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Potential expansion for molecules adsorbed or scattered on a surface
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We present an analytical potential expansion for a molecule interacting with a two-dimensional
lattice of atoms which is convenient in quantum-mechanical scattering and lattice-dynamics calcula-
tions. It combines the following three ingredients: a spherical expansion in symmetry-adapted
free-rotor functions of the molecule which represents the anisotropy of the potential explicitly, a
translational-displacement expansion that goes beyond the harmonic approximation, and a two-
dimensional Fourier expansion, which reAects the translational symmetry parallel to the substrate.
As an example, we show some numerical results for N2 on graphite which illustrate the convergence
of the various expansions. The potential anisotropy is visualized explicitly. At an adsorption site,
the in-plane anisotropy appears to be negligible with respect to the out-of-plane anisotropy. The
anharmonic terms in the molecular-displacement expansion are so important that they will
inAuence the out-of-plane translational vibrations.

I. INTRODUCTION

The interaction between molecules and substrates plays
an important role in many interesting physical phenome-
na. It can be probed by molecular-beam surface-
scattering experiments. ' Furthermore, it leads to the
adsorption of molecules or molecular layers on the sur-
face, which can take part in many interesting processes.
Adsorbed layers are (quasi-) two-dimensional systems
which occur in a rich variety of phases that can differ
strongly from the ordinary bulk phases. Of course, in an
adsorbed layer the admolecule-admolecule and the
substrate-mediated interactions ' must also be taken in
account. The competition between all types of interac-
tions determines, for instance, whether an adsorbed
molecular - layer is commensurate or incommensurate
with the underlying crystal. ' However, in this paper we
concentrate on the molecule-substrate interactions.

In order to calculate the dynamics of adsorbed or
surface-scattered molecules, one needs expansions of the
total molecule-substrate potential. First we summarize
what is available in the literature. Steele has derived a
powerful expansion for the interaction between an atom
and a two-dimensional lattice of substrate atoms, adopt-
ing an atom-atom pair-potential model. Because of the
two-dimensional translation symmetry, the sum over pair
potentials can be replaced by a rapidly convergent
Fourier series. Steele has given explicit formulas for the
Fourier transforms in the case of a Lennard-Jones 12-6
atom-atom potential. The extension to exponential po-
tentials has been made by Belak. Both types of Fourier
series have proved to be valuable in various classical
molecular-dynamics and harmonic-lattice-dynamics cal-
culations on adsorbed molecular layers. ' '" In these cal-
culations the interaction between an adsorbed molecule
and a substrate atom is considered to be a sum of atom-
atom potentials, so that the total molecule-substrate po-
tential can be written as a sum over atom-substrate
Fourier expansions. The lowest-order term of such a

molecule-substrate Fourier expansion only depends on
the height of the atoms above the substrate. Sokolowski,
in his calculations of second virial coefficients and other
properties of adsorbed linear molecules, has expanded
this term into spherical harmonics and numerically eval-
uated the expansion coefficients. ' ' Further, we remark
that the atom-substrate Fourier series has been expanded
with respect to atomic-displacement coordinates in order
to get harmonic force constants.

Another type of expansion which is useful in
molecule-molecule scattering calculations and in dynami-
cal calculations of molecular complexes (van der Waals
molecules) and molecular bulk solids, is the so-called
spherical expansion. ' Such an expansion represents ex-
plicitly the anisotropy of an intermolecular potential. If
the intermolecular potential is given as a sum of atom-
atom potentials, this spherical expansion can be obtained
with the aid of analytical transformation formulas which
are known for inverse-power-law' and exponential
atom-atom —potential types. ' However, spherical expan-
sions are much more general than atom-atom —potential
models and they can be used to fit experimental or
ab initio data directly. They can also be further expand-
ed with respect to translational-molecular-displacement
coordinates, ' which is useful for the calculation of the
vibrational states in molecular complexes or solids. Com-
bined spherical and displacement expansions have proved
to be valuable, for example, in quantum-mechanical
lattice-dynamics calculations on solid nitrogen and oxy-
gen. '

In the present paper we are interested in molecule-
substrate interactions and we combine the two in-
gredients, atom-substrate potentials and molecule-
molecule potentials, in order to derive new formulas for
molecule-substrate potentials. We combine the advan-
tages of spherical, molecular-displacement, and Fourier
expansions.

In Sec. II we describe a general method to obtain a
molecule-substrate Fourier potential series starting from
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a spherical expansion for molecule-atom pair potentials.
In Sec. III we derive an alternative method, which is
applicable and preferable in the special case that the pair
interaction can be approximated by an atom-
atom —potential model. In Sec. IV we give some quanti-
tative examples.

The molecular symmetry operators P(g) act on D func-
tions according to the Wigner convention. It can be
shown that the corresponding symmetry-adapted func-
tions are linear combinations of D-functions:

(4)

II. GENERAL METHOD

A. Spherical expansion of anisotropic
molecule-atom potentials

Consider a molecule interacting with a substrate that
consists of discrete atoms or ions. The total interaction
between the molecule and the substrate is assumed to be
the sum of molecule-atom pair potentials. Three-particle
and higher-order terms are neglected. In order to
represent the anisotropic behavior, we use a spherical ex-
pansion to describe the molecule-atom pair potentials:

1=0 m'= —I

1

X g (
—1) C'" (R)D'" (co)* .

m= —1

This is a special case of the more general expansion for
two interacting molecules given by Van der Avoird
et al. ,

' which follows easily when one of the molecules is
replaced by an atom. In a forthcoming paper we will use
the more general spherical expansion in order to derive
analytical expressions for the interaction between an elec-
trostatic multipole and a two-dimensional lattice of mul-
tipoles. In Eq. (1) C'" is a Racah spherical harmonic and
D'" is a Wigner D function in the active convention. '

These angle-dependent functions are coupled. The result
is a scalar, which ensures the invariance of the total ex-
pansion with respect to an overall rotation of the system.
Furthermore, the vector R=tR, RI connects both
centers of mass, pointing from the atom to the molecule,
and the molecular orientation is described by the Euler
angles co=(a,P, y). For a linear molecule these angles
are the polar angles co=(y, 8,0). In that case the sum
over m ' must be omitted and the complex-conjugated
Wigner D functions have to be replaced by Racah sphen-
cal harmonics according to Ref. 19:

C(1)(y ~)—D(I) (@ y 0)e

In the special case that the molecule consists of a single
atom, the expansion of Eq. (1) reduces to an isotropic
(1 =0) atom-atom potential.

If the molecule possesses a molecular symmetry group
6 of order nG, then the total molecule-atom pair-
potential expansion must be invariant under all opera-
tions of this group. It is convenient to exploit this prop-
erty with the aid of the totally symmetric projection
operator

S= g P(g) .
G gPG

An example of symmetry-adapted functions can be found
in Ref. 17, where the tetrahedral rotation functions are
listed for l & 10. Using the symmetry-adapted functions
from Eq. (4), we can write the spherical expansion of a
molecule-atom potential as

1

V(R, co)=g g @(,(R) g (
—1)~C'" (R)G'", (co) .

