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The low-temperature thermal properties of an amorphous polymer were used to probe glassy be-
havior as a function of pressure. Specifically, the thermal diffusivity « and thermal conductivity «
of an epoxy were measured over the range 0.3—10 K at pressures up to roughly 4 kbar. The specific
heat determined from k/a was observed to decrease with pressure; the relative changes were rather
uniform over the entire temperature range. The thermal-conductivity measurements revealed an in-
creased conductivity with pressure for temperatures above 1 K. The magnitude of this pressure-
induced increase in k was smaller at lower temperatures; near 0.3 K, the measurements indicated
decreased « as pressure was applied. Analysis of these measurements using the tunneling model
suggests that the energy density of two-level excitations decreases with pressure, while the coupling
of these excitations to phonons increases. The measured changes in the 0.3—1-K regime indicate
that the density of two-level systems depends on the phonon velocity v as v 3. The magnitude of
the pressure-induced changes in the range 1-10 K suggests that the strong phonon scattering and
excess excitations in this regime are most likely not related to structural length scales in the glass.
Finally, the similar changes with pressure over the entire temperature range suggest that all the ex-
citations, namely phonons, two-level systems, and the additional modes above 1 K, are related.
These results are discussed with regard to the tunneling model, microscopic models, and the fracton
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theory.

I. INTRODUCTION

The low-temperature thermal properties of glasses re-
veal interesting behavior that has become recognized as a
signature of disorder in solids. We have investigated the
effects of pressure (0—4 kbar) on the low-temperature
(0.3-10 K) thermal conductivity and specific heat of an
epoxy-resin, a representative amorphous (glassy) poly-
mer. The goal of this work was to examine the strain
dependence of low-energy excitations and, in addition, to
test some current models relevant to glassy phenomena in
the temperature region of 1-10 K.

At temperatures below =1 K the specific heat C of a
dielectric amorphous solid can be 2 orders of magnitude
greater than the corresponding crystalline specific heat,
while the thermal conductivity « can be 3 or 4 orders of
magnitude smaller for the glass than for the crystal. The
specific heat, which is quasilinear in temperature 7, is in-
dicative of localized excitations which are present in ad-
dition to phonons. These excitations scatter phonons,
giving rise to a reduced, ~7T? thermal conductivity. A
universal feature of glasses appears to be that the phonon
mean free path is of the order of 150 phonon wavelengths
in this 72 regime.' ™3

In addition to low-temperature specific-heat and
thermal-conductivity measurements, many other experi-
mental investigations of glasses have been performed.3
From this body of information, some important charac-
teristics of the low-energy excitations have been deter-
mined. Saturable acoustic attenuation* of amorphous
solids indicates that a two-level description of these exci-
tations suffices to explain phenomena observed below 1 K
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and, thus, permits a mapping onto the problem of a spin-
1 particle in a magnetic field.?

A phenomenological model, in which it is assumed that
some entity of atomic dimensions tunnels between two
potential wells,>® can account for two-level systems
(TLS’s) and the phenomena below 1 K. As will be dis-
cussed, thermal measurements probe the density of TLS’s
and their coupling to phonons. Information about the
pressure dependence of the TLS’s—their density and
phonon coupling—may increase our understanding of
these ubiquitous excitations.

In the temperature range 1S 7 510 K, amorphous
solids exhibit a nearly temperature-independent ‘‘pla-
teau” in thermal conductivity and also a broad maximum
(or “bump”) in C/T>. The plateau in « is indicative of
strongly-frequency-dependent phonon scattering; the
broad maximum in C /T3 is the result of a large increase
in the density of states N(w) at high frequencies. An
empirical correlation is that glasses having the plateau at
higher temperatures have the bump in C/T? also at
higher temperatures.” It therefore has been speculated
that these two “high-temperature” features are related to
each other”® and, perhaps, also to the lower-temperature,
TLS behavior.”1°

The bump and plateau phenomena have been the focus
of recent theoretical work. An elegant but controversial
theory of fractons relates the two features to a critical
length scale below which the amorphous solid is assumed
to exhibit self-similar geometry.!! There are also micro-
scopic models that relate the bump and plateau to vibra-
tional modes of molecular structures.!*!3 Pressure mea-
surements of the bump and plateau should provide a test
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for the self-similarity idea; compressing a sample would
correspond to decreasing the supposed critical length
scale. In addition, the pressure measurements should be
useful in assessing the microscopic models.

A brief discussion of the various models is given below.
More detailed explanations can be found in the references
cited.

A. T <1K: The tunneling model

To account for glassy behavior below =1 K, the tun-
neling model®® was introduced. This model postulates
that the interatomic potential in structurally disordered
solids contains regions having two nearly identical wells
separated by barriers of height ¥V, and having asym-
metries A. An atomic- or molecular-size object is as-
sumed to reside at a given double-well site. Tunneling of
this object through the barrier gives rise to an energy
splitting A, of the ground state if the potential wells are
symmetric. For asymmetric wells the TLS energy split-
ting is E=(A2+A})!/2

A consequence of the expected distributions in A and
Vy is a broad distribution of the TLS energies E and a
broad distribution in the TLS relaxation rate 7~ !. There-
fore, the measured specific heat will depend on an experi-
mental time scale ¢, and the TLS distribution P(E,7™ 1)
must be considered in computing the TLS contribution to
the specific heat. The TLS contribution to the specific
heat is'*
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Here, i labels the phonon mode, v is a phonon velocity,
y =+(8A/de) is the TLS-phonon coupling constant (i.e.,
2vye is the change in A induced by strain e), p is the mass
density of the glass, and kj is the Boltzmann constant.

Equation (1) gives

C =12~k2nT (4)
TLS 6 B >

where n =n (E) is the roughly constant energy density of
TLS’s and represents the integral of P(E,7 ') over 7~ !:
P
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The time 7, is evaluated at E~2kzT. If t is longer
than 7,,, the equilibration time of the slowest relaxing
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TLS, the integrated density » becomes
p 47
n=Ly |max ©)
2 Tmin

Typically, n / P=~10.

The phonon lifetimes (and, therefore, the thermal con-
ductivity) below 1 K can be calculated by considering the
resonant interaction of phonons with the localized TLS’s.
The TLS and phonon relaxation rates are

242
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The quantity Ay,/E is a measure of the symmetry of a
double-well site. For maximum symmetry A=0; hence,
Ay/E=1. TLS’s arising from these symmetric double
wells couple most strongly to phonons and have the dom-
inant effect on x. The phonon mean free path due to this
resonant scattering is given by
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From /" !(w) the thermal conductivity can be calculat-
ed:

K(1=13 [ Cilow(o)(w)do, (10)

where C(w) is the phonon contribution to the specific
heat at frequency w. For constant v, with /;~ Yw) as given
in Eq. (9), the integral gives

_pv_

k(T) < 5.2 T? . (11)
Y

Here, v and y represent appropriate averages over the
acoustic-phonon modes.

It has been shown above that the linear temperature
dependence of C and the quadratic temperature depen-
dence of k can arise from the TLS’s and their resonant
scattering of phonons, respectively. It should be men-
tioned that experiments below 1 K reveal'® C « T'*® and
ko T?79, where 0.1<a<0.5 and ¢~0.2. The super-
linear dependence of C on T is readily understood from
the time dependence expressed in Eq. (5). The distribu-
tion responsible for this time dependence, P(E,7~ 1), can
also give rise to the subquadratic dependence of k on T.
It is also possible that variations from the assumed distri-
bution of A and ¥V, among the TLS’s contribute to this
behavior.

The broad range of 715 has consequences for specific-
heat measurements performed at angular frequency ().
To understand the frequency dependence it is helpful to
consider first a single TLS characterized by single values
of E and 7. If a TLS is coupled to a heat bath having a
sinusoidally time-varying temperature, the effective



40 LOW-TEMPERATURE SPECIFIC HEAT AND THERMAL ...

specific heat is a complex number,

Cris(E)
* — * —1 =7TLS
C*=CYE,r H=— 5> (12)
J
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where X =E /2kpT.

It should be noted that the tunneling model is phenom-
enological, having adjustable parameters P and . No in-
dication as to the microscopic origin of the TLS’s is pro-
vided nor does the model explain the universal character
of glassy behavior. Nonetheless, it can be helpful to in-
vestigate how P and y are influenced in a controlled ex-
periment.

