). The
phase difference between the geometric and lateral waves
is such that they destructively interfere to the left of the
axis of geometric reflection and constructively interfere
to the right, resulting in a shift of the axis to the right.
This is illustrated in Fig. 1 where d is the beam shift
along the surface and d" is the shift perpendicular to the
beam axis.

One would expect that a bounded x-ray beam which
undergoes dynamical Bragg reAection will exhibit similar
effects since the phase of dynamically reflected waves
differ for slightly different angles of incidence. Because
the location and shape of the reAected x-ray beam may be
used to yield information about the crystal, it is impor-
tant to understand what distortions may be introduced by
the boundedness of the incident beam. In addition, the
existence of a lateral wave might prove useful for investi-
gating crystal surfaces.

In this paper we will demonstrate that lateral shifts, la-
teral waves, and beam distortions do indeed result when a
bounded x-ray beam is dynamically Bragg reflected from
crystal planes. A few special cases have already been
studied —namely, the shape of the reAected beam when
an infinitely narrow (5 function) incident beam is Bragg
reflected and the lateral shift of a finite-width beam
which undergoes symmetric reAection. Here, we present
a more general situation which includes the possibility of

asymmetric as well as symmetric reflection and we will
derive analytic expressions for the lateral shift for in-
cidence both within and at the edges of the range of total
reflection.

Because this analysis uses the language and results of
the dynamical theory of x-ray diffraction, we will summa-
rize the pertinent results of this theory in Sec. II. In Sec.
III we will extend the usual plane-wave results in order to
account for an incident bounded beam. In Secs. IV and
V we will consider several specific examples to illustrate
the shape and position of the reflected beam.

II. PLANE-WAVE DYNAMICAL X-RAY
DIFFRACTION: A SUMMARY

Reviews of the dynamical theory of x-ray diffraction
can be found in Refs. 9—11. In the usual theory, when a
plane wave with wave vector ko is incident from the vacu-
um onto a crystal surface near the Bragg angle, it excites
within the crystal a forward diffracted wave with wave
vector Ko and a reflected wave of wave vector KH.
These wave vectors are related by Bragg's law so that

KH =Ko+H,
where H is a reciprocal lattice vector. Because the crys-
tal index of refraction differs only slightly from unity, Ko
difFers only slightly from ko. Similarly, the reAected wave
in the vacuum has a wave vector kH which difFers only
slightly from K~. Boundary conditions require that the
components of the wave vector along the surface (say the
x direction) be continuous so that Ko, =Ko and
KH =kH„. Figure 2 illustrates these vectors.

We will use the notation of Ref. 9, and, for simplicity,
will consider the case of no absorption. The ratio of
reAected to incident amplitudes can be written as a func-
tion of incident angle 0' as

~b~' P~exp(iv)
P

where
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FIG. 1. Schematic representation of the lateral shift and
trailing illumination for total internal reAection of optical
beams.

and
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FIG. 3. Geometry and coordinate systems for asymmetric
reAection of a bounded beam with a Gaussian cross section at
z = —h. The origin of the rejected axes is at
x =h[sin2(8O)cot80 —sin(OO)cos80], z =h sin(OO)[cot(OO)cos8o
+sinOO].

In Eqs. (2) and (4), P equals 1 for o polarization and
equals cos20& for m polarization; I'H is the structure fac-
tor; I =r, i, /mV; Oz is the kinematic Bragg angle; and
b= —sinO'/sinO". For asymmetric Bragg diffraction, il-
lustrated in Fig. 2, the scattering planes are not parallel
to the surface. In this case, sinO'AsinO" and bA —l.
(b = —1 for symmetric Bragg diffraction. ) In this paper
we will specifically consider asymmetric diffraction but
we will not consider extreme asymmetry for which 8' or
8" is very small (less than 10 rad). The approximations
leading to Eqs. (2)—(4) are not valid in these extreme
cases' ' and, in addition, grazing incidence results in a
specularly reQected as well as a difFracted wave. This and
other three wave problems are the subject of recent inves-
tigations, ' ' and a study of lateral shifts for these situa-
tions will be considered in a later paper.

cross section at z'=0. This beam is directed at 00 but, as
we will demonstrate, consists of plane waves incident at
angles 0' which may differ slightly from Oo. As indicated
in Fig. 3, there are three coordinate systems of
interest —the crystal coordinates (x,z), incident coordi-
nates (x', z'), and reflected coordinates (x",z"). The in-
cident and crystal coordinates are related by

x'=x sinOo —(h+z)cosOo,

z'=x cosOO+(h+z)sinOo .