1 m' m= —1

(5)

There may be more than one symmetric linear combina-
tion of D-functions for a fixed value of 1. In Eq. (5), the
summation over I' has to be performed over different
combinations only.

It is assumed that the expansion coefficients
occurring in Eq. (5), are (analytical) functions of the in-
termolecular distance R. These functions are usually ob-
tained by an analytical fit of ab initio or experimental
data. The simplest and most popular forms are of the
inverse-power or exponential type, but many other forms
have been used. ' The functions 41,„can also be derived
from an atom-atom —potential model, with the aid of ex-
plicit formulas, as given in, for instance, Refs. 15 and 16.
This does not imply, however, that a spherical expansion
is always equivalent to a sum of atom-atom potentials.
On the contrary, it is much more general.

B. Molecular-displacement expansion

In dynamical calculations on adsorbed mole cules
which perform small oscillations around an equilibrium
configuration, one often needs an expansion with respect
to molecular-displacement coordinates. For this reason
we make the following Taylor expansion of the pair po-
tential given by Eq. (5):

V(R+u, co)= g, V(R, co),(u V)

=0

where u denotes a small molecular-displacement vector.
The substrate is considered to be rigid.

This expansion is most conveniently performed with
the aid of the spherical gradient formula, as demon-
strated by Briels et al. ' ' Since the formulas given in
Ref. 17 are very complex, we summarize the result in a
compact notation:

V(R+u, co)=+EA(R)u C ' (u)G'"', (co),
A

where the combined index A is defined by

A=(l, m, m', a, l„m, ), 0~1, ~a, 1, +a even .

In Eq. (7), the coefficients EA(R), which depend on the
equilibrium intermolecular vector, appear to be given by
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EA(R) =EI I (R)

I l, l2 l

2 m2

Here, the summation over l2 and m2 is limited to a few
terms because of the selection rules that can be obtained

I

WI ', I, I, (R) 5i, o&i, i+21+1@I '(R) (10)

and the recurrence relation

from the Wigner 3j symbol. For a fixed combination of l
and m' the distance-dependent functions Wl .. I &

(R) in
1 2

Eq. (9) can be calculated by means of the initialization

j, 1 l, l2 ll l

J J

where the operator A j I (R) is defined by
~2 2

A. I (R)=( —1) ' 5i j
1 /2

Jz(2J2 —1) d J2+ 1
+

2j2+1 dR R
—5I2,j2+1

(jz+ 1)(2jz+3)

2j, +1 dR
Jz
R

(12)

See Ref. 17 for further details.
We have now obtained a useful potential expansion, see

Eq. (7), for the interaction between a molecule and an
atom. As we have mentioned before, this expansion
represents explicitly the anisotropy of the pair potential.
Furthermore, it includes an expansion with respect to
molecular displacements that goes beyond the harmonic
approximation.

C. Fourier transformation of the pair potential sum

As a final step, the total molecule-substrate interaction
can be obtained as a sum over the expanded molecule-
atom pair potentials. In most practical cases the sub-
strate atoms are ordered in lattice planes, so that the
molecule-substrate potential shows a two-dimensional
periodicity parallel to the substrate surface. This symme-
try property can be exploited by transforming the sum
over pair potentials into a two-dimensional Fourier
series, as will be demonstrated in this subsection.

Assume, for simplicity, that the molecule is interacting
with a single two-dimensional lattice of substrate atoms.
We choose a global reference frame, so that the xy plane
coincides with the lattice plane. Further, it is assumed
that there are n, diFerent substrate sublattice types s,
which are translated by a vector w, with respect to the
origin. The position of a single substrate atom, of type s,
can then be written as

r,k k =r, +,k ,a+ka2z (1 s n, ), (13)

where al and az are the two-dimensional lattice vectors
and k, and kz are integers. Let x denote the (equilibri-
um) position of the molecular center of mass. The total
molecule-substrate potential

U(x+u, co)=MFA(x)u C ' (u)G'" (co) (14)

is assumed to be the sum of two-particle interactions
only, so that

+oo +oo
F~(x)= X X & EA(x r,I, k,»—

s=l k = —oo k
1 2

where we have used Eq. (7). The combined index A is
defined in Eq. (8). The function FA is invariant under a
lattice translation paraHel to the substrate surface. For
this reason, the following two-dimensional Fourier trans-
formation is possible:

g n ]bj+nzbp (a' bj 2rr'5'j ) (17)

where n; is an integer.
It appears, in analogy with Ref. 8, that the z-dependent

Fourier coeKcients are given by means of the Fourier
transformation

FA(g~»=
1l

e ' f EA(r+ze, )e 'g'd r,
~c s=l XP

(18)

in which the parameter a., equals the substrate unit-cell
area and where the integration has to be performed over
the whole xy plane o . In the following, we will reduce
the two-dimensional integral of Eq. (18) to a simpler
form. To this end, we separate the integrand into a radial
and an angular-dependent part, using the following cylin-
drical expansion of a two-dimensional plane wave:

e's'= g i "J„(gr)e 'e (19)

which comprises the Bessel functions J„of the first
kind. The symbols yg and y, denote the angles of the
vectors g and ~ with respect to the x axis. Further, it can
be shown, with the aid of Eq. (9), that

EA(r+ze, ) =O'A(r, z)e (20)

with

F~(x)=g F~(g ~z)e's'
8

with v. denoting the projection of x on the xy plane, so
that x=w+ze, . The summation has to be performed
over all wave vectors g, which are linear combinations of
the reciprocal-lattice vectors bl and b2..
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1/2
(lz —m2)!

qlA(r, z)=, gg( —1) '
gI I2+mz !

2 2

W' .' (("+2)'")P '(zl("+r')'") .
m I PyZ

1m', l& 32
1 2 12

(21)

Here, the associated Legendre function PI and some of the algebraic factors originate from the following expression

for the Racah harmonics

i
1/2

(I2) m, ( z
—m2)! m. . .„, (mg,C ' ((~+ze, )l~r+ze, ~)=( —1) ' P, '(zl(z +r )' )e

2 (lz+mz)!
(22)

The argument of PI ' equals the cosine of the angle between the vector x and the z axis. Note that the 3j symbol in Eq.
(21) can only be nonzero if m2= —(m +m) ), which explains the argument of the exponential function in Eq. (20).
After substitution of Eqs. (19) and (20) into Eq. (18), we obtain the following expression for the total molecule-substrate
potential:

U(x+u, co)=g QFA(g~z)e's' u C ' (u)G'" .(co) .i .w a

A g

(23)

This expansion is a combination of a spherical, a displacement, and a Fourier expansion. The Fourier coefficients are
given by

~c s

(24)

with

1 (l2™2)!/2 l l l
(IIA(g~z) = g g ia!, (t, +m, )!