If the coupling parameter y is known, a simple esti-
mate of the effect of pressure can be made. A typical
value for y is =1 eV (e.g., vitreous silica®). If the
modulus of compression of the glass is ~670 kbar (1 kbar
~108 Pa), then a pressure of 1 kbar would induce a strain
€~0.0015 and the product ye then would be ~0.0015
eV or 18 K. Hence, a change in A of roughly 40 K would
be induced if y remained constant. Such a change in A
would result in a large change in a TLS energy E that was
formerly of order 1 K. Considering that thermal mea-
surements below 1 K probe TLS’s having energies of or-
der 1 K or less, one might conclude that most of the
TLS’s in the experimental window of observation are
moved out to ~40 K by the applied pressure. A gap in
n(E) below 1 K would result if all energies E were in-
creased by pressure. There is, of course, the possibility
that some TLS’s have negative values of ¥ so that TLS’s
at higher energies would be moved into the 1-K range,
thereby filling in the gap. It is also possible that, for
strains so many times larger than those associated with
phonons, the linear relation between A and e may not
hold.

Independent of the tunneling model or other theoreti-
cal models, one can make the following observation, pro-
vided the sample remains amorphous upon application of
pressure. Since all amorphous solids have roughly the
same thermal conductivity (and, more loosely, the same
specific heat), the application of pressure is not expected
to cause a large change in either x or C at temperatures
below 1 K.

B. 1 ST <10K: Librations, rotations, and fractons

The “bump” in C /T3 is indicative of a rise in the den-
sity N(w) of vibrational excitations. The “plateau’ in
thermal conductivity is a consequence of strong phonon
scattering® at high frequencies or short wavelength A;
that is, [ cw %< A*. (Essentially, amorphous solids are
low-pass phonon filters.)

Among the first observations about the bump and pla-
teau phenomena is that these two features have similar
onset temperatures for a given amorphous solid.”'® In
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where Cp;g(E) is the total (long-time) specific heat of the
TLS. Now the effects of a distribution P(E,7~!) can be
calculated by integrating C*(E,7”!) over the distribu-
tion:

Tmin
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other words, the energy scales for the bump and for the
plateau appear to be correlated. Two ideas proposed for
a common origin of these features are (i) a TLS density
n(E) having a term quadratic®!° in E, and (ii) phonon
dispersion.”® The quadratic term in n(E) has no obvious
justification, and there is no direct evidence for such be-
havior. As for phonon dispersion, measurements on vit-
reous silica'®!7 reveal no dispersion at frequencies corre-
sponding to the plateau in «.

There also have been some ideas put forth that attempt
to explain the plateau but do not address the bump in
C/T>. The essential ingredient for a theory of the pla-
teau is a mechanism for strongly-wavelength-dependent
phonon scattering.!® Various forms of structure scatter-
ing have been proposed (e.g., density, velocity, and force-
constant fluctuations), but none can account for the mag-
nitude of scattering required’ to produce a plateau in .

More recent work has produced microscopic mod-
els'>13 for the well-characterized systems vitreous SiO,
and crystalline KBr; _,(CN),. KBr,_,(CN), is an orien-
tational glass over a range of x. The orientational disor-
der arises because the CN impurities doped into a KBr
crystal can have random orientations at their sites.!>?°
In contrast, vitreous silica is a typical structurally disor-
dered solid; the SiO, molecules have an arrangement
characterized by short-range order and the absence of
long-range order. Both substances have a relatively sim-
ple molecular structure, so that microscopic modeling
can be attempted.

The CN concentration x in KBr;_,(CN), can be
varied over a broad range.!” For low concentrations the
CN molecules behave as isolated impurities within an or-
dered crystalline lattice. At higher CN concentrations
(x =0.5) the substance exhibits glassy low-temperature
behavior. Such a material creates the possibility of ob-
serving behavior through a transition from a system of
isolated impurities to an orientational glass. The glassy
samples exhibit the characteristic bump and plateau
features, as well as the TLS-related phenomena.20

A recently proposed model'? considers the TLS in
KBr,;_,(CN), as understood and focuses on explaining
the bump and plateau. (The TLS can be interpreted as
arising from the tunneling motion of interacting CN;
hence, a microscopic model relating the bump and pla-
teau to CN motion also links these features to the lower-
temperature TLS behavior.) The authors of the model
consider small-angle oscillations, or ‘librations,” of in-
teracting CN. To carry out calculations on the KBr-
KCN system, the CN are modeled as interacting elastic
dipole defects placed randomly in an elastic continuum.
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From this model the calculated specific heat is in fair
agreement with available data (the calculation and exper-
iments differ by ~25%), but the plateau thermal conduc-
tivity, as calculated, is a factor of 2 or 3 larger than the
measurements. Although the agreement is only qualita-
tive this microscopic theory of librational modes of CN
does provide a way to link the bump and plateau. Furth-
ermore, there would be some hope for relating the bump
and plateau to the TLS behavior.

With the simple picture of elastic dipole defects, one
can make qualitative predictions about the effects of pres-
sure on the bump and plateau. As applied pressure tends
to stiffen a material,?! the normal modes of the elastic di-
pole defects might also be stiffened [i.e., the onset of the
rise in N(w) would be shifted to higher w]. The bump in
C /T* would then be reduced in magnitude as the associ-
ated excitations moved to higher energies. Furthermore,
as these librational modes were shifted to higher w, the
phonon scattering in the plateau would be reduced, there-
by increasing the conductivity in the plateau. Thus, the
microscopic model of KBr;_,(CN), suggests that ap-
plied pressure will reduce the bump while increasing the
plateau conductivity.??

A detailed microscopic model relevant to vitreous sili-
ca has evolved from neutron-scattering measurements of
the excitations responsible for the bump in C/T>. These
measurements® '3 indicate a large density of harmonic ex-
citations in the range 0.3—4 THz. The model assumes
that these excitations correspond to relative rotation of
SiO, tetrahedra. The calculated form of scattered inten-
sity as a function of wave vector is quite similar to the ex-
perimental results. Also, the temperature dependence of
the specific heat from 5 to 20 K, as calculated from the
neutron-scattering data, agrees with that directly mea-
sured in the same temperature range.

The model of rotating tetrahedra has not been used to
calculate thermal transport in the plateau; hence, no in-
formation is available on the potential for this structural
model to link the bump and plateau phenomena. Howev-
er, speculations as to the relevance of the model to TLS’s
have been made.>!3 Computations suggest that a struc-
ture based on linked tetrahedra can have an excitation
spectrum with a low-frequency range characterized by
double-well potentials.’>?* The implication is that the
TLS and the bump may arise from the respective low-
and high-frequency vibrational modes of the same struc-
ture.

From the above ideas regarding vitreous silica, one can
make qualitative predictions as to the effect of pressure
on the low-temperature specific heat of glass. If the TLS
and bump are linked as described above, one would ex-
pect that a stiffening of the molecular structure would
shift the bump excitations to higher frequencies and
broaden the TLS distribution. The shift of the bump ex-
citations is easily understood as an increase in the fre-
quencies associated with the normal modes of the vibrat-
ing structure (i.e., the linked, rotating tetrahedra). The
broadened TLS distribution perhaps requires some ex-
planation. In the discussion of TLS’s, a broad distribu-
tion n(E) was used to derive C o T. In principle, this
broad distribution should have some high-energy limit,
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E .., corresponding to where the nature of the vibration-
al excitations changes from highly anharmonic to har-
monic. In other words, this limit should be in the bump
regime. If the total number of excitations (=nE_,,)
remains constant, but E_, increases as the material
stiffens, one would expect »n to decrease. In short, consid-
ering the structural model proposed for vitreous silica,
one might expect that applied pressure would cause a
reduction of the bump in C/T* and a drop in the TLS
contribution to the specific heat.

Whereas the above-mentioned microscopic models use
an analysis of molecular structure to predict the low-
temperature behavior of specific disordered solids, the
fracton theory makes a general statement that all amor-
phous material should exhibit a crossover from phonon
behavior to fracton behavior.!! The universal glassy be-
havior at T=1-10 K is then attributed to the crossover.
This thinking was inspired to a large extent by the known
frequency dependence of phonon scattering in glasses.
The strong phonon scattering, corresponding to the pla-
teau in thermal conductivity, and the subsequent short
mean free paths at high frequencies, are indicative of
phonon localization. Because of its use of geometrical ar-
guments to explain this universal localization, the
phonon-fracton crossover idea is quite attractive.