If at z'=0 the electric field varies across the beam as
F(x'), then parallel to the crystal surface, at z = —h, this
distribution is given by

E'(x, —h ) =F(x')exp( ikz') ~,
—

=F( x sinOo) exp( ikx cosOo—) .

III. DIFFRACTION OF BOUNDED BEAMS

The physics of bounded beams has been described in
Refs. 2-6. In particular, much of what follows for Bragg
diffraction closely parallels the work of Horowitz and
Tamir and Tamir and Bertoni for optical reAection.
Consider a bounded beam incident on the crystal surface
as is illustrated in Fig. 3 for a beam which has a Gaussian

This field can be written as a Fourier sum of plane waves
as follows:

E'(x, —h ) = f @(P)exp( —ig'x )dg,

where

@(g') = f E'(x, —h )exp( if'x )dx

F(x sinOo)exp[i(g' —go)x ]dx, (8)

and

g'=k cosO'

Surface

Diffrocting
Plane

FIG. 2. Wave-vector geometry for asymmetric Brag g
reAection.

g,' =k cosO,' .

For example, for a Gaussian distribution,

exp[ —(x'/a) ]Fx'=
&7ra

and

(10)
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exp[ —a(g' —go)/2 sin80]
4&(g') =

sinOo
(12)

and

k cosOo=k cosOo+H„ (19)

In general, at the crystal surface the incident beam is de-
scribed by

(4"—ko) =(4' —ko) .

E'(x, 0)= I C&(g')exp[ i—( g'x +a'h ) ]dg',
2'7T

where

(13)
The reflected coordinates are related to the crystal

coordinates by

x "=x sinOo+z cosOo —h cotOosinOo,

i [k2 (g()2]1/2 (14) z"=x cosOo —z sinOo+h sinOo .
(20)

Thus, at the surface, the incident beam is a sum of plane
waves having spectral amplitude

so that using Eqs. (16), (17), (19), and (20), Eq. (15) can be
rewritten as

4(P)exp( —ia'h ),
which are incident at slightly difterent angles O. Each in-
cident wave excites a point on one of the dispersion sur-
faces giving rise to a Bragg reAected wave of amplitude

R (8')@(P)exp( ia'h—),

1E"(x,z ) =exp( ikz—") 2'

X R O'N 'exp
—i(g' —go)x"

sinOo
dP.

(21)
which propagates at angle O". The resultant reflected
beam, directed at angle Oo, is a superposition of these
reflected waves and can be written as

E"(x,z) = I R (8')N(g')

X exp( —ia'h )exp[ —i(g"x —a"z )]dg' .

(15)

We note that N(g) approaches zero for (8' —8O) ) I /ak so
that only values of O close to Oo contribute to the in-
tegrand. Hence, (8—8O) « 1 and we can write

(g —go) =k(cos8 —cos80) = —k sin80(8 —80)

Note that the origin of the reAected coordinate system
is chosen so that a geometric reflection [R(8)=1] will
propagate in direction z".