2 2

1 2 f J~ (gr)W'~'i, ((z +r )' )P& '(zl(z +r )' )rdr .

(25)

We have now transformed the sum over pair poten-
tials, occurring in Eq. (14), into a two-dimensional
Fourier series with Fourier coefficients that can be calcu-
lated with the aid of Eqs. (24) and (25). Thus, the two-
.dimensional lattice sum has vanished, but some one-
dimensional Fourier integrals, see Eq. (25), remain to be
calculated for each wave-vector length g. These integrals
can be evaluated numerically using a Gauss-Legendre
quadrature. For special cases, analytical expressions can
be given, as shown below.

D. Analytical Fourier transforms

If we want to evaluate the radial Fourier transforms of
Eq. (25) analytically, a problem arises because the in-
tegrand contains a product of a cylindrical Bessel func-

tion J and an associated Legendre function PI '. Un-
2 2

fortunately, integrals with such a combination of func-
tions in the integrand are very difficult. However, there
are two special cases in which either J or PI is a con-

2 2

stant function, so that an analytical solution of the prob-
lem exists for some special types of pair potentials. We
will give some examples in the following.

In the first case we consider the isotropic (A=O)
Fourier transforms that describe the interaction, without
displacement expansion, of a structureless molecule, or
an atom, with a substrate. In this case the associated
Legendre function vanishes and the integrand can be fur-

ther reduced with the aid of Eq. (10). So, the isotropic
Fourier integrals are given by

0'o(g~z)= f Jo(gr)(I)0((z +r )' )rd~ . (26)

These integrals are known for isotropic inverse-power-
law pair potentials

4 .O(R)=R, v~3 (27)

as shown by Steele. The corresponding Fourier trans-
forms can be calculated analytically with the aid of Ref.
23:

1 —v+2
( 0)

v 2
)I),(g ~z) =

1 g
I (vl2) 2z

' (v —2)/2

K(~ 2)/2(gz)

(g &0) . (28)

Here, K„ is a modified Bessel function and I is the ordi-
nary gamma function. An exponential pair potential

(I),„.o(R) =e ' (c )0) (29)

is also commonly used. In that case the isotropic
Fourier integral equals
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(glz) =c(c'+g') 2 2 1/2

exp;0

X[(c +g )'~ z+1] . (30)

The second example concerns the Aat (g =0) terms in
the Fourier series. These terms describe the interaction
of a molecule with a Oat surface; in other words, the mol-
ecule is unaffected by the discrete atomic structure of the
substrate layer. For a fixed displacement vector u, the
tlat part of the Fourier series of Eq. (23) must be invariant

J (0)=5 0, (31)

the radial Fourier transform of Eq. (25) reduces to

under a rotation of the molecule around an axis parallel
to the global z axis and through the molecular center of
mass. This property implies that the index m must be
necessarily equal to zero. Further, because of the proper-
ty23

I, I2 l
q'A(olz)=5 05 0,g () () () f WJ '. , ( ((z +r )' )P, (zl(z +r )'~ )rdr .'I, -' '' (32)

C';Em (&)=&.;im & (33)

in the pair potential of Eq. (5). In this case the functions
8".I' .I I, occurring in the integrand, are also of the
inverse-power-law type, according to

w ". ,.v', Im ', l1 I2 v; Im '; I1I2 (34)

where the coefficients w'. I' .I I can be obtained with the»12
aid of the recurrence relation of Eq. (12) together with
Eq. (11). After substitution of Eq. (34) in (32), the
remaining integrals are all of the type

f p P)(p)dp

We have derived an analytical expression starting with an
inverse-power-law expansion function:

sidered to be structureless, which is a good approxima-
tion for large distances z between the molecule and the
substrate. However, for smaller values of z, the aniso-
tropic (AWO) and corrugated (g&0) Fourier integrals
are not negligible. As we have mentioned before, the
latter types of integrals are dificult to handle analytical-
ly, because of the occurrence of a cylindrical Bessel func-
tion and an associated Legendre function in the in-
tegrand. So, in general, the anisotropic and corrugated
Fourier transforms can only be calculated numerically.
However, it appears that in the special case that the pair
potential of Eq. (5) is equivalent to, or derived from, a
sum of atom-atom potentials, all Fourier transforms can
be tackled analytically with the aid of an alternative
method. This will be proven in the next section.

m' 2 " 'I (@+1)
r(1+-,'p, —

—,'X)r(-', +-,'p+-,'X) (35)
III. ALTERNATIVE METHOD FOR AN

ATOM-ATOM PAIR-POTENTIAL MODEL

where the new integration variable p equals the cosine of
the angle between the vector x and the z axis, i.e., the ar-
gument of the Legendre polynomial in Eq. (32). It can be
shown, with the aid of Eq. (35), that the resulting tlat
Fourier transform equals

A. Atom-atom potential model

In this section we adopt an atom-atom model for the
interaction between the molecule and a single substrate
atom,

4,(olz) =s.,s. Ob':. ).,., z '"+.-", -
(36) V(R, ~ ) =g P. ( I

R+r. (~ ) l ) (38)

S, (a) m' I (v+a —2)
2V+a 2 f

l, I2 l

x&0oo
l2

where the coefticients O'. I' .. I are given by which is of course less general than a spherically expand-
ed molecule-atom potential. The vector R connects the
centers of mass of the molecule and the atom and co de-
scribes the orientation of the molecule, as in Sec. II. Fur-
ther, the vectors r, denote the relative positions of the
atoms a within the molecule with respect to the molecu-
lar center of mass. These vectors depend on ~ according
to the relation

(a)~ ~;Im', » r, (co) = R(co)r, , (39)

(37)
We can draw the following conclusion from the exam-

ples described above. For some specific model pair po-
tentials, the isotropic (A=o) and flat (g =0) Fourier in-
tegrals of Eq. (25) can be evaluated analytically. This
means that either the molecule or the substrate is con-

where R(co) is an active rotation matrix and r, is the po-
sition of atom a with respect to a body-fixed frame that
coincides with the global frame for co=0.

In principle, it is possible to transform the sum of
atom-atom potentials in Eq. (38) into a spherical expan-
sion, given by Eq. (5). Thus, the method of Sec. II can
be applied in order to obtain a Fourier series for the total
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molecule-substrate potential. The disadvantage of the
latter method is that not all Fourier integrals can be cal-
culated analytically, as appears from Sec. II D. The main
reason for this problem is that the spherical expansion of
the atom-atom potentials introduces associated Legendre
functions which cause problems in the Fourier transfor-
mation. On the other hand, if the Fourier transformation
is performed first and the spherical expansion afterwards,
then only isotropic Fourier integrals are needed. Such in-
tegrals can be handled analytically for an inverse-power-
law or an exponential pair potential, as appears from Eqs.
(28) and (30), respectively. So, it seems to be profitable to
write the total molecule-substrate potential first as a sum
of atom-substrate potentials:

with

(46)

It appears to be possible to rewrite the expansion of Eq.
(44), in combination with (45), in spherical tensor form,
as will be shown in the sequel. As a first step we substi-
tute into Eq. (42) the following spherical expansion:

P P!(2A,)+ 1)

q~o (p —
A, , )!!(p+A,, +1)!!