Some basic consequences of the phonon-fracton cross-
over have been presented?” as scaling relations, involving
a crossover frequency w.,, a crossover length scale £, and
sound velocity v. These relations are

wcom§~(1+9/2) , (14)
Do £ (15)

The parameter 0 is an exponent used to describe the
range dependence of the diffusion constant on a fractal
network.’® The crossover frequency is the frequency at
which the density of states changes from phonon ( < w?)

to fracton ( < @? ') behavior. The spectral (fracton) di-
mension d is analogous to the Euclidean dimension in
that the vibrational density of states in Euclidean dimen-
sion n is proportional to »” ~!. This spectral dimension is
given by

d=2D /(2+86), (16)

where D is the Hausdorff (fractal) dimension, which has a
value between the topological dimension and the Euclide-
an dimension. (For example, a random walk in a plane
fills a Euclidean dimension of n =2, but the curve indicat-
ing the motion of the random walk is a one-dimensional
object embedded in the Euclidean space; the dimension D
of such a random walk lies between 1 and 2.)

There is strong evidence that fractons have been ob-
served in silica aerogels;*”?® however, these low-density
materials are not representative glasses. The aerogels
have a rarefied structure with a broad range of pore sizes.
Even for such low-density (~ 100 kg/m®) materials, the
range of fractal behavior is limited to only 1 order of
magnitude in length scale.?’ This range in length scales is
determined by the relative sizes of the pores in the ma-
terial and the clusters from which the material is formed.
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For the bulk glasses (having typical densities of 2000
kg/m?), one would expect a rather limited range in length
scales over which fractal geometry exists (for example,
expected “pore” diameters in vitreous silica®® are roughly
2-4 A; the SiO, tetrahedra are not considerably smaller
than these “pores”). Although the ‘phonon-fracton cross-
over explanation of glassy behavior is elegant, the use of a
theory of fractons for materials that most likely have no
appreciable fractal structure is questionable.

One could argue that the relevant length scales are
dynamical and not structural; the above-mentioned small
range of structural length scales over which a glass could
be fractal might then be irrelevant. In addition, one
might argue that amorphous polymers (which behave as
typical glasses) have a fractal character arising from the
random configuration of long molecular chains. Indeed,
there have been claims®! by some that thermal measure-
ments on epoxies? support the fracton theory of glasses.
Others, however, have suggested nonfractal explanations
for the same data.’>3? In short, there has been no con-
clusive proof or refutation of the relevance of the
phonon-fracton crossover to glasses.

For the purposes of this study, the fracton theory will
be treated in a general context as a theory of localization.
The qualitative effects of pressure can be estimated as fol-
lows. By reducing the sample volume, the critical length
scale £ should decrease. This decrease in £ would corre-
spond to an increase in the crossover frequency w.,. If
the “bump” in C/T? arises from this crossover, then its
magnitude should decrease as the crossover shifts to
higher energies. In addition, if the plateau is related to
phonon localization at the phonon-fracton crossover,
then the plateau conductivity should rise as the fractons
move to higher energies. The degree of change in the
specific heat and the thermal conductivity depend on the
magnitudes of the various dimensions and parameters
mentioned above. Estimates of these parameters indi-
cate®* that the scaling exponents should be of order unity;
therefore the changes in plateau and bump for small
length changes are expected to be small.

C. Previous measurements

Experiments at low temperatures and high pressures
are rather difficult to perform. It is therefore not surpris-
ing that only a limited amount of such data are available
for amorphous solids. Attempts have been made to ob-
serve changes in the low-temperature properties of glass
samples strained permanently by, for example, ion ex-
change at the surfaces.’> The low-temperature properties
of such samples were identical to those of unstrained
samples, perhaps because the “average” deformation in
these strained samples was close to zero.

Two materials that have been studied under homogene-
ous pressures of a few kbar at low temperatures are
Teflon® and vitreous silica.’” Teflon has been employed
as a pressure-transmitting medium*® for low-temperature,
high-pressure calorimetry. A knowledge of the pressure
dependence of the specific heat of Teflon is therefore
essential to obtaining reliable specific-heat data for other
samples. Boyer et al.3® have measured the low-
temperature (~1-20 K) specific heat of Teflon at pres-
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sures to ~ 5 kbar, corresponding to a decrease of roughly
8% in volume. The most notable pressure effect on the
Teflon specific heat is the dramatic reduction of the bump
in C/T?; near the maximum in C/T? the total specific
heat is reduced by more than a factor of 2 at a pressure of
5.2 kbar. The measurements do not extend below 1 K
where the TLS dominate the specific heat.

Interpretation of the experimental results is complicat-
ed because of questions as to the importance of the par-
tial crystallinity of the Teflon sample. In the measure-
ments, pressure is applied at room temperature and could
affect the degree of partial crystallinity in the Teflon.
Thus, the experiment may not be measuring intrinsic
glassy behavior as a function of pressure. Dobbs and An-
derson® make a comparison with their low-temperature
measurements of thermal expansion a and find a
discrepancy in the thermodynamic quantity [8(C/T3)/
9dP],. This derivative, when evaluated near 2 K, is a fac-
tor of ~ 3 greater for the specific-heat measurements than
for the thermal-expansion measurements. The partial
crystallinity of Teflon, and the fact that a phase transition
occurs in Teflon at low pressures®® near 300 K, may ac-
count for the discrepancy between the two sets of mea-
surements.

Boyer et al. analyze the specific-heat data in terms of a
T3 (predominantly phonon) contribution, and contribu-
tions from two Einstein terms. In this context, both the
phonon contribution and the Einstein contribution de-
crease as pressure increases. These two phenomena are
interpreted as a stiffening of the sample and an upward
shift of the Einstein temperatures, respectively.

Vitreous silica has also been studied under pressure at
low temperature. Bartell and Hunklinger’” have mea-
sured the acoustic absorption of Suprasil W1 (a quartz
glass) at a pressure of 1.2 kbar in the temperature range
0.4-4 K at a frequency of 200 MHz. They report a
~25% increase in acoustic absorption. According to the
tunneling model,*° the acoustic absorption is proportion-
al to the term 137/2. Hence, the increase in acoustic ab-
sorption for vitreous silica can be interpreted as an in-
crease in the TLS-phonon coupling as pressure increases.
Furthermore, if ¥ is roughly constant, a pressure of 4
kbar in vitreous silica should induce a change ~ 150 K in
a given double-well asymmetry A. However, the TLS en-
ergies probed in the ultrasonic experiments are less than
1 K. Therefore, the large changes in TLS asymmetries
that should be induced by the applied pressure appear to
leave a TLS distribution that has roughly the same densi-
ty near the low-energy ( <1 K) window of observation.
Thus, the relatively small change (25%) in acoustic ab-
sorption might indicate®”*! that there are nearly as many
double wells with a positive ¥ as with a negative 7.

II. EXPERIMENTAL CONSIDERATIONS

As can be inferred from the preceding section, a
reasonable choice of sample would be an entirely amor-
phous polymer that does not crystallize upon cooling or
upon application of pressure. Such crystallization is in-
hibited by high crosslink densities in amorphous poly-
mers.*? Some common highly crosslinked amorphous po-
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lymers are the epoxy resins.*?

There are a variety of epoxy resins that have been stud-
ied as representative glasses.***> In particular, some
Scotchcast resins have been studied at the University of
Illinois, and a body of zero-pressure, low-temperature
data for thermal conductivity, specific heat, and phonon
velocity exists.** The number-8 Scotchcast resin (SC-8)
has a high compressibility (~1-2 % per kbar at room
temperature) and is easy to cast and machine. High
compressibility is desirable for creating appreciable strain
e at lower pressures and thus facilitates making a large
deformation term 2ye. The additional advantages of us-
ing a “glue” for a sample will become apparent in the dis-
cussion of sample preparation. Although details of the
molecular structure of SC-8 are not available, the fact
that the material has been well characterized as glassy*®
and the fact that glassy properties depend only weakly on
chemical composition justifies the use of SC-8 in this ex-
perimental investigation.

Experimental work that combines high pressures and
low temperatures presents a number of technical chal-
lenges, and the choice of measurement technique be-
comes quite limited. In addition, the applied pressure

- may vary with temperature and must be determined for
the low temperatures at which measurements are made.
A third consideration is that the electrical components
and leads needed for the measurement must withstand
high pressures and thermal cycling, as must their
feedthroughs out of the pressure cell.

