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Ground-state properties of third-row elements with nonlocal density functionals
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The cohesive energy, the lattice parameter, and the bulk modulus of third-row elements are cal-
culated using the Langreth-Mehl-Hu (LMH), the Perdew-Wang (PW), and the gradient expan-
sion functionals. The PW functional is found to give somewhat better results than the LMH
functional and both are found to typically remove half the errors in the local-spin-density (LSD)
approximation, while the gradient expansion gives worse results than the local-density approxima-
tion. For Fe both the LMH and PW functionals correctly predict a ferromagnetic bcc ground
state, while the LSD approximation and the gradient expansion predict a nonmagnetic fcc ground
state.

The local-spin-density (LSD) approximation of the
density functional (DF) formalism' provides a rather ac-
curate description of the ground-state properties of the
elementary spd bonded metals. Some aspects of the
description are, nevertheless, less satisfactory. For in-
stance, the cohesive energy is too large, in particular for
the 3d metals, where the errors can be a few eV. The lat-
tice parameter is also slightly underestimated and for the
3d metals this error is typically 3-4%. Finally, the LSD
approximation incorrectly predicts that for Fe the fcc
structure has a lower total energy than the bcc structure.
It is therefore interesting to test alternative functionals for
the 3d metals.

An early attempt to improve the LSD approximation
was the gradient expansion approximation (GEA). ' Cal-
culations for atoms ' and a jellium surface show, howev-
er, that the GEA does not improve the LSD approxima-
tion, if the calculated ab initio coefficients of the gradient
correction are used. The errors in the GEA have been
studied by Langreth and Perdew and by Perdew. '

Based on this analysis Langreth and Mehl" and Hu and
Langreth' (LMH), as well as Perdew' and Perdew and
Wang' (PW), have proposed modified gradient expan-
sions for the exchange-correlation energy.

The LMH and PW functionals have only been tested in
rather few cases, but they give encouraging results for the
ground-state properties in these cases. For atoms it was
found that both total energies and removal energies are
improved in the LMH functional compared with the LSD
approximation. "' The PW functional gives a further
improvement in the total energy of atoms. ' ' The bind-
ing energies of the first row diatomic molecules are also
improved by both functionals. ' ' In a study of the band
structure of V and Cu, Norman and Koelling' found that
the LMH potential gave an improvement in the Fermi
surface for V but not for Cu. The deviation of the band
structure from photoemission results also increased some-
what for Cu. The ground-state properties were not stud-
ied. For Si von Barth and Car ' found a similar error
(factor 2) in the band gap as in the LSD approximation,
while the cohesive energy (4.89 eV) was improved over
the LSD result (5.19 eV) compared with experiment
(4.63 eV).

The usefulness of the LMH, PW, and GEA functionals
relative to the LSD approximation has remained a matter
of controversy. ' It is therefore interesting to apply these
approximations to the 3d metals. Here we study the
cohesive energy, the lattice parameter, and the bulk
modulus. We also compare the total energies of the fcc
and bcc phases for Fe. We find that for these properties
the LMH and PW functionals generally give a substantial
improvement compared with LSD approximation, while
the GEA gives worse results. In particular, we find that
the ground state of Fe has a bcc lattice structure. In most
cases the PW functional gives somewhat better results
than the LMH functional.

Langreth and Perdew used a wave-vector analysis to
study the contribution to the exchange-correlation energy
from different wave vectors k. They found that while the
GEA is quite accurate for large values of k, it gives a
large unphysical contribution for small values of k. To
correct for this error, Langreth and Meth " proposed a
method where the gradient corrections for the correlation
energy were put to zero for k & k, . For the cutoff k, they
used the value k, f ~

Vn/n ~, where n is the electron den-
sity and f-0.15 is an empirical constant used for all sys-
tems. Perdew' introduced a somewhat different correla-
tion energy functional, which goes over to the GEA in the
limit of small density gradients, as it should, and which
contains contributions beyond the random-phase approxi-
mation (RPA). Perdew and Wang' and Perdew' stud-
ied the exchange hole in the gradient expansion and intro-
duced cutoffs, which impose a sum rule o on the hole as
well as the condition that the hole is nonpositive. The
LMH exchange-correlation functional can be written as