1

lM 1 1

U(x+u, co) =g f, (x+r, (co)+u), (40)
(A,i+p even), (47)

where x denotes the equilibrium position of the molecule
and u is a small displacement vector, in accordance with
Sec. II. The Fourier series

and

(48)

f.(x.)=gf.(glz. )e"", (41)
Further, we make use of the well-known spherical expan-
sion of a three-dimensional plane wave

describing the interaction between atom a and the sub-
strate, is isotropic. So, it follows from Eqs. (24) and (26)
that the Fourier coefBcients can be written as

n,

f.(g~z. )= g e ""
y, (g~z. ),

c

with

(42)

g. (glz. )= J &0(gr)P. ((z.'+r')'")~dr, (43)
0

where P, denotes the atom-atom pair potential, as in Eq.
(38).

The main goal of this section is to write Eq. (40) explic-
itly in terms of the molecular orientation co and the
molecular displacement u. Thus we obtain a form similar
to Eq. (23), with alternative formulas for the Fourier
coefficients FA(g~z) that will be given analytically. In or-
der to obtain the desired result we have to perform two
expansions of the atom-substrate Fourier series, one for
the vector(s) r, and one for u, as will be demonstrated in
the next two subsections.

B. Spherical expansion of atom-substrate Fourier series

In first instance, the molecular-displacement vector u
is considered to be zero, so that we have to make the fol-
lowing expansion of the atom- substrate Fourier series:

f (x+r)=g f(g~z+r. e, )e's e's', (44)

. where we have omitted the label a and the explicit depen-
dence on m.

Expanding Eq. (42), it follows that

f(g~z+r e, )

e's'=g gi '(2A2+1)j& (gr)C„' (g)C„' (r)*,A2 (k2) ~ (A2)

JM2

(49)

=g g(21 +1)
1 m

A, 2 l A, , A,z l
C(l)(r )

(50)

Finally, the explicit dependence of the expansion on the
molecular orientation co is introduced with the aid of'

C(l)(r) y C(l)(r0)D(l) (~)e (51)
m'

where r and r are related to each other via Eq. (39). As
a result we obtain

f(x+ r(co) ) =g g S& (g~z, r)e's
A' g

(52)

Here, the summation is performed over the combined in-
dex

A'=(l, m, m'), (53)
which can be considered as a special value of A [see Eq.
(8)] with a=1, =m, =0. In Eq. (52), the Fourier trans-
forms Sl appear to be

n

S, (g~z, r)= g e
e s=i

where j& is a spherical Bessel function of the first kind.
2

After substitution of Eqs. (45) and (49) into Eq. (44), the
r-dependent Racah harmonics are recoupled with the aid
of Gaunt's rule:

(iL)) ~ ~ (A,~) ~
P) P2

2~17 g &s &q g z ~(p)(
~

)
s=1 P=O

(45)
with

(54)
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(2A, ) + I )
r =2l+I r

0 (p —
A, , )!!(p+A, ) + 1)!!

1

r

I
Xgi (2A2+1)j& (gr)

~2

l ' (g) (/()+p even) . (55)

y C(/)(~ro )D(/) (~)+—y d( G, (co) (56)
aEa m' m'

Here ~ denotes a class of symmetry-related atoms with
the same distance r to the molecular center of mass. In
Eq. (56), the Racah harmonics are constant coefficients
which must obey the molecular symmetry. As a result,
the total molecule-substrate —potential expansion be-
comes

After summation over all atoms within the molecule, the
total expansion can be written in terms of totally sym-
metric symmetry-adapted functions 6'"

~ with the aid
of17

I

dependent part of Eqs. (57) and (58):

yP)(
~

+ . )
's(+

co l a 1

[WP' '(g~z)e' ']
a:0 I1:0m1: 11

Xu C ' (u) (a+l( even),
1

(62)

in which the expansion functions 8''I~' ' can be calculat-

ed by means of the initialization

U(x, co) =g g FA. (g~z)e's' G'" (co),
A' g

(57) W'P' '(g~z)=5, 5 y(~)(g~z)

and the recurrence relation for fixed p, g, and z:

(63)

with an alternative formula for the Fourier coe%cients:

n,

FA (g~z)= g e
c s=1

X y d(/) y q(/s)(
~ ) (/3)(

~
„)

a. P=O
(58)

C. Molecular-displacement expansion

This equation does not contain dificult anisotropic
Fourier integrals, which is, from an analytical point of
view, a remarkable simplification with respect to Eqs. (24)
and (25) for A=A'.

&II' +' (g~z)=( —1) '(2lz+I)

XXXX

I, 1 l2

XOOOA(g)
X W(/"(g~z) .Il m1

Defining, in agreement with Eq. (8),

A=(A', a, li, m i )=(l, m, m', a, l(, mi ),

(64)

(65)

As a final step, the Fourier series of the molecule-
substrate potential [see Eq. (57)] is expanded with respect
to molecular-displacement coordinates, according to

we obtain from Eqs. (57), (58), and (62) the final expres-
sion for the Fourier series of the molecule-substrate po-
tential:

U(x+u, co)= g U(x, co) .
(11 V)

0.'!
(59) U(x+u, co) =g g FA(g~z)e' '

A g

We will perform the expansion with the aid of the follow-
ing gradient formula:

(66)

(u V)F~ (glz)e's
+1

=ue's' g [ A (g)F, (glz)]C(."(u), (60)

which is indeed equivalent to Eq. (23) with

n,

F (g~z)= g e
~c

where the operator A (g) is defined by Xy. d"l„y ~II",',.(gl )X/g'(gl .)
a. P=0

(67)

o=0
. az'
igC'"(g)', o = —1, 1 . (61)

It can be proved, with the aid of the recoupling formula
(50), that successive application of the gradient formula
results in the following expansion for the z- and

The results of the alternative method, described above,
can be summarized as follows. Starting from an atom-
atom —potential model, we have derived an alternative
formula for the Fourier transforms FA(g~z) [see Eq. (58)]
which is valid for A=A'. The extension to A&A' has
been made with the aid of the recurrence relation (64). In
the next subsection we will show that the new expressions
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D. Analytical derivatives of isotropic Fourier integrals

In order to use the alternative formulas for the Fourier
transforms Fz(glz), we need the derivatives of isotropic
atom-substrate Fourier integrals, as appears from Eq. (58)
for A=A' and from the relations (63) and (64) for A%A'.
All other factors in both equations are independent of the
atom-atom potential and are easy to calculate. So, the
only remaining problem is the evaluation of the deriva-
tives of the isotropic Fourier integrals.

