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We study strongly nonlinear and inhomogeneous dielectrics that follow a power-law relation be-

tween the electric and the displacement fields, D=elE
I
sE. Considering a narrow distribution of

local dielectric constants e(r), we find the first correction to the potential field. Using this result

we present an exact calculation of the effective dielectric constant of an isotropic system to second

order in the fluctuations Be(r). Our result is independent of details of the local geometry and

represents the nonlinear analog of the exact calculation in linear dielectrics.

The linear properties of composite materials have re-
ceived attention over the years from both scientists and
engineers. In particular, properties of inhomogeneous
conductors and dielectrics have been the target of inten-
sive investigations. ' Much effort centered around the
value of the effective dielectric constant e,g. Its value was
found to second order in the local fiuctuations of e(r),
be(r), and was bounded by rigorous bounds, indepen-
dent of the microgeometry. On the other hand, nonlinear
phenomena in composite dielectrics have received very lit-
tle attention until very recently, even though they have
been known to exist for a very long time. Excluding laser
studies, nonlinearities of dielectrics are usually treated by
assuming a small perturbation on the "pure" linear behav-
ior. Motivated by the scarcity of exact results in strongly
nonlinear inhomogeneous dielectrics, we decided to inves-
tigate systems that have in general no linear regime, even
in small fields. In this Rapid Communication we study in-
homogeneous dielectric media that obey the following re-
lation between the displacement and the electric fields:

This kind of relation may also describe a strongly non-
linear conductor ~here the current density J replaces 0
and the conductivity tT is the analog of e. Such a J-E re-
lation has been found in some ceramic two-dimensional
(2D) systems in low temperatures. It is easy to show
that if the exponent P characterizes the local dependence
of D on E throughout the system, even while e(r) varies in
space, then (1) also characterizes the relation between the
volume averages (D) and (E). Assuming a narrow spatial
distribution of e(r), we find the effective dielectric con-
stant e,tt of an isotropic system to second order in be, in-

e,tt- Eo ' +" e(r) I Ve I
+'—d V.1 (2)

The effective dielectric constant may be naturally defined

dependent of details of the microgeometry. We note that
even in the linear case it is impossible to calculate higher-
order terms in be without more detailed knowledge of the
microstructure of the system.

The procedure will be to first establish the relation be-
tween the corrections to the potential field, @and e,n. We
will show that for the second-order correction 6 e,g one
needs to know only the first variation in @, B@,as in linear
systems. Then we will solve for BN and use this solution
to determine 6 e,g.

The system under study is assumed to be composed of
homogeneous grains made of different components. Alto-
gether, the system comprises N nonlinear components
having dielectric constants e; (i 1,2, . . . ,N). We fur-
ther assume that the distribution of e is narrow, i.e.,
(e; —(e)) (((e) for all i where, throughout the text, angu-
lar brackets denote volume averages. The system is con-
fined in the z direction between two parallel plates located
at z 0 and z L, but is infinitely broad in the perpendic-
ular directions. The boundary conditions are @ EoL at
z =L and @ 0 at z =0. Under these conditions a homo-
geneous system (e; -eo for all i) would display a constant
field in the z direction, Eo. We define eo to be the dielec-
tric constant of one of the components, and try to expand
@ and e,tr in powers of Be; -e; —eo. We shall see below
that the exact value of edr to second order in Be; is in-

dependent of this choice.
The bulk effective nonlinear dielectric constant e,g is

defined by
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either via a volume average of the energy density, as in
(2), or via the relation between the volume averages of D
and E. In Ref. 6 it was shown that the two definitions
coincide. This definition is useful as long as the boundary
conditions vary appreciably in space only on length scales
much larger than the grain sizes. To zero order in Be we
have e,s ep. A first-order variation of both sides of (2)
gives

Be,tr-(e& —ep or e,tr=&e&+O(Be') . (3)

In a similar manner it can be shown that the second varia-
tion is

e tr [e(r) ep]V@p VB@dV./3+2 (4)
VE

Thus, to find B e,s we need only to know B@. Note that
relations (2)-(4) reduce to the linear results when P 0.

We now proceed to find B@in terms of a Green's func-
tion. Expanding D to first order in BE, assuming BE
= —VB@and using V D =0, we find

ep(V'+P8„)B@=V (BeEp) . (5)

Transforming to the new coordinate system: g x,
ri y, and g z/vP+I, we can write (5) in the rescaled
coordinates as

V BN
1

V (beEp) .
epdP+ 1

(6)

This equation has the same form as the equation for B@in
a linear dielectric composite where P =0 [see Eq. (II.43)
in Ref. 3]. The same can be said about (4). Consequent-
ly, we can apply much of the formal machinery developed
for linear media to treat the nonlinear composites. Thus,
we can use the Green's function for Laplace's equation,
G (p,p'), to solve (6) as follows:

Ep dn'G(p, p') a, Be(p')
ep +1
Ep

d n'Be(p') Bq G(p, p')
epdP+ 1

„dn'[be(p') —&Be&18q G (p, p') . (7)
ep +1

The second line is obtained after integrating parts and us-
ing G 0 on the boundary. Because of this boundary con-