For high pressures a cylindrical geometry is most con-
venient, as a simple piston arrangement can be used to
apply pressure. For construction of the pressure cell, a
high-strength, high-thermal-conductivity material such
as a beryllium-copper alloy must be employed. However,
below 1 K the metallic pressure cell can have a heat capa-
city more than 100 times greater than the glassy sample
to be studied.’® Hence, a cell-independent determination
of sample specific heat is necessary. Such cell-
independent techniques probe the flow of heat into or out
of the sample. Some examples are hot-wire tech-
niques,*’ % transient-diffusivity measurements,’® and ac
steady-state measurements of thermal diffusivity.>!

An analysis of the above techniques, with considera-
tion of the thermal-boundary impedance® arising be-
tween different materials at low temperatures, led to the
choice of the ac steady-state diffusivity technique. An
added benefit of this choice is that the requisite two ther-
mometers and heater can also be used for dc radial heat-
flow measurements of the thermal conductivity.>3

A. Radial heat-flow measurement of conductivity

A standard technique for measuring thermal conduc-
tivity is to apply a known heat current to a thermally an-
chored sample and measure the resulting temperature
gradient between two points in the sample.>* For a cylin-
drical geometry as shown in Fig. 1, the sample is thermal-
ly grounded at its outer radius R and power Q is supplied
by an axial heater. The resulting temperature distribu-
tion is probed at radii r; and r,. The ratio
AT, ,/Q=[T(r|)—T(r;)1/Q is Z, , , the thermal im-
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FIG. 1.
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Cylindrical sample—view of semicylinder before

pedance of a shell of sample of inner radius »; and outer
radius r,. From this quantity, « is determined from
QIn(r,/r,) _In(ry/ry)
27lAT, , 27lZ ’

'y

K=

(17)

provided the length / is much larger than r.

The effect of finite sample and heater lengths is to
change the relation between the apparent thermal im-
pedance and the thermal conductivity, i.e., Eq. (17) is no
longer correct. Calculations of this effect are described in
Ref. 55. If thermal contact is made to the end faces of
the cylinder, the boundary conditions at these faces must
be considered. As a worst case one can consider the en-
tire surface of the cylinder to be at temperature T.
When this boundary-value problem is solved for the sam-
ple dimensions and positions of heater and thermometer
chosen for the measurements on SC-8, the effect of mak-
ing thermal contact to the ends (as in the actual experi-
ment) is found to be small. Use of Eq. (17) instead of the
solution for the finite sample would result in an error in k¥
of roughly +3%. This result is for zero pressure (an un-
compressed sample). In addition to this finite-size effect
at zero pressure, there is a further effect if the sample is
compressed. The heater length [ will contract by the
same fraction as the sample length L. If the value of / is
properly corrected for compression, it is found that there
is an additional error of roughly +0.1% for each percent
compression of sample length (for compression <10%).
In brief, the thermal conductivity is well approximated
by Eq. (17).

B. Thermal-diffusivity measurements

The sample arrangement used for thermal conductivity
measurements can also be used for ac, steady-state
thermal-diffusivity measurements. An oscillating power
of the form Py(1—e'®) is applied to the heater. Ther-
mometers T; and T, register the ac temperature distur-
bances at 7, and r,, respectively. From the relative am-
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plitudes and phases of the signals at r, and r, the
thermal diffusivity can be calculated. A brief description
of this technique is given below; a more detailed discus-
sion can be found in Refs. 51 and 55.

A calculation of the effects of the ac heater power at a
given radius r requires the solution of Poisson’s equation:
V2T =,"19T/3t, where « (=k/C) is the thermal
diffusivity. This solution has both dc and ac terms:

T(r,t)=Ty(r)+T,(r,t), (18)
Ty (r)=T Po nr/R
ael”’= "o 2wl n(r/R) ,

T,.(r,t)={F[Ky(n,Vi)—DIyn,Vi)le'¥} ,

where 1, =7V Q/a, K, and I, are modified Bessel func-
tions, and F and D are constants to satisfy the boundary
conditions at the sample surface » =R and at the outer
radius of the heater.

For the diffusivity measurements, only the ratio of
T,.(r,t) at the two thermometers is important. This ratio
is given by

Tac(rz,t) ig(ny,m,)
= = y(m,, , 19
Tac(rl,t) '/’(771 772)9 ( )

where 7; is used to denote ", and 9 and ¢ are the respec-
tive amplitude and phase of the complex number given by
Ko(n,Vi)—DI (Vi)

KomVi)—DIy(n, Vi)~

Peit= (20)
I,(nV'i) represents a “reflected temperature wave” and

its coefficient D is determined by the boundary condition
T,.(R,t)=0. Hence,

D=Ky(Rn,Vi /r))/Io(R,Vi /r,) .

Given ry, r,, and R, one can find ¥ and ¢ as functions of
7,. Thus, the two experimentally measured quantities 3
and ¢ provide independent determinations of 17,. From
values of 7),, the thermal diffusivity is determined by the
equation
r3
a -_—Q—z . (21)
2

If all the excitations being probed respond at rates
much faster than Q, the amplitude (¢) and phase (¢)
measurements should correspond to the same 7,. If,
however, there is a significant amount of specific heat
arising from excitations for which 7~ ! < Q, the diffusivity
« is a complex quantity. A consequence of the imaginary
component of « is that the value of 77, determined from 1
can differ from the value determined from ¢. This matter
is discussed below, where tests at zero pressure are
presented.

By choice of appropriate frequency ( and thermome-
ter positions #; and r,, the attenuation in the sample is
such that the “reflected wave” can be eliminated. In oth-
er words, if D is sufficiently small, the assumed boundary
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condition T,.(R)=0 is a good approximation. Thus, the
measurement can be made insensitive to poor thermal
contact at the cylinder surface (» =R), and insensitive to
the heat capacity of the cell walls. Furthermore, if the
distance from the thermometers to the ends of the sample
is greater than the outer radius R, the same attenuation
that limits the effects of the “reflected wave” also limits
the effects arising from the finite length of the sample.
Determination of « with negligible effects from finite
sample size is therefore possible.

C. Sample preparation and pressure cell

The sample geometry is indicated in Fig. 1. The gen-
eral approach to making the SC-8 samples was as follows.
Cylinders of the material were sliced in half, along the
longitudinal axis. On one of the halves, the axial heater,
thermometers, and associated leads were deposited. The
two semicylinders were glued back together and the as-
sembly was turned down to its final diameter. Finally, a
circular end piece (made of SC-8) was attached to the bot-
tom end of the cylinder and was used to position the elec-
trical feedthrough. This procedure is described in more
detail in Ref. 55.

The heater was made from 0.0025-cm-diam Pt-W wire.
The thermometers, made from Matsushita 100-Q resis-
tors for use at 0.1-2 K or Allen-Bradley 10-Q resistors
for use at 2—10 K, were placed at radii 7, =0.25 cm and
r,~0.50 cm. The vapor-deposited tin thermometer leads
had a superconducting transition near 3.7 K; this transi-
tion served to indicate the pressure. The heater and ther-
mometers were all four-terminal devices. With no power
applied to the heater, the carbon thermometers were cali-
brated in situ against a germanium-resistance thermome-
ter. The germanium thermometer had been previously
calibrated on the EPT 76 temperature scale against su-
perconducting fixed points, with interpolation using mag-
netic thermometry.

Upper piston
Lock nut

S\

Stainless Steel disk

A

manganin
leads

Lower piston

ot
)

\

8

Antiextrusion ring

Z

Thermal

N
Q
ground l
M

Sl Bundle of manganin
lecm leads (0.05! mm)

Sample

FIG. 2. Pressure cell. The notches on top of the lock nut
represent threaded holes used to make mechanical and thermal
contact to the cryostat.
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The beryllium-copper pressure cell employed a self-
clamping piston arrangement constructed as shown in
Fig. 2. The cell assembly consisted of the beryllium-
copper vessel and lock nut, two tungsten carbide pistons,
a stainless-steel disk, a copper antiextrusion ring, and the
sample and feedthrough. N grease served to fill any
remaining volume of the sample chamber, in addition to
providing lubrication and thermal contact to the cell.
After force was applied to the pistons at room tempera-
ture, the lock nut was tightened. The upper piston could
then be removed and the lock nut bolted to the cold
finger of a cryostat. For measurements near 1 K and
below, a’He-*He dilution refrigerator was used; measure-
ments in the range 2—10 K were performed in a pumped
*He cryostat. Leads from the sample were brought up
the side of the pressure cell and thermally grounded to its
outer surface. Should a sample survive the pressure and
temperature cycling, it could be extracted from the cell
and reused.