First, we start with an exponential atom-atom potential
type:

(t,„~(p)=e '~ (c )0) . (68)

In this case the isotropic Fourier integral is given by Eq.
(30), which is a product of a linear and an exponential
function. With the aid of

can be evaluated analytically for the most commonly
used atom-atom potentials.

y (P)(0l ) ( 1 )P (n P ) —n —)3+2
(n —2)!

(77)

So we have derived analytical expressions, see Eqs.
(70), (74), and (77), for the derivatives of the isotropic
Fourier integrals starting from an exponential or an
inverse-power-law atom-atom potential. After substitu-
tion of these derivatives into Eq. (63), the Fourier trans-
forms F~(glz) can be obtained analytically with the aid
of Eq. (67). We conclude that, at least for an exponential
and inverse-power-law atom-atom —potential model, all
Fourier transforms can be calculated analytically. This is
an important improvement with respect to the general
method, described in Sec. II.

where c ~' is defined as zero if i is negative or greater than
P/2. Although Eq. (74) is also applicable for g =0, in
which case the Fourier integrals are inverse-power func-
tions of z, the corresponding derivatives can be better cal-
culated directly with the aid of

(ze') = (z +/3)e',a." (69)
IV. A POTENTIAL EXPANSION FOR N2

ON GRAPHITE

X[(c +g )' z+I+P]e (70)

Second, we consider the more difticult case of an
inverse-power-law atom-atom potential

P„(p)=p ", n ~3 .

The corresponding isotropic Fourier integrals

f„(glz)= f Jo(gr)(z +r )
" r dv.

(71)

(72)

are products of inverse-power-law and modified Bessel
functions of z, as appears from Eq. (28). In principle, it is
possible to make use of the well-known differentiation
formulas for the modified Bessel functions, but this re-
sults in some tedious algebra. It is easier to use the rela-
tion

P„(gI z ) = —nz g„+,(g I z),
z

(73)

which can be proved by exchanging the di6'erentiation
and the integration. After successive application of Eq.
(73), the isotropic Fourier derivatives can be written as a
sum over zeroth-order integrals:

E(pl2)
'(t) '„'(glz) = g c z g +2p —z (glz)

i=0
(74)

where E denotes the entire function. The coe%cients c ~'

can be calculated with the aid of the initialization

it is not difficult to prove that the derivatives of the iso-
tropic Founer integrals are given by

y(P)(gl )
—

( 1)P ( 2+g2)((3—3)/2

In Secs. II and III two methods have been described to
obtain a combined spherical, displacement, and Fourier
expansion for a molecule interacting with a two-
dimensional substrate of regularly ordered atoms. In this
section we will show some numerical results for N2 on
graphite which illustrate the convergence of the various
expansions. As far as the isotropic (I =0) part of the po-
tential expansion is concerned, our results are similar to
those of Steele for noble-gas atoms on substrates. How-
ever, with the aid of the potential-expansion terms with
I )0 we can visualize the potential anisotropy explicitly.
Further, with the aid of the included displacement expan-
sion the importance of anharmonic terms in the
molecule-substrate potential can be demonstrated

Adsorbed monolayers of N2 molecules on graphite can
occur in a rich variety of interesting quasi-two-
dimensional phases. Neutron-scattering experi-
ments, ' low-energy electron di6'raction, " and
heat-capacity measurements have shown that the low-
temperature ground state of a N2 adlayer on graphite is
an orientationally ordered phase with a commensurate
(+3X V'3)R 30' center-of-mass structure. This is
confirmed by molecular dynamics' and Monte Carlo
simulations. ' For this ground-state structure two clas-
sical harmonic lattice-dynamics calculations are report-
ed, ' which are valuable for the determination of, as yet
unknown, experimental adlayer phonon frequencies. The
molecule-substrate force constants, used in these calcula-
tions, are derived from a sum of atom-substrate poten-
tials. In a forthcoming paper we will present a quantum-
mechanical lattice-dynamics calculation, where the
molecule-substrate-potential expansion of the present pa-
per will be used.

and the recurrence relation

c ~+"= (n +2P 2i)c ~—)+(P+—2 2i)c(~), , —

(75)

(76)

A. Spherical, displacement,
and Fourier expansion of atom-atom potentials

Before we show the numerical results for Nz on graph-
ite we will first derive further analytical expansion formu-
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las for a homonuclear diatomic molecule on a substrate,
using a Lennard-Jones 12-6 atom-atom potential model:

p(p) =
n =6, 12 P

(78)

So, the molecule-atom interaction is a special case of Eq.
(38), where the sum over atom-atom potentials is restrict-
ed to two terms:

V(R, ~)=0(IR+r(~)l)+0(IR —r(~)l) . (79)

As previously defined, the vector R connects the molecu-
lar center of mass with a substrate atom and co=(8,g)
denotes the molecular orientation in polar angles 8 and
cp. Further, the position of one atom within the molecule
with respect to the molecular center of mass is described
by the orientation-dependent vector r(co) with length r.

In the sequel we will first apply the general method of
Sec. II in order to obtain an explicit expression for a com-
bined spherical and displacement expansion of the
molecule-atom pair potential. This expression can be
used to calculate the total molecule-substrate —potential
expansion as a sum of pairwise contributions. With the
aid of the pair-potential —expansion formulas we will also
derive an explicit analytical expression for the Fourier
transform with g =0, describing the interaction with a
Aat surface. However, as we have explained previously,
the Fourier transforms with gAO are difficult to evaluate
analytically with the method of Sec. II. A solution to this
problem is provided by the special method of Sec. III,

I

V(R, ~)=Q @I(&) g ( —1) C'" (R)C'"(co), (80)

where the summation over I is limited to even values be-
cause the molecule possesses an inversion center. Fur-
ther, the radially dependent functions +I, occurring in
Eq. (80), can be evaluated. analytically with the aid of so-
called one-center spherical-expansion formulas (see for
instance Ref. 15) applied to Eq. (79). The result is

~nv;I@i(R)= g g ' (v even)
n =6, 12 v=n+I

with r-dependent expansion coefficients

(81)

which can be applied in this case because we have started
with an atom-atom —potential model. We will show that
the method of Sec. III results, of course, in the same
Fourier transform with g =0, as obtained with the
method of Sec. II. Although the Fourier transforms with
g&0 cannot be tackled analytically with the method of
Sec. II, the latter method is not useless in this example
for it results in formulas for the sum of molecule-atom
expansions that can be used to check the convergence of
the Fourier series numerically.