In order to simplify later calculations, we write

R(8') = exp(ivo)exp[i(v —vo)], (22)

and introduce

(8' —80)

B
(23)

where %'z, the angular half-width for Bragg reAection, is
defined as

and

(a —ao) =k cos8O(8 —80) = —cot80(g —go) . (17)

I-F IPI

b
~

' sin(28~ )
(24)

In addition, as discussed in Sec. II, boundary conditions
require that the x . components of the forward and
reflected wave vectors be continuous so that the x com-
ponent of Eq. (1) can be written as

0 =ko +H

so that

We will also write

o =b,(g —go),

and define

~b~'~ sin(28~)

kI F ~P~sin8'

~b~'~ sin8~

sinO&

(25)

(26)

k cosO"= k cosO'+H„ 6, is the symmetric value of 6 appropriate for b = —1

and Oo=Oo=O~.
In this new notation we can rewrite Eq. (21) as

E"(x,z) = exp(ivo)exp( ikz") —exp[i(v vo)]@ ——exp
&ax da2' QO

0 5 sinOo
(27)

where 4&(o/b, ) is obtained by substituting Eq. (25) into
Eq. (12). Although the integral in Eq. (27) can always be
computed numerically, it can also be evaluated analyti-
cally for particular forms of 4 for certain approxima-
tions. Thus, for relatively wide beams (a ))b, ), the spec-

tral distribution is narrow, and although, in principle, the
integral in Eq. (27) must be evaluated from —~ to + ~,
only those values of o for which ~o ~

&&1 play an impor-
tant part in the integrand. As we will demonstrate in
Secs. IV and V, the shape and displacement of the resul-
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tant rejected beam will be qualitatively different for spec-
trally narrow and spectrally wide incident beams. We
also note from Eq. (23) that ~o

~
&& 1 indicates that the an-

gular spread of the incident beam is much less than the
angular width for Brag g reAection. For asymmetric
diffraction with

~
b

~
& 1 (small incident angle), q121 is larger

than for symmetric diffraction. Thus, beams which may
be considered spectrally wide for the symmetric case are
narrower for asymmetric scattering. Similarly, for

~
b

~

& 1, beams are now spectrally wider.

IV. SPECTRALLY NARROW INCIDENT BEAMS

We will first consider a spectrally narrow beam
(~o ~

&&1) which is incident within the range of total
refiection ( —1 &yo & 1). In this approximation, using
Eq. (3), we have

or

d v
v —vo= (y —yo) .

y=y
(30)

Equation (30) is typically employed when evaluating
( v —vo) —both in the optical and x-ray-diffraction
cases. That is, the phase of the reAection is usually ex-
panded in powers of (y —yo), including up to linear
terms. However, we see that dv/dy is undefined for
yo=+1 and, therefore, incidence at the edges of the
range of total reQection must be treated separately.
[Even if we were to include absorption, v changes too
rapidly at the edges to expand it in powers of (y —yo}.]
This is analagous to incidence at the critical angle for the
optical Goos-Hanchen effect. By substituting yo =+1
into Eq. (28) we see that at the edges of refiection

v —vo =sin 'y —sin 'yo

=sin '[y(1 —yo)' —yo(1 —y }' ]

(y+o)( 1 y2)1 /2y( 1 y22oy)1 /2 (28)

v vo yo+ 2l7yo (31)

If oyo/(1 —
yo ) « 1, then, expanding the last square root

in Eq. (28), we find

(29)

A. Incidence within the range of total re8ection

For a gaussian beam incident within the rejecting
range (away from the edges} we show in the Appendix
that

~P ~exp(ivo)exp( —ikz") exp

E"(x,z) =
[b i

1/2P

x"—b, sinHO/(1 —yo)'
a"

(32)

Thus, the rejected beam travels in the z' direction with
a Gaussian cross section which has half-width a"=a/~b

~

and which is centered not at x'=0 but is shifted along x"
by

diffraction and we see that

d."

a" a
(37)

6 sinOOd'=
(1 y2)1/2 (33)

This corresponds to a lateral shift along the surface given
by

(1 2 )1/2
(34)

We can compare the results for asymmetric versus sym-
metric diffraction by writing the symmetric displacement,
d, as