D. Experimental conditions and estimates of errors

The chief determinants of error for the thermal con-
ductivity measurements were the thermometer noise and
the thermometer sensitivity. The small (1-3 %) tempera-
ture differences employed to measure k required careful
use of the carbon-chip thermometers. It was noticed that
the carbon-chip resistance values R drifted noticeably
over several hours.’® However, the logarithmic deriva-
tive m =d(InR)/d(InT) was stable over the course of a
run. Therefore, the values of R were checked before and
after each conductivity measurement to ensure that no
appreciable drift had occurred. All calculations of tem-
perature changes made use of the stable quantity m (R)
and the most recently determined values of R. In this
fashion, problems arising from thermometer drift were el-
iminated. The applied temperature gradients in the sam-
ples could be measured to roughly 1%. Errors resulting
from measurement of geometrical quantities were less
than 1%.

Radial heat-flow measurements of the low-temperature
thermal diffusivity of SC-8 employed the ac, steady-state
technique discussed above. The measurement frequency
Q /2w was varied as the thermal diffusivity changed with
temperature. Typical measurement frequencies were 180
Hz near 0.3 K, 110 Hz near 1 K, 32 Hz near 3 K, and
0.75 Hz near 10 K. The chief sources of experimental
uncertainty were the errors in determination of the rela-
tive phase and of the amplitude ratio for the two ther-
mometer signals. These errors depended on noise in the
thermometers and were estimated to be between 1% and
2% of the measured diffusivity. The error in determina-
tion of thermometer positions and sample radius would
give rise to a 1% error in the thermal diffusivity.

In order to establish the reliability of the measurement
techniques, tests were made at zero pressure (outside the
pressure cell). We believe these tests are of major impor-
tance, as diffusive techniques can lead to erroneous re-
sults.’” For radial heat-flow measurements of k at zero
pressure, a cylindrical sample constructed as described
above was used. The sample was coated with N grease

J. M. GRACE AND A. C. ANDERSON 40

for thermal contact, and the radial cylinder surface alone
was wrapped with copper foil; the end surfaces were left
uncovered. Low-temperature measurements of k were
then performed. The results are shown in Fig. 3. In ad-
dition, “longitudinal” heat-flow measurements were per-
formed on a SC-8 sample having the same batch number
as that which was used to construct the cylinders. (Be-
cause of a 5—10 % uncertainty in the geometrical factor>®
for this measurement, the results were scaled by a con-
stant factor so that they matched the earlier measure-
ments at ~0.4 K.) As can be seen from Fig. 3, the radi-
al and longitudinal heat-flow measurements are then in
agreement with one another over the entire temperature
range. These data are also in good agreement with earlier
results,* which are included in Fig. 3.

A test was performed to ensure that the sample design
provided no spurious heat leaks. Such heat leaks could
arise along the vapor-deposited tin leads as they make the
transition from the superconducting to the normal state
near 3.7 K. Heat leaks parallel to the cylinder axis be-
come important when thermal contact is made to the end
faces of the cylinder. A longitudinal heat-flow measure-
ment of k was made along the axis of an actual pressure
sample. The sample was turned down to a radius slightly
greater than that of the outer thermometer leads. Two
heaters were wound around the circumference of the
cylinder. A thermometer was placed at the bottom face
of the cylinder (near the electrical feedthrough), and the
top face of the cylinder was thermally grounded. The
points marked by solid squares in Fig. 3 are the results of
these measurements. As can be seen, the measured k
agrees well with the other measurements. It can there-
fore be concluded that the tin leads provide no significant
heat leak even above the superconducting-normal transi-
tion near 3.7 K.
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FIG. 3. Comparison of radial heat-flow measurements of
thermal conductivity « (sample 8) with longitudinal measure-
ments, Matsumoto’s data were taken from Ref. 44. The data
denoted “longitudinal” are two sets of data taken with a c-
clamp technique (see Ref. 58); one set is scaled by a factor 1.05,
the other by a factor 0.915. Also indicated in the figure are the
results (denoted “longitudinal with tin”*) of the test for heat
leaks along the tin leads.



40 LOW-TEMPERATURE SPECIFIC HEAT AND THERMAL . ..

As a final test of the radial heat-flow measurement of «,
the effects of finite cylinder size were studied. In addition
to the cylindrical surface, thermal contact was made to
the top and bottom faces of the sample using N grease
and copper foil, and the thermal conductivity in the pla-
teau was measured. The apparent conductivity was
=~3% larger when the end surfaces were covered with
foil. This effect, mentioned in Sec. II A, is as expected.
Hence, confidence in gained in the calculation of the
effects of finite sample size and further evidence is ob-
tained for the absence of heat leaks along the tin leads.

The thermal-diffusivity measurements were tested at
zero pressure to check for agreement with more typical
pulsed-calorimetry measurements. Pulsed-calorimetry
measurements of C employed a standard heat-pulse tech-
nique®® on a separate piece of SC-8. The timescale of the
heat-pulse measurements was roughly 0.2 s, whereas the
timescale of the ac diffusivity mreasurements below 1 K
ranged from 4 to 12 ms.

As shown in Fig. 4, the amplitude and phase measure-
ments of diffusivity « differ from one another below 1 K.
The difference increases as temperature drops, and arises
from the distribution P(E,7 !) discussed previously.
Also shown in Fig. 4 are computations® based on the
tunneling model [Eq. (13)] with P as the only adjustable
parameter. These computations include the phonon con-
tribution to the specific heat. The phonons are excited
much more rapidly than the experimental frequency (2;
hence they contribute only to the real part of the specific
heat. An experimental specific heat may be deduced
from either the phase or the amplitude measurements of
«. In Ref. 55 it is shown that the average of these two
specific heats is the real part of a complex specific heat.
Table I compares the specific heats measured directly in a
standard calorimeter on a 0.2-s time scale (Cg,,) with
those deduced from the diffusivity measurements a =~5-
ms time scale (Cq,,). A comparison is also made with the
tunneling model using the distribution P(E,7~!) and the
experimental frequencies. The computations are in
agreement with the measurements.’® In brief, the present
ac measurements of specific heat agree well with those
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FIG. 4. Amplitude (¢) and phase (¢) measurements of
thermal diffusivity « below 1 K. The measurements were per-
formed at zero pressure (sample 8). The calculations use the
tunneling model distribution P(E, ™ ").
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TABLE 1. Comparison of measured and calculated values of
Cgow/Chrst- For the measured values, column (a) used smooth
curves through the data; column (b) was tabulated from fits to
“slow” and “fast” data. The fit to the “slow” data gives a pho-
non contribution of ~207° Jm *K™! and a value of =9
X 10* J7'm™3 for P. Using the same phonon contribution, the
fit to the “fast” data gives the same P. Alternatively, by use of
both the phonon term and P from the fit to “slow” data, the 5-
ms time scale is recovered when the fit is made to the “fast”
data. The values in column (a) have uncertainties of roughly
2%.

T Cslow /Cfasl

(measured) Caow /Crast
(K) (a) (b) (calculated)
0.20 1.23 1.20 1.20
0.31 1.14 1.14 1.14
0.41 1.09 1.10 1.10
0.54 1.04 1.07 1.07
0.71 1.01 1.04 1.04

measured by standard calorimetric methods if the distri-
bution in TLS relaxation times is taken into considera-
tion.

In summary, the tests of techniques for determining «
and « at zero pressure show that these measurements
respond to intrinsic behavior of the SC-8 sample. Furth-
ermore, the effects of finite sample size are small and can
be estimated for k measurements; such effects are negligi-
ble for the diffusivity measurements. Hence, the radial
heat-flow measurements of k and « are worthy tools for
investigating the low-temperature thermal properties of
pressurized SC-8 samples.