~ELsD-RPA+ J d3r 7
2

—I/3 (yn ) (yn
XC XC 9 4/3 4/3nt n~

+ 2 (Vn)
„4/3

where Ex, " " is the exchange-correlation energy in the
LSD approximation using RPA electron gas data, n t and
nt are the spin densities, n nt+nt, J tr/[8 x(3tr ) l,
and F 243f ~Vn[I/nkFT, with kFT 2(3n/ tr)' . We
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further have d =2 1~2[(1+()5~ +(1 —g) ~ ]
g=(nl —nl)/n is the spin polarization. Densities and
lengths are expressed in the units ao and ao, respective-
ly, where ao is the Bohr radius, and energies in Ry. By
putting f 0 (or F 0) in (1) we can recover the normal
gradient expansion. The coefficients in this gradient ex-
pansion differ slightly from those obtained by Rasolt, due
to approximations introduced in the wave-vector expan-
sion for 0 & g & 1. The PW exchange functional is written
as

E [n] =A„d rn ~ (r)F(s), (2)

where ~.-- 2 (3/~)'" .= IVn(/[2(3~')'"n(r)"'],
and F(s) (1+as +bs +cs ), with a 1.296, b =14,
c 0.2, and m &'& . For a spin-polarized system the ex-
change energy is obtained from E„[nt,nil =

2 E„[2nt]
+ —,

' E„[2nl]. The correlation energy is given by
21 ( ) /Vnf

n"'
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where E," " is the LSD correlation energy with the
Ceperly-Alder parametrization, '

0.002568+ ar, +Pr,~

C n =0.003334+2
1+yr, +Br, + 10 Pr,

with r, = (4xn/3) '~, a =0.023 266, p =7.389 && 10
@=8.723, 6=0.472 is the coefficient in the gradient ex-
pansion, and
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with f=0.11.
The results presented here were calculated self-

consistently using the linear muffin-tin orbital (LMTO)
method in the atomic-spheres-approximation (ASA).
This widely used method has been described in length else-
where and we shall therefore only give some technical
details of how the calculations were performed. The main
approximations in the LMTO-ASA method are as fol-
lows: First, the potential and the total energies are calcu-
lated from spherically averaged charge densities; and
second, the Wigner-Seitz cell is approximated by a sphere.
We shall later comment on the former approximation.
The latter approximation was corrected by including the
so-called combined correction term which also corrects
for the neglected higher partial waves. The basis consist-
ed of spdf-LMTO's for all elements except potassium
where spd-LMTO's were used. We employed the linear
tetrahedron method for the k-space integrations and this
was implemented so that no misweight of any k points oc-
curred. Moreover, simple correction for the approximate
linearity of the energy bands between the k points were
also included. A mesh of about 200 irreducible k points
were used except for iron where about 500 points were
used. A doubling of these meshes led to changes in the to-
tal energies of the order of a few tenths of a mRy. Also in

the atomic calculations a spherical averaged density was
used. This inAuences the cohesive energy for V and Fe,
but not for K, Ca, and Cu, which have spherically sym-
metric atoms.

In Fig. 1 the total energy of Fe as a function of the
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FIG. 1. Calculated total energy of paramagnetic (P) bcc and
fcc and ferromagnetic (F) bcc iron as a function of the
Wigner-Seitz radius (s). The dotted curve corresponds to the
LSD approximation and the solid curve corresponds to the
LMH and PW approximations. The curves are displaced in en-

ergy so that the minimum for the F bcc coincides.

Wigner-Seitz radius is shown for the paramagnetic fcc
and bcc phases and the ferromagnetic bcc phase calculat-
ed in the LSD, LMH, and PW approximations. We first
observe that both the LMH and PW functionals correctly
predict a ferromagnetic bcc ground state, while the LSD
approximation predicts a fcc ground state. The Wigner-
Seitz radius is also improved substantially, in particular in
the PW approximation. In contrast, the GEA is worse
than the LSD approximation. The-GEA predicts that the
fcc phase is about 8 mRy (LSD 6 mRy) below the bcc
phase, and the error in the Wigner-Seitz radius is more
than twice as large as in the LSD approximation.
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To analyze the improvements in the PW and LMH
functionals, we notice from Fig. 1 that both functionals
add an energy contribution which is roughly linear in the
Wigner-Seitz radius s to the LSD functional. This term is