The symmetric case has already been considered by
Andreev who obtained Eq. (35) and who calculated the
shift as d, =56.8 pm for y0=0 for o. polarized Ag Ko: ra-
diation (A, =0.558 A) at the (555) refiection in silicon
(8&=26.4; I EH=0. 28X10 ). From Eq. (37} we see
that this shift can be enhanced for ~b~ &1. In addition,
since 5 varies inversely as P, m polarized beams undergo
larger displacements than o polarized beams and multi-
ple rejections of unpolarized beams can result in a sepa-
ration of the polarizations. We also note from Eqs. (32)
and (33) that this shift is independent of beam parame-
ters. That is, it is independent of the exact shape of the
incident beam.

d. =
( 1 y2 )1/2

and then rewriting Eq. (34) as

~b ~' sine11
d ds

sinOO

(35)

(36)

B. Incidence at the edges of the re6ecting range

The details of the evaluation of Eq. (27) for yo =+1 are
carried out in the Appendix. Most importantly, we see
from Eq. (A7) that E"(x,z ) takes the form

Alternatively, we can compare the shift d' to the
reAected beam width a', for symmetric and asymmetric

E"(x,z ) =E1(x,z )+E2(x,z ),
where

(38)
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and

for

lb
' Plexp( i—kz")exp

&7rPlbla"

E,=E,5,

2',
X
a"

(39)

(40)

1 x"2'~ e xp(3' /4)(2d sinOii)' exp
a

1/2

2

D 1/2
&zx"

(41)

where D»2 is a parabolic-cylinder function.
We see that E

&
is a Gaussian beam traveling in the z direction with its axis along x„=0. That is, it is the undistort-

ed, unshifted reflection one would expect if the incident beam consisted of waves which were all incident at exactly Oo.

E2 is due to the finiteness of the beam width which introduces waves at angles diA'erent from Oo. For optical reflections,
E, is termed the geometric reAection and E2 is the lateral wave which, as we shall see below, interferes with E] for x
near the beam axis, x'«a', resulting in a lateral shift. For larger values of x', x"))a', Ez propagates along the sur-
face and produces a "trailing illumination" parallel to E].

More specifically, we see from Eqs. (A18) and (A19) of the Appendix that for x "(&a"
2

b
l

' lP l exp( ikz")ex—p a" +5'(0) a"

lb l

'
l
P

l exp( —ikz")exp[5'(0)/2] exp-&' lb la"
(x"—a "5'(0)/2)

a" (42)

(cos~/4)(d~a sinO, 'i)'
(44)

producing a relative shift

a"
(cosa/4)( d~ sinOi, )'

2I ( —,
' )&a

%'e see that the shift at y~=+1 is dependent on the in-
cident beam width a, just as is the case for the optical
shift for incidence at the critical angle.

For a beam of width a =10 m, the shift for yo =+1
is about three times larger than the shift for y[] =0. From
Eq. (45) it appears that narrower incident beams undergo
larger shifts relative to the beam width. However, very
small values of a will invalidate the assumption that
o (&1 which lead to Eq. (45). Narrow beams are spec-
trally wide and will be discussed in Sec. V.

C. The lateral wave

We will now consider values of x" such that lx "l ))a".
For these large values of x", E, is essentially zero and the

where

exp(3—~i/4)(der sinOi, )'
5'(0) =

&a I ( —,')
Thus, for x "«a ', the reOected beam propagates in the z"
direction with a Gaussian cross section which is shifted
along x'by

d"=a "Re[5'(0)/2]

I

only contribution to E" is from E2 From .Eqs. (A20) and
(A22) of the Appendix, we see that for x"& 0, E2 =0 but
for x ') 0, E2 is approximated by

lPlexp( —ikz"—iver/4)(d sinOii)'

lb l&~P(x")'" (46)

Thus, E2 is a lateral wave which decays along the surface
as x and produces a trailing illumination parallel to
the z" axis. This is analagous to optical reAection at the
critical angle which is illustrated schematically in Fig. 1.