E. Determination of sample pressure

As described above, a uniaxial pressure is applied to
the sample cell at room temperature. As the sample is
cooled, differential thermal contraction reduces the pres-
sure on the sample. Therefore, tin transducers are em-
bedded in the sample to measure the pressure in situ.
However, the tin transducers can provide only relative
pressure measurements. This limitation has two causes.
First, the direct dependence of T, is on volume; T, is in-
directly related to pressure through this dependence on
volume. In most studies of pressure-dependent T,’s the
applied pressure is hydrostatic, and hence the volume
change of the superconductor is the result of compression
in all three Cartesian directions. In the case of a super-
conductor embedded in a cylinder that is under uniaxial
compression, however, the volume change is due to
compression along the longitudinal axis of the cylinder.
Also, if there is excess volume in the cell, initially the
sample will expand to meet the inner radial and end walls
of the cell. This uncertain initial deformation of the sam-
ple complicates the comparison of T, from sample to
sample, as the volume change of the tin transducers can-
not easily be predicted from the applied pressure until
uniaxial conditions are achieved.

The second problem with determining pressures from
measured T,.’s in evaporated tin is related to the thick-
ness of the tin transducers. Although the tin leads
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FIG. 5. The quantity «T|, ;¢ (from phase measurements) vs
relative pressure P—P’.

employed are sufficiently thick (4000 A) to be considered
bulk, the edges of these leads may not behave as bulk tin
and can affect the measured 7,’s for the leads. Such be-
havior would depend on the conditions under which the
deposition was made; hence there could be variation from
sample to sample. If these effects are small, the literature
value of 8T, /9P for bulk tin under hydrostatic conditions
should be useful in determining relative pressures in the
case of uniaxial compression.

In the case of hydrostatic compression, the volume
change of a sample is simply the applied pressure P divid-
ed by the bulk modulus K. In comparison, the volume
change under uniaxial compression is given by the frac-
tional change in length

AL/L=—P/M, , (22)

where M, is the modulus of uniaxial compression. From
zero-pressure measurements at 77 K of the longitudinal
and transverse sound velocities** for SC-8, the Poisson ra-
tio o is determined to be 0.33. A consequence of this
value of o is that M, is equal to 1.5Y, where Y is the
Young’s modulus. An additional consequence of
0=0.33 is that the bulk modulus and Young’s modulus
are equal. Therefore, for SC-8 the ratio of M, /K is ap-
proximately 1.5. A uniaxial pressure P applied to SC-8
will induce the same volume change as a hydrostatic
pressure (K /M, )P. For the tin pressure sensor employed
in the studies of SC-8, then, a uniaxial pressure P will
cause a change in T, indicative of an apparent hydrostat-
ic pressure of P /1.5.

Assignment of relative pressures for a given sample
was made by measuring AT, and dividing by 90T, /0P
(—0.048 K/kbar for tin®) to find AP. The values of T,
were determined by monitoring the resistive transition in
the tin thermometer leads and finding the midpoint of
this transition. For a given run, the same T,.’s were ob-
served in both sets of thermometer leads, indicating uni-
formity of sample pressure.
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To obtain the absolute pressure, we plot a measured
parameter versus P—P’, where P’ is the initial applied
pressure, and then extrapolate to the known value of that
parameter at zero applied pressure. For this purpose, it
is convenient to choose a parameter which varies roughly
linearly with pressure, yet is nearly independent of tem-
perature. Such a quantity is the product «T near 0.7 K,
see Fig. 5. The known value of 2T=18.5X10"* m?K/s
at 0.7 K shows that the zero of pressure on the relative
pressure scale is 0.6 kbar.

The above assignment of pressures can be used to
deduce the low-temperature uniaxial pressure for com-
parison with the uniaxial pressure applied at room tem-
perature. The apparent pressures were simply multiplied
by 1.5 to obtain the low-temperature uniaxial pressures.
The applied pressure is estimated from the applied force
and the sample radius. Plots of low-temperature uniaxial
pressures versus applied pressures for two samples are
shown in Fig. 6. The slopes of the two sets of data are
nearly unity. The intercepts along the applied pressure
axis indicate the effects of thermal contraction of the
sample and the pressure P, required to fill any excess
volume in the cell initially. The effects of friction would
be evident as a departure from the unity slope. Indeed,
near 4 kbar applied pressure, some mechanical binding
was perceived during application of force to the cell.
After release of pressure to roughly 2 kbar, one of the
samples was eventually pressurized to 6.7 kbar, and no
further binding was noticed. The important information
provided by Fig. 6 is that, for the applied pressures, the
cell functions as one would expect. The approximately
unity slopes indicate that the assumptions made, in as-
signing low-temperature pressures, have been reasonable.
All pressures quoted in later sections are effective hydro-
static pressures, i.e., the hydrostatic pressure required to
cause the volume change as observed in the tin transduc-
ers during a given run.
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FIG. 6. Uniaxial pressure at low temperatures vs the applied
(room temperature) uniaxial pressure. The differences between
horizontal intercepts for samples 5 and 6 are related to
differences in P,. Thermal contraction also contributes to the
horizontal intercepts.
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III. EXPERIMENTAL RESULTS AND ANALYSIS

The results of the measurements of conductivity (7))
at several pressures are shown in Fig. 7. The most not-
able effect of pressure on k appears to be that the plateau
conductivity increases as pressure is applied. The
pressure-dependent behavior of « at fixed temperatures is
shown in Fig. 8. The three temperatures chosen for the
plots roughly correspond to the TLS regime (0.3 K), an
intermediate regime (1 K), and the plateau regime (5 K).
It is observed that the plateau conductivity rises as pres-
sure increases, whereas the thermal conductivity in the
TLS regime appears to decrease by a comparatively
smaller amount.

The measurements of thermal diffusivity, using the ac
steady-state radial heat-flow technique, for two samples
at various pressures are shown in Fig. 9. In order to fa-
cilitate comparison for different pressures, the
diffusivities have been plotted as 1/« T3 versus T. From
Fig. 9 it can be seen that the pressure effects are larger
above 1 K than below 1 K. Some of the effect above 1 K
is obviously a result of the increased plateau conductivity
of Fig. 8, but it will soon be apparent that the specific
heat also changes with pressure and contributes to the
change in thermal diffusivity.

Using measured thermal diffusivities and graphical in-
terpolation of the measured thermal conductivities,
specific-heat data were computed. The calculated
specific-heat data, plotted as C /T3, are shown in Fig. 10.
Application of pressure causes a decrease in specific heat.
The relative magnitude of this decrease is nearly constant
over the entire temperature region studied. In order to
emphasize the rather uniform changes in specific heat
with pressure, the specific-heat data, scaled by constant
factors, are replotted in Fig. 11. The pressure depen-
dence at fixed temperatures is displayed in Fig. 12. As
discussed in Sec. I, data below 1 K [Fig. 12(a)] reflect pri-
marily the behavior of TLS’s and phonons; the data at 4
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FIG. 7. Low-temperature thermal conductivity of SC-8 at
several pressures. The zero-pressure data are from sample 8
(open circles) and Matsumoto (solid circles). Data sets extend-
ing below 1 K are from sample 5; those curves having points
only in the plateau regime are from sample 6.
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FIG. 8. Thermal conductivities, normalized to zero-pressure
values, plotted as a function of pressure for three temperatures.

and 6 K in Fig. 12(b) relate primarily to phonons and the
excitations responsible for the bump in C/T3. The effect
of pressure is essentially the same at all temperatures, ex-
cept on the low-temperature side of the bump near 4 K.

The analysis of the data is organized as follows. First,
the data for temperatures below 1 K are analyzed in the
context of the tunneling model. The results of this
analysis are then compared to earlier results for SiO,.
Next, the data for temperatures above 1 K in the “bump”
and “plateau” regimes are analyzed, and qualitative
comparisons are made with the structural models of
KBr-KCN and SiO, as well as the fracton theory. The
measurements in the bump and plateau regimes are also
compared to the earlier results for Teflon.
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FIG. 9. Low-temperature thermal diffusivity of SC-8 at
several pressures, plotted as 1/2T? vs T. The data are from
sample 5 (0.3-3 K) and sample 6 (2—10 K). The zero-pressure
data above 3 K (solid circles) are calculated from heat-pulse
measurements of C and Matsumoto’s measurements of k. Data
from samples 5 and 6 are phase measurements of the thermal
diffusivity.
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FIG. 10. Pressure-dependent specific heat of SC-8 at low

temperature. The specific heat is calculated from the measured
thermal conductivity (Fig. 7) and the measured thermal

diffusivity (Fig. 9). The points indicated by solid squares are

from heat-pulse calorimetric measurements.