AE(s) =As+8, (4)

where A ——40 and A ——160 mRy/ao for the LMH
and PW functionals, respectively. Using the experimental
bulk modulus, we deduce that the Wigner-Seitz radii are
increased by about 0.04 and 0.14ao in the LMH and PW
functionals, respectively, in rather good agreement with
the full calculations. Since the bcc phase is ferromagnetic
while the fcc phase is weakly antiferromagnetic or
paramagnetic, the Wigner-Seitz radius is larger in the bcc
phase. In the LSD approximation the difference is about
0.07ao. Because of the additional term (4) in the nonlocal
functionals, the larger Wigner-Seitz radius of the bcc
phase favors this phase. We can estimate this gain to be
about 3 and 11 mRy in the LMH and PW functionals, re-
spectively. In addition, both the LMH and PW function-
als favor a magnetic moment also for a fixed Wigner-Seitz
radius. This can be seen by comparing the energy gain in
going from the paramagnetic to the ferromagnetic phase
in the LSD approximation and in one of the nonlocal
functionals at a fixed Wigner-Seitz radius. We estimate
this gain to be 7 and 5 mRy in the two functionals. From
this we conclude that relative to the LSD approximation
the LMH and PW functionals favor the bcc phase over
the fcc by about 3+7 10 and 11+5-16mRy, respec-
tively, which is rather close to what is obtained in the full
calculations. We note that the term depending on the
Wigner-Seitz radius (4) contributes about —,

' and —,
' of

the full eH'ect in the LMH and PW functionals, respec-
tively. The spin part of the magnetic moment calculated
at the experimental lattice parameter is found to be
2.30ps (LMH) and 2.32ps (PW), compared with 2.23ps
in the LSD approximation and 2.21pz experimentally.
The (small) increase in the magnetic moment in the LMH
and PW functionals is consistent with the somewhat
greater tendency of these functionals to favor the fer-
romagnetic phase for Fe.

The calculated ground-state properties of third row ele-
ments are shown in Table I. The Wigner-Seitz radius is
generally increased, as one would expect from correction
(4), which appears for all the elements considered. For
the LMH functional we find A ——13 (K), —20 (Ca),—50 (V), and —40 (Cu) mRy/ao and for the PW func-
tional 2 ——7 (K), —20 (Ca), —120 (V), and —130
(Cu) mRy/ao. The LMH functional removes about —,

' of
the error in the LSD approximation. The PW functional
gives a further improvement in most cases, but there is an
overcorrection towards the end of the series. The bulk
modulus is also improved by the LMH and PW function-
als, although there is a tendency by the PW functional to
overcorrect the LSD errors. For the cohesive energy,
finally, there are substantial improvements for all the ele-

TABLE I. The equilibrium Wigner-Seitz radii (a.u. ) (s), the
bulk modulii (kbar) (B) calculated at the experimental value of
s, and the cohesive energies (eV/atom) (E,) for some third row
elements as measured (expt) and calculated in the LSD approx-
imation, using the LMH and PW exchange and correlation
functions. The total energies for the solids as well as for the
atoms were calculated using a spherically symmetrized charge
density.

~expt

~LSD

SLMH

&PW

~expt
~LSD

~LMH

~PW

Ec,expt

Ec,LSD

Ec,LMH

Ec,PW

4.862
4.656
4.929
4.809
31.8
29.4
40.0
36.6
0.94
1.06
0.71
0.81

Ca

4.122
3.982
4.018
4.026
152
114
148
155
1.83
2.43
2.26
1.70

2.818
2.730
2.763
2.822
1620
1482
1603
1825
5.29
8.07
7.41
6.27

Fe

2.662
2.562
2.598
2.681
1684
1525
1721
1674
4.31
6.96
6.20
5.01

Cu

2.669
2.592
2.626
2.714
1310
982
1394
1678
3.50
4.72
3.98
3.37
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ments investigated, except K where the LSD error already
is very small. In particular, the PW functional gives a
very substantial reduction in the errors for Ca, V, Fe, and
Cu. It has earlier been observed that inclusion of the non-
spherical components of the density lowers the energy of
first row atoms in the LMH and PW functionals. ' For V
and Fe, which have nonspherical atoms, we expect the
nonspherical effects to be more important in the atom
than in the solid, while the opposite should be true for K,
Ca, and Cu, which have spherical atoms. If the observa-
tions' for the first row atoms also apply here, we would
expect this to reduce the calculated cohesive energy for V
and Fe but to increase it for K, Ca, and Cu. These correc-
tions would go in the right direction for both the LMH
(except for Ca and Cu) and the PW functionals.

In this paper we have studied the ground-state proper-
ties of some third row elements using the LMH, PW, and
GEA functionals. We find systematic improvements us-
ing the LMH and PW functionals, which typically remove
half the errors in the LSD approximation, while the GEA
is worse than the LSD approximation. In particular, the
LMH and PW functionals correctly predict a bcc ground
state for Fe. Since these functionals are relatively easy to
implement, we believe that they represent a promising al-
ternative to the LSD approximation for the calculation of
ground-state properties of solids.
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