V. SPECTRALLY WIDE INCIDENT BEAMS

For spectrally wide beams we cannot make the approx-
imations of Eqs. (28)—(31). Equation (27) has been evalu-
ated numerically and the resulting reAected beam has
been found to be distorted and broadened. Figure 4 illus-
trates the reAected intensity for various values of yz for
an incident beam which has a uniform cross section for
which a =4d sinO,

l
b

l

= 1 and P = 1. The dashed line
represents the incident beam and also an undistorted, un-
shifted rejected beam. Note that the distorted beam has
been shifted by approximately 0.25(a /sinO) and for
a =46 sinO this shift is approximately A.

For an extremely narrow incident beam (a ((d) and
for y~ =0 and b = —1, we show in the third subsection of
the Appendix that the rejected beam has the form

ilPlexp( —ikz") 1 J (g) (47)Pd sinO, i
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displaced laterally. along the crystal surface. The magni-
tude of this displacement depends on crystal parameters,
x-ray wavelength and polarization, and the angular
spread in the beam. We have shown that for spectrally
narrow Gaussian beams the rejected beam is essentially
undistorted and the lateral shift is enhanced for asym-
metric diffraction. For incidence at the edge of the range
of total reflection, where the phase of the reAected waves
varies rapidly with angle, this shift is further enhanced
and a lateral wave and trailing illumination are
produced —similar to optical rejections for incidence at
the critical angle. Finally, for spectrally wide beams, the
reAection is distorted and broadened as well as shifted.

FIG. 4. Intensity of the reflected field along the crystal sur-
face x for an incident beam of uniform intensity (dashed curve)
for a =45 sinO.

X X

~ sin80
(48)

and J, is a Bessel function. Equation (47) agrees with the
work of Uragami who arrived at these results in a quite
different manner —by integrating Takagi's equations'
for an incident 5-function beam. Since the first zero of E"
is for g= 1.22, or x = 1.226„ the reflected beam is greatly
broadened as compared to the incident beam although
the peak of E" is at x=0. (Since the geometrically
rejected beam is of negligible width, interference between
the geometrically rejected and lateral beams does not re-
sult in a lateral shift of the peak. However, due to the
broadening, the beam centroid is shifted. ) For x ) 1.22
6, E exhibits subsidiary maxima or fringes, and using
the asymptotic form of J, we see that for large x, E"de-
cays as x, that is, it is a lateral wave.
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APPENDIX: EVALUATION OF THE REFLECTED FIELD

We wish to evaluate Eq. (27) for a variety of situations,
namely, for a ))b(~cr~ &&1) for both yoA+1 and for
yo=+1 and also for a/5«1. In all cases we will as-
sume an incident beam which has a Gaussian cross sec-
tion as described in Eqs. (12) and (13).

1. Spectrally narrow beam incident
within the range of reAection

For a Gaussian cross section, ~cr
~

&& 1 and yo&+1, us-
ing Eq. (29) and defining

VI. CONCLUSIONS

We have demonstrated that when a beam of x rays un-
dergoes dynamical Bragg reAection, the reAected beam is

I

Q=
asine,' '

Eq. (27) becomes

6 sin00

(1 y2 )1/2
E"(x,z) = exp(ivo ikz") —exp — 0 ib0 x"——

2mP 4
dQ. (A2)

This integral can be evaluated by completing the square or by using standard tables, yielding
T

x"—6 sin80/(1 —yo)'~

~P ~exp(ivo)exp( ikz")—exp—
E"(x,z) = a"

(A3)

where

(A4)

2. Spectrally narrow beam incident at the edge of reAection

When absorption is included, the reflection for yo=+1 is different from that for yo= —1. Neglecting absorption,
however, the rejected beam is the same for both, and we, therefore, only give the details for yo = —1. In this case, us-
ing Eq. (31), we have

exp[i(v —vo)]=exp(iv'2cr ), (A5)
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and for o. « 1,

exp[i(v —vo)]=(1+iv'2o ) .