A. The TLS regime (7T <1 K)

For temperatures below 1 K the dominant excitations
are believed to be phonons and TLS’s. Hence, fits using a
term quasilinear in temperature and a T3 term can be
made for the data®! taken at temperatures below 1 K.
When such fits (described below) were applied to previ-
ous*® data for the specific heat of SC-8, the resulting T3
term was only 7% greater than the phonon contribution
calculated from the low-temperature sound velocities.
Hence, the T term (denoted B below) can be considered
to arise predominantly from phonons.

The form to which specific-heat data were fitted below
1 K is given by

2 —
¢ =T K3PT In

C _Ar
T3

+B, (23)

Tmin

where t is the time scale of the measurement, 7, is given
by Eq. (6) evaluated at E=2k,T, P is the TLS energy
density, and B is the Debye phonon specific heat divided
by T°. The logarithmic term in Eq. (23) gives rise to a su-
perlinear (e.g., T'7% dependence of C on T. The details
of the fitting procedure can be found in Ref. 55, where a
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FIG. 11. Specific-heat data at various pressures scaled by

J. M. GRACE AND A. C. ANDERSON

constant factors (Table III, column 5) to show the uniform
changes with pressure.
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FIG. 12. Normalized specific heat as a function of pressure
(a) for temperatures below 1 K and (b) for temperatures (4 and 6
K) near the maximum in C/T?. Because no P=0 data are
available at 6 K, the 6-K data are normalized at P=0.2 kbar.
From data for T<6 K an estimate of Cg, xpar /Co=~0.98 is
made. The data C,/C; \var are then multiplied by this factor
of 0.98. The dashed line in (b) represents the data in (a) for con-
venience of comparison.

check of the procedure is presented. Once tested for
proper behavior at zero pressure, the fit of Eq. (23) to
zero-pressure data was used for comparison with data
measured under applied pressure. Specifically, the
specific-heat data for a given pressure and given tempera-
tures below 1 K were divided by zero-pressure specific-
heat values generated from the aforementioned fit. The
results of this comparison are tabulated in Table II, from
which it can be seen that pressure-induced changes in C
amount to a constant factor for 7'<1 K. These constant
factors are expressed as values (relative to P =0) of P and
B in Table III.

The facts that phonons dominate the specific heat near
1 K and that TLS’s make a significant contribution near
0.3 K, coupled with the observation that the pressure
dependence of the specific heat is the same throughout
this temperature regime, suggest strongly that the TLS
specific heat is proportional to the phonon specific heat.
We return to this observation later.

In Sec. I A it was shown that the assumptions of the
tunneling model give the result that the TLS contribution
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TABLE II. Specific heat C of SC-8 below 1 K, normalized to zero-pressure values, C,. Data are

from sample 5.

0.8 kbar 1.4 kbar 1.9 kbar 3.9 kbar

T (K) Cc/C, T (K) C/C, T (K) C/C, T (K) C/C,
0.306 0.942 0.305 0.909 0.355 0.883 0.305 0.778
0.405 0.936 0.360 0.884 0.412 0.854 0.394 0.779
0.413 0.961 0.415 0.895 0.467 0.856 0.506 0.784
0.539 0.925 0.441 0.904 0.540 0.850 0.646 0.793
0.713 0.950 0.494 0.894 0.631 0.854 :

0.541 0.866 0.716 0.899

0.597 0.880 0.828 0.863

0.650 0.888

0.708 0.900

0.782 0.897

0.844 0.919

Avg: 0.943+0.014 Avg: 0.894+0.014

Avg: 0.865+0.018 Avg: 0.783+0.014

to the low-temperature specific heat and thermal resistivi-
ty can be expressed in terms of the parameters P and y.
If an amorphous solid retains its glassy nature as pressure
is applied, the pressure-induced changes in thermal prop-
erties should reflect the pressure dependences of these
two parameters. It shall be seen that within this frame-
work the tunneling model can account for the observed
behavior. Furthermore, this strict application of the tun-
neling model will reveal some interesting correlations.
The fact that, below 1 K, the specific heat changes sim-
ply by a constant factor from pressure to pressure makes
determination of the relative (i.e., normalized to the
zero-pressure value) TLS density quite easy. Table III
provides relative magnitudes of P assuming that
In(4t /7,;,) does not change significantly with pressure.
Another consequence of the constant-factor changes in
specific heat with pressure is that values of phonon veloc-
ity v, normalized to the zero-pressure value, can be
found. If the T3 term is predominantly a phonon specific
heat, as is the case for SC-8, then B « 1/v>. Hence, the
percent changes in 1/v° with pressure are the same as for
P. Also, values of p, normalized to the zero-pressure
value, were calculated from estimates of the changes in
sample volume upon compression. These volume esti-
mates were made>® from measurements®? of the pressure
dependence of the longitudinal sound velocity in SC-8.
The computed values of v and p are included in Table III.
For the purposes of using the tunneling model to ana-
lyze the thermal-conductivity data, results for the lowest
temperatures (near 0.3 K) were chosen. The nearly-

pressure-independent values of thermal conductivity «
(0.3 K) were used with the pressure-dependent v and p to
determine the normalized values of the coupling parame-
ter Py2. In addition, the above-mentioned values of P
were used to find normalized values of y2. The results,
tabulated in Table III, show that the TLS-phonon cou-
pling, as represented by either Py? or y?, increases as
pressure is applied. Also shown in Table III are the nor-
malized values of y?/pv° for the various pressures. As
this quantity does not change significantly with pressure,
the logarithmic term In(4¢ /7;,) in the TLS specific heat
can be considered pressure independent. Therefore the
values of P, as determined from specific-heat data, need
no correction for changes in ;.

To summarize the above results, strict application of
the tunneling model to the SC-8 data indicates that the
energy density P of TLS’s decreases with pressure,
whereas the coupling (¥ or Py?) between phonons and
TLS’s increases with pressure. Furthermore, it is found
that the form of 7, is unchanged by pressure. These
trends are obtained assuming that the distribution
P(E,r "), as given by the tunneling model, applies to
SC-8 at all pressures studied.®

The decrease in P can be interpreted in two ways. Ei-
ther the number of TLS’s could be changing with pres-
sure, or the same number of TLS’s may be spread out
over a broader range of energies. The second interpreta-
tion will be mentioned later, when the response to pres-
sure of the “bump” in C /T3 is discussed.

From Table III one may observe that the enhanced

TABLE III. Values of various tunneling model parameters for measurements under pressure on
sample 5. All data (except pressures) are normalized to zero-pressure values. The uncertainties quoted
for P or B are one standard deviation. The normalized P or B are from specific-heat data; the normal-
ized pv /Py? are from thermal-conductivity data taken at 0.3 K. Normalized values for p are calculat-
ed from estimates of sample compression and those for v are calculated from B ( < 1/v3).

P (kbar) p v pv? Por B pv /Py? Py? y? y*/pv®
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.030 1.021 1.074 0.94+0.01 0.99+0.01 1.06 1.13 0.99
1.4 1.041 1.040 1.111 0.89+0.01 0.99+0.01 1.09 1.22 0.98
1.9 1.047 1.048 1.150 0.8710.02 0.99+0.01 1.11 1.27 0.96
39 1.081 1.086 1.274 0.78+0.01 0.93+0.01 1.26 1.62 0.99
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coupling between phonons and TLS’s as pressure is ap-
plied suggests the proportlonallty Py« pv that is, a re-
lationship between Py? and an elastic constant. Such a
correlation was proposed theoretically by Klein et al.®*
It is interesting to note that the pressure dependence of
specific heat, which gives B « P, suggests another correla-
tion, namely P «v ~>. When this proportionality is used
with Py?«pv?, the relation y?«pv® is obtained. This
proportionality was implied earlier, when it was men-
tioned that 7, is roughly constant with pressure. The
correlation P v 3 can also be expressed as P «p /@3,
where @, is an effective Debye temperature.

A comparison of the measurements on SC-8 with those
on vitreous silica can now be made. The pressure-
dependent ultrasonic attentuation’” in SiO, reveals in-
creased attenuation as pressure is applied, which is in
qualitative agreement with the increased TLS-phonon
coupling observed in SC-8 under pressure. The authors
of the SiO, work, however, attribute’’ the increased cou-
pling to an increased TLS density P. The measurements
on SC-8, on the other hand, suggest a decrease in P with
pressure. In short, the experiments on SiO, appear to be
in qualitative agreement with those on SC-8 although the
respective interpretations are not in agreement. It should
be mentioned that there were some technical difficulties
(related to bonding between transducers and sample®) for
the SiO, measurements. Hence, a comparison between
SC-8 studies and the SiO, measurements may not be val-
id.