In order to apply the general method of Sec. II, we
must first transform the molecule-atom pair potential of
Eq. (79) into a spherical expansion similar to Eq. (5). For
a linear molecule, the symmetry-adapted rotation func-
tions 6'"

~ of Eq. (5) are simple Racah harmonics C'", as
follows from Eq. (2). So, Eq. (5) reduces to

2c„(2l + 1)(v—2 —l)!(v—2+ I)!tr

(n —2)!(v—n +I + 1)!!(v n —I)!!(—v —2 —l)!! (82)

Secondly, we expand the molecule-atom pair potential of Eq. (80) with respect to a molecular-displacement vector u, us-
ing Eq. (9) substituted into Eq. (7):

I1 l2 l
V(R+u, co)=g, g g W,' , '& (R)C ' .(R) u C ' (u)C'"(co) .

A I2 m2

(83)

Here, a summation has to be performed over the combined index A=(l, m, a, l„m, ), as defined in Eq. (8). In Eq. (83),
the radially dependent functions 8'I'. I'I determine the potential derivative of order o,' with respect to the intermolecular~12
vector. These functions are, just as 4&& in Eq. (81), of the inverse-power-law type according to

(a)
&nv I.l Iw" (z)= y

n =6, 12 v=n +I
(v even) . (84)

The coefficients tc„' .'I.
& I in this equation can be computed with the aid of the recurrence relation of Eq. (11), starting

1

with the initialization condition of Eq. (10). However, in this case it is also possible to derive an explicit analytical ex-
pression for these coefficients if one considers the combined spherical and displacement expansion of Eq. (83) from
another point of view. To this end, we write

V(R+u, co) =P( IR+u+r(co) I)+y(IR+u —r(~)l ) (85)

and perform a so-called double spherical expansion of the two atom-atom potentials. With the aid of analytical
double-spherical-expansion formulas (see Ref. 17) Eq. (83) can be obtained almost immediately. After some elementary
algebra, we arrive at the desired explicit expression for the expansion coefficients:

2c„a!(—1) '(2l, + 1)(2lz+ 1)(21+1)(v+a —lz —3)!!(v+a+Iz—2)!!rn '
1 2 2 " 2

(86)
(n —2)!(v—n +1+1)!!(v—n —l)!!(a+li + 1)!!(a—l i )!!
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So far, we have obtained explicit analytical expressions for the molecule-atom pair-potential expansion. Summation
over all pairs results in the following useful combined spherical and displacement expansion for the total molecule-
substrate interaction:

U(x+u, co)=+E~(x)u C ' (u)C'"(co),
A

(87)

which is a special case of Eq. (14). In Eq. (87), the vector x represents the position of the molecular center of inass with
respect to a global frame as defined in Sec. II. Further, the functions Fz contain a sum over pair contributions similar
to Eq. (15), that can be replaced by a two-dimensional Fourier series [see Eq. (16)]:

F~(x)=g F~(g ~z)e's',
8

(88)

with ~ denoting the projection of x on the xy plane, so that x=r+ze, . In Sec. II it has been demonstrated that the
Fourier coefficients with g =0 can be evaluated analytically for the inverse-power-law pair-expansion functions of Eq.
(84). Using Eqs. (24), (36), and (37), we obtain

b {a)
2&71' nv;I;I,

F~(Oiz)=5 05 ()
c n =6, 12 v —n+1Z

where n, is the number of substrate sublattices. Further, the coefficients b„' .'I. I are given by

(89)

2c„(—1) '(2l +1)(2l) +1)(v+a—3)!rb(a)
(n —2)!(v—n + l + 1)!!(v n ——l)!!(a+I, + 1)l!(a—l i )!!

(90)

As we have explained in Sec. II, the higher-order
Fourier components (gAO), are difficult to evaluate
analytically because the radial Fourier integral of Eq. (25)
contains a product of a cylindrical Bessel function and an
associated Legendre function in the integrand. However,
in this example we have started with an atom-
atom —potential model, so that the method of Sec. III can
also be applied. The application of this alternative
method is rather straightforward and results in the fol-
lowing expression for the Fourier coefficients:

I

After substitution of Eqs. (92) and (93) in Eq. (91) we ob-
tain Fourier transforms similar to Eq. (89) without
inolecular-displacement expansion (a =0) and with
coefficients

2c„(2l + 1)(v—3)!r"
(n —2)!(v—n +I + 1)!!(v—n —I)!!

(94)

in accordance with Eq. (90). The higher-order terms with
a) 0 fulfill the recurrence relation of Eq. (64), which can
be simplified to

n,

F~(g~z)= g e
0 e!

X g g WI "' )(g~z) y(&' ")(g~r),
n =6, 12 v=n

( ) (v+a —3)
nv, I;I)

/
b(a —1)

2/ —1
" 'I'I 1

1

(91)

which is a special case of Eq. (67). The coefficients
")(g~r) are defined in Eq. (55) and the functions
" ' ' can be calculated with the aid of the recurrence

relation Eq. (64) together with the initialization condition
of Eq. (63). Of course, the Fourier coefficients of Eq. (89),
derived with the general method of Sec. II, must be
equivalent to Eq. (91), i.e., the result of the special
method of Sec. III. In order to check this equality we use
Eq. (55), which reduces to

where b„' .'&. I equals zero by definition if I, is negative or
greater than a. It is not difficult to prove that the
coefficients of Eq. (90) obey the recurrence relation of Eq.
(95). So, the methods of Secs. II and III result in the
same fiat (g =0) Fourier transform. However, the
method of Sec. III is more powerful because with the aid
of Eq. (91) the Fourier transforms with gAO, which de-
scribe the surface corrugation, can also be evaluated
analytically.

—
( „)

~

(2I +1)r
( v —n I )!!(v n—+ I +—1)!!

(v —n=l, l+2, . . . ) .

From Eqs. (63) and (77) we conclude that

c„(v—3)!
W'(( "' '(O~z) =5( O5 ()

1 1 (n —2)!z

(92)

(93)

B. Numerical results

In the following we present some numerical results for
a N2 molecule interacting with a single graphite layer. In
order to obtain a real physical molecule-substrate system,
with graphite consisting of several layers, we have to con-
sider a sum of such single-layer contributions. It is in-
structive to start with one substrate layer, because this il-
lustrates clearly which terms in the total potential expan-
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sion can be neglected for the subsequent layers.
The C atoms in one graphite layer are ordered in a

two-dimensional two-sublattice structure (n, =2) with
primitive cell vectors a, and a2 of equal length (0.246 nm)
which make an angle of 60. We choose the origin of the
global frame in the center of a graphite hexagon and
orient the x axis along the lattice vector a&. With respect
to this reference frame the two substrate atoms within the
primitive unit cell are positioned at

s s
~, =—a, + —az (s =1,2) . (96)

Further, we use the empirically determined atom-
atom —potential parameters c6 = —1.469 J mol ' nm and
c &2

=2.050 mJ mol ' nm' corresponding with a
minimum @=0.2631 kJ mol ' of the N-C potential at a
distance p=0. 375 nm. The parameter r, occurring in
the expansion formulas, equals half the bond length of
the N2 molecule which is 2r =0.1094 nm.