Thus, for incidence at the edge of reflection, Eq. (27) can be written as

E"(x,z ) =E, (x,z )+E2(x,z ),
where

(A6)

(A7)

( — 'n'/4 —lbl "n)dn2' oo
(AS)

lb l' lPli(2b, sin80)' exp( ikz—")
E2 = f 0' exp( a—0 /4 i l—b lx "Q)dA,

2~P 0

+i f 0' exp( —a ft /4+ilblx "A)dA
0

The integrals in Eqs. (AS) and (A9) are of standard form and when evaluated yield '

(A9)

and

lb '~ lPlexp( ikz"—)exp

v'~P bla"

2x"
a"

(A10)

P
1 exp( —ikz")i(2b, sin80)'

E
2 "4+Pa "4 I ( —')exp 1 x

a

2

D
i v'2—x"
a" + I'D

iv'2x"
a" (A 1 1)

where D (q ) is a parabolic-cylinder function. Noting that

D (q)= r(p+1) [exp(p~i/2)D „,(iq)+exp( p~i /2)D—~, ( iq)], —
2m

we can rewrite E2 as

E =E,6,
where

'2

(A12)

(A13)

2'~ exp(3rri /4)(26 sin8O)'~ exp
1 x

a" Ditz a'
(A14)

We will find it useful to evaluate E" separately for points near the beam axis (x "«a") and for points outside the
beam width (x "))a"). In particular, for x"« a" it is convenient to write

E"=E&e xp[l n(1 +5)] .

We can then expand ln(1+5) in a power series in (x "/a"). Retaining up to linear terms we obtain

ln(1+5) =in[1+5(0)]+ 5'(0) x"
1+5 0 a"

(A15)

(A16)

where

2 exp(3rri/4)(b~ sin8O)'
5(0)= v'«( —,

'
)

and

—exp( 3vri /4 )( An sin80)
' ~

5'(0) =
v'a I ( —,

'
)

For spectrally narrow beams, 5(0) « 1, and we will approximate E"as

(A17)

(A1S)



LATERAL DISPLACEMENT OF BRAGG-REFLECTED X-RAY BEAMS 27

[b ('" [P[exp( —ikz")exp
2

X

a" +5'(0) a"
(A19)

(A20)a'

For ~x "~ &&a"we can use the asymptotic (large argument) expansion of D, r2 which is different for points to the left of
the beam axis, x '(0 and to the right, z ")0. For x "(0,

' 2 — 1/2—v'2x" 1 x" +2x"
D &/2 =exp a" a

Di/2
—&2x"

a"
1 x"

=exp a"

2

so that for large negative values of x' we have
r

1 x"—iexp a"

E2=0. For x')0,
1/2&2x"

—3/2&2x"
(A21)

so that for large positive values of x"we have

~P ~exp( ikz" —im/4)—(b si.nOIt)'~

~b ~&trP(x")
(A22)

3. Spectrally wide incident beam

As an illustration of Bragg reflection of a spectrally wide beam, we will consider a particular example of a Gaussian
beam for which yo =0, b = —1, and a /b, « 1 (essentially a 5-function incident beam). We then have

4&(g) = I /sinOo . (A23)

(Note that for b= —1, there is no need to differentiate between Oo and Oo. ) We will rewrite Eq. (2) for R(8) in an
equivalent form as

R(8)= —[y+(y —I)'~ ], y & —1,
R(8)= —[y i(1—y )'~—], —1~y &1,
R(8)= —[y —(y —1)' ], y &1 .

Writing

6 sinOO

and noting that o =y for y0=0, Eq. (21) now becomes

(A24)

(A25)

E"=— . f [cr+(o I)'~ ]—exp( iog) +—f [o i(1—o—)' ]exp( iog)—
2trP sinO&

+ 2 1 ]/2 . 6fo

f o sin(crg)do —f (cr —I)'~ sin(op)der+ f (1—o )' cos(erg)do
trPb sinOO . 0 1 0

(A26)

If the first two integrals in Eq. (A26) are evaluated by expanding sin(erg) in powers of o g, it is clear that term by term
they sum to zero. Using Ref. 23 we can evaluate the third integral so that

i ~P ~exp( ikz") 1—
Pb sin80

(A27)

where J, is a Bessel function.
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