B. The “bump” and “plateaun” (1 ST S 10 K)

It was noted that the pressure-induced changes in
C/T? near 4 K are more pronounced than at 6 K. Such
behavior is consistent with a shift of bump excitations to
higher energies. The density of states responsible for the
bump has a rather sharp rise with frequency. Therefore,
the effects of an upward energy shift of this group of exci-
tations should indeed be more pronounced for the low-
temperature side of the bump. In contrast, an increase in
a cutoff energy, such as a maximum TLS energy or the
Debye temperature @, causes a uniform drop in C /T3
in the relevant temperature range. Also, the link, implied
by microscopic models, between TLS’s and the excita-
tions responsible for the bump, suggests that an increase
in energy scale of the bump should bring about an in-
crease in the upper limit of TLS energies. Such ideas
could account for the observed decrease in TLS density
as pressure is applied. In addition, an apparent correla-
tion between the TLS density and the Debye temperature
was noted in the preceding section. Hence, the con-
current decreases in TLS, phonon, and bump specific
heats suggest that the three types of excitations may all
be manifestations of the same basic vibrational structure.

Applied pressure brings about an increase in the pla-
teau thermal conduct1v1ty and a decrease in the bump in
C/T?. The microscopic models of librational modes in
KBr-KCN and rotational modes in SiO, can predict
these qualitative results. In addition, the reduction of
sample volume should cause the same effects according to
the fracton theory. From all of these models, one would
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expect an increase in energy scale of the bump and pla-
teau as the sample elastic constants stiffen.

It was mentioned in Sec. I B that phonon scattering in
the plateau regime may be characterized by /™ !'= A w*,
where [/ is a phonon mean free path and » is a phonon
frequency. Freeman and Anderson® found an empirical
correlation between the scattering strength 4 and pho-
non velocity v in glasses, namely 4 v "% or / « A*. This
behavior suggests the presence of Rayleigh scattering of
phonons by some structure in the glass. If this relation
for A is substituted into the expression for thermal con-
ductivity, one finds that the thermal conductivity in the
plateau should obey the relation ke, < v% It should be
mentioned that the magnitude of the plateau conductivity
is also affected by low-frequency phonons from the TLS
regime.®’” If the scattering from TLS’s changes with pres-
sure, some change in the plateau magnitude would result.
Since the measured « decreases only rather weakly with
pressure at 0.3 K (Fig. 8), the increase in plateau thermal
conductivities as pressure is applied may be used to ob-
tain a reasonable estimate of the change in 4v* with pres-
sure.

The observed change in Kplateau/l) versus volume is
found™ to be k0, /07 < (volume) ~7, where S is roughly
3 or 4. In terms of a possible structural length &, then,
we find Kjequ/0% £, which gives 4 ocgw/v By
contrast, Rayleigh scattering from structure® of size &
should give A4 <&®/v* Thus, it would appear that the
observed scattering strength 4 has much too strong a
dependence on &, implying that phonon scattering is not
directly related to any structural length scales in the
glass. This conclusion has been obtained in previous pub-
lications’ where calculated magnitudes of scattering were
insufficient to explain the plateau in .

Whereas the microscopic theories suggest that phonon
localization is a consequence of interaction between
bump excitations and phonons, the fracton concept sug-
gests that phonon localization at the phonon-fracton
crossover brings about the bump and plateau. If the frac-
ton concept (or some other localization theory) is valid,
the changes in plateau conductivity and sound velocity
with pressure should be related to changes in a structural
length scale §&. The fracton theory makes a prediction as
to the scaling between sound velocity and length scale &,
see Eq. (15). From the values given in Table III for v at
several pressures, it is found that v ~§”3, i.e., 6=6. For
percolation problems, Alexander and Orbach?* obtained
values of 2 for 6, while experiments on dilute amorphous
magnets®® have given values of 1.5 for 6 Brillouin-
scattering measurements on silica aerogels® give 6~1.8.
Therefore, the value of 6 for 0 seems significantly higher
than has been calculated or measured for fractal systems,
although the qualitative nature of the fracton theory
prevents a theoretical estimate of an upper bound on 6.
As has been the case for many attempts to test the frac-
ton theory, the experimental results presented here are
inconclusive. There is certainly qualitative agreement be-
tween theory and experiment; however, no real quantita- .
tive test is possible.

In summary, the apparently strong volume depen-
dences of v and Kpjyean/ v? suggest that the bump and pla-
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teau features cannot be related to structural length scales.
Hence, the fracton model™ and other theories relating
phonon localization to structural length scales may not
‘be appropriate for bulk glasses. One concludes that the
experiments on SC-8 favor the microscopic models.

Finally, we make a brief comparison with the measure-
ments on Teflon mentioned earlier. The basic qualitative
features of the pressure dependence of the bump in C /T3
are the same for both SC-8 and Teflon. In particular,
both materials exhibit a reduction of the bump as pres-
sure is applied. Furthermore, both materials stiffen with
pressure, as expected, and as indicated by the decrease in
the T contribution to the specific heat. Quantitative
comparisons, carried out in Ref. 55, reveal only subtle
differences that may arise from the pressure-dependent
partial crystallinity of Teflon.

IV. CONCLUSIONS

The thermal properties of the amorphous polymer SC-
8 were measured as a function of pressure in the tempera-
ture range 0.3—-10 K. Data for temperatures below 2 K
were collected for pressures to 3.9 kbar; data in the range
2-10 K were collected for pressures to 1.4 kbar. These
measurements probed the quasilinear temperature depen-
dence of the specific heat and the roughly 7 thermal
conductivity at temperatures below 1 K, and the “bump”’
and ‘“‘plateau” regimes at higher temperatures. The pur-
pose of the study was to examine the strain dependence of
the various excitations responsible for these features, and
to look for possible length-scale dependences. An addi-
tional motivation for the work was to examine possible
correlations between the various features in the low-
temperature thermal properties of a glassy solid.

During the course of zero-pressure measurements, a
reconfirmation of the time-dependent glassy specific heat
was made. Calculations using the tunneling-model distri-
bution P(E,r"!) could account for the observed
differences between the short-time (~5 ms) amplitude
and phase measurements of thermal diffusivity below 1
K. In addition, differences between the short-time mea-
surements and ‘“heat-pulse” (0.2 s) measurements were
explained by the same calculations.

Relative to unstrained SC-8, samples under pressure
were observed to have larger thermal conductivity « in
the plateau regime, a smaller « near 0.3 K, and a smaller
specific heat at all temperatures. The specific heat
changed rather uniformly over the entire temperature
range studied, except for temperatures near 4 K, where
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the changes were more pronounced.

In terms of the tunneling model,”! the data obtained
below 1 K could be accounted for by a decrease in the
TLS density P and an increase in the phonon coupling
constant ¥ as pressure increases. In this analysis, the
product Py? exhibited a proportionality with elastic con-
stants; that is, Py?«pv?. Furthermore, the uniform de-
crease in specific heat with pressure revealed the correla-
tion P < p /@3, where @, is an effective Debye tempera-
ture.

Microscopic models of KBr-KCN and SiO, suggest the
above-mentioned qualitative behavior of the bump and
plateau with pressure. Furthermore, the models suggest
that the TLS’s are low-energy modes of the same basic vi-
brational structure as those responsible for the bump. In
light of such suggestions, the decrease in P with pressure
can be understood as an increase in some maximum ener-
gy for TLS’s such that the total number of TLS’s remains
fixed.

As the pressure dependence of specific heat was found
to be similar for TLS’s and phonons, the measurements
suggest that these excitations may be related.”? The ap-
parent shift of bump excitations to higher energies and
the concurrent decrease in P support the notion that the
bump excitations and TLS’s are related. In addition, the
concurrent increase in plateau thermal conductivity and
decrease in bump specific heat support the idea that the
bump and plateau phenomena are related. In brief, one
can speculate that all the low-energy excitations in this
amorphous polymer appear to be interrelated.

Theories of phonon localization, fractal or otherwise,
also make qualitative predictions which appear to be in
agreement with the experimental observations. However,
the quantitative results do not support these theories.
The dependence of the plateau thermal conductivity and
phonon velocity on sample volume appear to be stronger
than can be predicted by theories based on structural
length scales.
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