In first instance we neglect the surface corrugation of
the molecule-substrate interaction, i.e., we approximate
the expansion coefficient F~(x) in Eq. (87) by the lowest-
order Fourier transform FA(O~z) that can be calculated
with the aid of Eqs. (89) and (90). We observe that Soko-
owski ' has used similar potential-expansion

coefficients in his calculations of the second virial
coefficient and other statistical thermodynamics proper-
ties of Nz on graphite. Sokolowski, however, did not cal-
culate the expansion coefficients with the aid of analytical
formulas, but he evaluated the occurring integrals numer-
ically. In Fig. 1 we have plotted some of the lowest-order
coefficients FI (O~z) with l 12 and a=li =m, =0 as a
function of the distance z between the molecule and the
substrate layer. In this case the index rn is necessarilssan y
zero as appears from Eq. (89). From Fig. 1 we conclude
that the ffat (g =0) isotropic (l =0) coefficient is stronglong y

dominant, especially at large distances between the mole-
cule and the substrate plane. Further, it has a relatively

eep minimum of —7.2 kJmol ' at a distance z =0.36
nm. Of course, the higher-order terms with l )0 in the
potential expansion, including Racah harmonics that de-
scribe the anisotropy, have also to be taken into account
in order to find the minimum of the ffat (g =0) part of
the total potential expansion. These higher-order terms
cause a shift of the Hat potential minimum with respect to
the isotropic minimum towards the substrate plane
(z =0.334 nm, 8=90). Further, the l =2 ffat Fourier
transform possesses also a recognizable minimum, al-
though its depth is relatively small ( —0.25 kJmol ').
Another interesting observation is that for all l values the
spherical Fourier coefficients become strongly repulsive
at short distances.

In order to investigate the infIuence of the surface cor-
rugation on F& (x), we have included the Fourier terms
with g%0. The projection of the molecular position x on
the substrate plane, the xy plane, is fixed in the center of '

a graphite hexagon, as is for instance the case in the two-
dimensional commensurate (&3X &3)R 30' N dla er
The number of m values for which Fi (x) does not van-
ish is limited because the molecule is positioned at the
global z axis, which is a sixfold rotation axis so that m
must be a multiple of 6. Further, the potential is also in-
variant under a reAection with respect to the xz plane so
that all remaining expansion coefficients Fl (x) are real
numbers. Fromrom Fig. 2, which represents expansion
coefficients FI (x) with l ~ 12 and m =0, we observe that
the l=0 and l =2 curves strongly resemble the corre-
sponding curves of Fig. 1, apart from a small shift to-
wards the substrate plane at short distances. However,
for l ~ 4 the higher-order Founer contributions, describ-
ing the corrugation, have a great inhuence, probabla y
caused by nearest-neighbor pair interactions. In Fig. 3 all
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FIG. 1. Potential expansion coefficients FI with / ~ 12,
describing the interaction between a N~ molecule and a single
uncorrugated graphite layer, i.e., only the lowest-order Fourier
coefficients with g =0 are taken into account.

FIG. 2. Potential expansion coefficients I'I with I ~ 12 and
m =0 for a N2 molecule interacting with a single corrugated
graphite layer. The molecule is positioned at a distance z above
the center of a graphite hexagon.
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FIG. 3. Potential expansion coefficients FI withwith 6~i~12
and m =0,6 with the same conditions as in Fig. 2.

independent expansion functions FI with I ='h i=68 1012
and I =0,6 are shown. The coefficients with m = 12 are
omi e,tt d because they are practically zero within the plot

mAOdomain. From this figure we conclude that the rn

terms, which are responsible for the y dependence of the
molecule-substrate potential, are negligible at distances
greater than 0.3 nm. This is an important conclusion be-
cause it implies that if the Nz molecule is adsorbed
beyond this critical distance, then the total molecule-
substrate interaction cannot couple in-plane and out-of-
plane rotational motions.

S f r we have considered the expansion coefFicientso ar, w
o eculeF& (x) describing the interaction between a Nz molecu e

and a single graphite layer. For a corrugated surface, we
have only presented results for the case that the molecule
is positioned above the center of a graphite hexagon. As
we have mentioned before, the potential expansion
coefficients for a real graphite substrate, consisting o
several layers with an interlayer distance of 0.337 nm, can
be obtained as a sum of single-layer contributions. In this
sum the Fourier coefficients with g&0 are negligible for
the second- and lower-lying substrate layers, as can be
concluded from Figs. 1 and 2, i.e., the lateral positions of
the substrate atoms within these layers are of no
inAuence. Further, in order to describe the interaction
between a Nz molecule and a complete graphite substrate
it appears to be sufficient to include only one corrugated
top layer and ten fiat (g =0) layers. Minimizing the total
molecule-substrate potential, we find that a single N2
molecule is adsorbed above the center of a graphite hexa-
gon of the top layer, at a distance z =0.33 nm, with equi-
librium angles 8=90' and y=0'. The only y dependence
of the total potential originates from expansion terms
containing coefficients F& (x) with m&0 resulting in a
very weak sixfold barrier of 0.5 Jmol ' in the cp direc-
tion. On the other hand, the anisotropy in the 8 direc-
tion is relatively strong, as is illustrated by a rotational 8
barrier of 10 kJ mol '. So, at an adsorption site the y an-
isotropy of the N2-graphite interaction is negligible com-
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FIG. 4. Anisotropic part of the intralayer crystal field that is
expenence y ad b a N molecule within a commensurate
(&3X &3)R30' N2 adlayer as a function of the molecular angles
8 and y. The molecule-substrate interaction is omitted an aall
other N2 molecules are fixed in their equilibrium positions and
orientations (see text).

pared with the 6 anisotropy, in agreement with a previ-
ous conclusion drawn from Fig. 3.

For quantum-mechanical lattice-dynamics calculations
on a commensurate (&3X &3)R 30' N2 adlayer with
two-dimensional space group p2gg, it is interesting to
compare the anisotropy of the Nz-graphite interaction
with the anisotropy of the N2-Nz interaction. We use the
N -N tential of Berns and Van der Avoird, which isz- 2 po
a spherical expansion of an ab initio potential surface.
Because the molecule-molecule and molecule-substrate
interaction are given in the same representation, they can
be easily combined in the potential calculation, as well as
in the lattice-dynamics calculation. Optimization of the
adlayer crystal structure, assuming a rigid substrate and
fixing the molecular centers of mass at adsorption sites,
results in molecular axis orientations parallel to the sub-
strate surface (8=90'). The equilibrium in-plane orienta-
tion for a molecule of the first sublattice becomes

, =48 . A molecule of the second sublattice can be ob-
tained from the first by means of a glide reQection, result-

0
ing in an equilibrium in-plane angle y2 = 1~2 .