Be,fr - Ep '~—+" [[e(r)—ep] ( V+p
~V 4

+ep(P+2) I V&p I
~V@p' VB@dV

The second term on the right-hand side (RHS) can be
shown to vanish after integrating by parts and using
V. BD 0 and the condition that BN 0 on the bound-
aries. Thus we are left with the first integral that can be
calculated explicitly to yield

g= gp(R)exp[i(k„x+k~y+k, z/v'P+1)]d R

Ji+P, ' UP+I,
' (io)

where gp is the spherically symmetric correlation function
in the original coordinates. Since gp depends only on q,
we conclude that

20
g(k)=(I+P) '"gp k' 1 —~

+1

where 0 is the polar angle between k and the g axis. Sub-
stituting this result and the Fourier transform of Gp, we
can rewrite (9) as

dition we also have f8&.G =0, which explains the insertion
of (be) into the third line. A similar consideration, using
B@-0 on the boundary, allows ep to be replaced by (e) in
(4). Substituting for B@in (4), we get

+2B'e,tr
= — d n d n' [[Be(p)—&Be&]

Vep JP+ 1

x [Be(p') —&Be)]]8«G (p,p'),
(8)

where the integration is performed in the new coordinates.
For a macroscopically homogeneous composite, we can re-
place the term in the curly brackets by its volume average,
i.e., by the correlation function

g (p —p') =
& [be(p) —&Be'&] [Be(p') —&Be)]&,

which depends only on the relative vector R=p —p'. As-
suming now that g(R) decays to zero over a distance
much smaller than the size of the system, we can replace
G over most of the volume (except near the boundary) by

Gp(R) - I/4~1R I .'

Then the integration over one of the coordinates can be
carried out immediately to yield the rescaled total volume
n =V/vp+1, and we are left with

+2 d"R g(R) e«Gp(R) .
ep P+ I

This result depends only on the macroscopic homogeneity
and the assumed short range of the geometrical correla-
tions. To make further progress, we now assume that the
composite is also isotropic, which implies that g is spheri-
cally symmetric in the original coordinates. Since (9) is

performed in rescaled coordinates the correlation function

g has an ellipsoidal symmetry. Namely, it is stretched
( —1 &P &0) or contracted (P) 0) in the g direction.
For P 0 the integral can be evaluated very easily, using
the spherical symmetry, leading to a result that depends
only on g(0). Somewhat surprisingly, the integral can be
evaluated exactly even when P~O. Consider the Fourier
transforms of the Green's function Gp= I/! k

~
and of g:

B e,s = —
i2 &

d R exp( —ik R)gp(k)exp( iq R—) z
.~ q

2

P+I i ep" 2x) 2x g
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The integrations over R and q can now be carried out, and the remaining integral over k can be simplified in polar coordi-
nates by a change of the radial variable, namely, K:—[1—p cos e/(p+ 1)]'I k. This leads to

+2 ~ 4trECB'eeff-
2eo(P+ I)'I "o (2n)'"g.(~') u'[i —Pu'/(P+1)] -'"du. (i2)

The integral over E we identify as go(0) while the second integral can be evaluated exactly. Thus we finally get

b e,ff
— go(0) [4P+ 1 —4(P+ 1)/P arcsindP/(P+ 1)] .P+2

cop(p+ i)'"

Note that this expression is valid for both p )0 and
—1 (p (0 by analytic continuation. Recalling our
de6nition of the correlation function, we have

go(0) -&[Be(p) —&Be)] ') -&e') —(e)',
and summing the zero- and first-order contributions to
e ff we finally get

( ) P+2 arcstndP/(P+ I) (( 2) ( )2)
2enP Jp

(i4)
which is exact to order Be . The generalization to other
dimensions is straightforward and will be presented else-
where. As P 0, (14) reduces to the well-known expres-
sion for e,ff of the linear problem: namely,

e,ff-&e) ——,
' (&e') —&e)') .

To summarize, we have studied the behavior of an inho-
mogeneous nonlinear composite with small Auctuations in
the local dielectric constant. We solved for the first

correction to the potential field, in terms of the Green's
function, and used it to evaluate the second-order correc-
tion to the bulk eH'ective dielectric constant e,ff. We find
that to this order, the result is insensitive to the local mi-
crogeometry and depends only on the variance of the glo-
bal distribution.

The method we employed to obtain our results is a gen-
eralization of a well-known procedure of treating linear
composite dielectrics with no additional assumptions in-
volved. As such it constitutes one of the very few cases
where such a generalization is possible. An alternative
approach to the problem studied here focuses on a calcu-
lation of D(r) VA(r) instead of E(r) —V&(r). This
approach leads to the same result as (14) (see Ref. 7) as is
known from the study of the linear case. An extension of
Eqs. (6) and (9) to arbitrary order in Be is possible and
will be discussed elsewhere.
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