We will now investigate the anisotropy of the crystal
field, with and without N2-graphite interaction, that is ex-
perienced by a molecule of the first sublattice, assuming
that all other N2 molecules are fixed in their equilibrium
positions and orientations. In Fig. 4 we ..ave p lotted the
anisotropic part (I )0) of the intralayer crystal field, i.e.,
without substrate, as a function of the angles 8- and cp.

From this contour plot we observe that the intralayer
crystal field shows a strong y anisotropy especially for
8=90 with a rotational barrier of 5 kJmol '. Further,
for 8=90 and y =48, there is a saddle point, so that the
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FIG. 5. Superposition of the anisotropic part of the N2-

graphite interaction and the intralayer crystal field of Fig. 4
within a commensurate (&3X &3)R30 N& adlayer.

planar two-dimensional crystal structure is not stable
without molecule-substrate interaction. In the neighbor-
hood of this saddle point the 8 anisotropy is relatively
weak compared with the y anisotropy, in contrast with
the anisotropic behavior of the N2-graphite potential as
discussed previously.

In Fig. 5 we have added the anisotropic part (1 & 0) of
the N2-graphite interaction to the intralayer crystal field
of Fig. 4. Comparing these figures, we conclude that be-
cause of the strong anisotropy of the N2-graphite interac-
tion in the 8 direction, the saddle point in Fig. 4, ob-
tained without substrate, is replaced by a minimum in
Fig. 5. However, the y anisotropy caused by the in-
tralayer interaction is practically not influenced by the
molecule-substrate interaction. Summarizing, we expect
that in the commensurate ( &3 X v'3 )R 30 Nz adlayer the
out-of-plane rotational dynamics, described by the coor-
dinate 8, will be governed by the N2-graphite interaction
and the in-plane dynamical behavior, corresponding with
motions in the y direction, will be strongly determined by
the Nz-Nz interaction. This does not imply, however,
that the y anisotropy of the molecule-substrate interac-
tion is always negligible. For example, in an incommens-
urate N2 adlayer, where the molecules are not adsorbed
above the centers of graphite hexagons, the corrugated
part of the molecule-substrate interaction can cause a y
barrier of 0.5 kJmol, which is 10% of the intralayer
value. On the other hand, the 6 anisotropy appears to be
practically independent of the surface corrugation.

So far, we have fixed the molecular centers of mass in
their equilibrium positions. In lattice-dynamics calcula-
tions, including the translational vibrations, the Taylor
expansion of Eq. (87) with respect to molecular displace-
ments u is useful. Because the out-of-plane translational
motions are, just as the out-of-plane rotations, strongly
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FIG. 6. N2-graphite interaction as a function of the distance
z with respect to the corrugated top layer. The molecule is posi-
tioned above the center of a graphite hexagon and the molecular
orientation is fixed at angles 8=90' and y=48'. The dashed
curves represent various Taylor approximations up to order
+=2, 3, or 4, inclusive.

V. CONCLUSION

We have elaborated on two methods to obtain an

analytical potential expansion for a molecule interacting
with a substrate that consists of atoms which are ordered
in a two-dimensional lattice.

determined by the molecule-substrate interaction, we will
investigate the convergence of the Taylor expansion with
respect to displacements perpendicular to the substrate
surface. In Fig. 6 the solid curve represents the total N2-
graphite potential as a function of the distance z with
respect to the substrate top layer. All other molecular
coordinates are set equal to their equilibrium values in
the optimized commensurate adlayer, although a varia-
tion of y would not be visible on the energy scale used
here. %"ithin the harmonic approximation, represented
by the dashed curve with a =2 in Fig. 6, the bound-state
energies can be characterized by a fundamental oscillator
frequency of 0.4 kJ mol '. From Fig. 6 we conclude that
the harmonic approximation is good if the molecule is in
the ground state at —9.5 kJmol ', where it oscillates
with a translational amplitude of 0.01 nm with respect to
the potential minimum. However, for the first excited
state at —9.1 kJ mo1 ', corresponding with an amplitude
of 0.02 nm, the harmonic approximation is not accurate
enough. Although the third-order Taylor approximation
(a=3) is better within a greater domain, it is dangerous
to use this approximation because the first excited state is
nearly at the same level as the local maximum at z =0.36
nrn. This implies that, at finite temperatures, the mole-
cule can easily escape from the surface if the third-order
Taylor approximation is used. Of course, this is an un-
desired artifact that is avoided if one only uses Taylor ap-
proximations of even order (see, for instance, the dashed
curve corresponding with a =4 in Fig. 6).
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The most general method, shown in Sec. II, starts with
a spherically expanded molecule-atom potential which
represents the anisotropy explicitly. This pair potential is
expanded with respect to molecular displacements. Fi-
nally, because of the two-dimensional translation symme-
try parallel to the substrate surface, the lattice sum over
the expanded molecule-atom pair potentials is replaced
by a two-dimensional Fourier series. We have given
analytical expressions for the isotropic (1=0) and Aat

(g =0) Fourier transforms. As far as the corrugated part'
of the molecule-substrate —potential expansion is con-
cerned, the anisotropic Fourier transforms are difficult to
evaluate analytically, however.

In Sec. III we have presented a special method that is
applicable if an atom-atom model is used for the
molecule-atom pair potential. This method starts with a
Fourier transformation of isotropic atom-substrate poten-
tials. After a spherical expansion of the atom-substrate
Fourier series, followed by a translational displacement
expansion, the final expression has a similar form as the
result of the general method of Sec. II. A great advan-
tage of the special method of Sec. III is that all expansion
coefficients can be evaluated analytically for exponential
and inverse-power-law atom-atom —potential types.

As an example, we have applied both methods for a
homonuclear diatomic molecule on a substrate, resulting
in some simpli6cations and further analytical formulas.
In order to illustrate the convergence of the expansion,
some numerical results have been shown for N2 on graph-

ite. At an adsorption site, the in-plane anisotropy of the
N2-graphite interaction, caused by the corrugation, ap-
pears to be negligible compared with the out-of-plane an-
isotropy. In the commensurate (&3X &3)R 30' structure
the out-of-plane crystal-field anisotropy is strongly deter-
mined by the N2-graphite potential and the in-plane an-
isotropy is dominated by the N2-N2 interaction. The
anharmonic terms in the molecular-displacement expan-
sion are so important that they will inAuence the out-of-
plane translational vibrations. Truncation of this expan-
sion after the cubic terms should be avoided, since this
produces the artifact that an adsorbed molecule can easi-
ly escape from the surface.

Finally we observe that the techniques developed in
this paper can also be used to obtain general expressions
for the interaction between electrostatic multipole mo-
ments and a two-dimensional lattice of multipoles. This
will be treated in a forthcoming paper.
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