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Amplitude breathers in conjugated polymers
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Nonlinear adiabatic dynamics of electron-phonon models of trans-(CH), cis-(CH)„and (AB)-
type polymers are studied. Using both analytic low-amplitude expansion and numerical simula-

tions, we find the existence of charge-neutral breathers —spatially localized, time-periodic nonlinear
excitations. Simulations also show that a photoexcited electron-hole pair generates a breather in

addition to a soliton-antisoliton pair. Semiclassical quantization shows that the nth breather is a
bound state of n amplitude phonons. A semiclassical formalism of optical absorption is applied to
trans-(CH)„; the ground-state result accounts for a pronounced intragap absorption tail, while

breathers can account for the observed photoinduced absorption at 1.35 eV.

I. INTRODUCTION

There has been considerable interest over the last de-
cade in nonlinear excitation of conjugated polymers' such
as polyacetylene, (CH)„. Most theoretical studies have
focused on configurations where the ions are static, e.g. ,
kink solitons, polarons, and bipolarons. In particular, the
kink solution in trans (CH) is a top-ologically nontrivial
object; and in this sense it is similar to solitons in
one-dimensional scalar field theories with degenerate
minima, e.g., the sine-Gordon or P systems.

Allowing for ion dynamics is an obvious extension of
the above studies. The study of dynamics has a twofold
motivation. First, it is known that the sine-Gordon sys-
tem has breather solutions which depend nontrivially on
time. A breather is an intrinsically dynamic bound state,
representing a spatially localized, time-periodic nonlinear
excitation. Numerical studies on the P system, ' have
shown the presence of breatherlike states which persist
over extremely long times. A recent study of the P sys-
tem has shown that, while breathers are exact solutions
in any order in perturbation theory, a weak essential
singularity eventually causes these breathers to decay.

Our second motivation is photoinduced absorption
(PA) studies in conjugated polymers. Adiabatic dynamic
simulations of trans-(CH)„have shown' "that an initial
electron-hole pair decays into a pair of charged solitons.
This prediction is supported by PA data' which shows a
soliton "midgap" absorption at -0.5 eV and three asso-
ciated infrared lines below -0.15 eV. The PA data
show, however, a third feature, ' ' viz. , a peak at 1.35
eV which is just below the absorption gap of —1.7 eV.
This so-called "high-energy" (HE) peak is a signature of
an additional neutral excitation (with no associated in-
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FIG. 1. Dimerization configurations of (a) trans-(CH) chain,
(b) cis-(CH) chain, (c) ( AB)„chain. Additional H atoms in (a)
and (b) and other possible side groups in (c) are not shown.
Double and single lines are short and long bonds, respectively.

frared activity) and its temperature and dependence on
exciting laser intensity are distinct from those of the
midgap absorption.

trans-(CH)„ is a unique polymer type since it has two
degenerate ground states [Fig. 1(a)]; a topological solu-
tion is then allowed. This degeneracy survives in the
(AB) -type polymer' [Fig. 1(c)] but is absent in cis
(CH)„[Fig. 1(b)]. cis-(CH)„represents a more-typical
conjugated polymer where the soliton-type "midgap" PA
is absent. The HE feature, however, persists in a variety
of polymers such as cis-(CH)„, ' ' polydiacetylenes, '

and poly(1, 6-heptadiyne). ' The HE feature persists also
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in doped trans (C-H) (Ref. 18) and in trans-cis (CH)„
mixtures.

In the present work we extend our previous study of
breathers in conjugated polymers ' by exploring the
adiabatic dynamics of the Su-Schrieffer-Heeger (SSH)
electron-phonon model of trans (CH-)„and its extensions
to describe cis-(CH) (Ref. 22) and (AB)„-type poly-
mers. 2 The latter corresponds to poly-(1, 6-
heptadiyne) and to organic mixed stack systems. We
show that breathers can account the HE peak in PA ex-
periments. Furthermore, we find that our results also
show a pronounced tail of the ground-state absorption
into the adiabatic gap, as is indeed seen in experimental
data. 25-27

In Sec. II we start from the continuum version of the
SSH Hamiltonian. Using a low amplitude expansion we
find analytic breather solutions for the three cases of Fig.
1. A reader who is mainly interested in experimental im-
plications may skip this section and proceed directly to
Sec. III. In Sec. III we confirm the existence of breather
solutions with numerical adiabatic dynamics' of the
SSH-type models for trans- and cis-(CH); (AB) poly-
mers have breathers only if the difference in A-8 poten-
tials is not too large. We show that the breathers found
numerically are well approximated by the analytic form.
The numerical scheme is also applied to photoexcited
electron-hole pairs and shows that in trans-(CH) and in

( AB) polymers a soliton pair and a breather are generat-
ed. In Sec. IV we apply semiclassical quantization to the
analytic solutions and find that breathers have a discrete
spectrum —the nth breather corresponds to a bound state
of n phonons. The binding energy vanishes in the ( AB)„
polymer if the difference in A-8 potentials is too large;
this may correspond to the numerical instability of Sec.
III.

A significant signature of a breather is its unusual opti-
cal absorption, which we study in Sec. V using a semiclas-
sical formalism. We find that breathers can account for
the observed PA in conjugated polymers. ' ' In Sec. VI
we compare our results with experimental data and pro-
pose additional experiments. The appendixes derive the
current operator and the optical sum rule.

II. ANALYTIC BRKATHKRS

We start here from a continuum description of a one-
dimensional electron-phonon system with one electron
per site. This can be derived from the SSH model or
from other discrete models. In trans-(CH) [Fig. 1(a)], a
spontaneous dimerization appears and yields a gap 260 at
the Fermi level. Competing gaps can results from the cis
structure [Fig. 1(b)] or the (AB)„structure [Fig. 1(c)].
The continuum description is valid if a «vF/A~ where
vz is the Fermi velocity (in the absence of a gap) and a is
the lattice constant. We also assume the adiabatic limit
below, i.e., the bare phonon frequency ~o satisfies
o «~0

A. trans- and cis-(CH)„

We consider first the case of trans and cis-(CH), -

Even in the absence of any dimerization cis-(CH) has an

extrinsic gap 2A, at the Fermi surface. The electron-
phonon coupling lead to dimerization with an intrinsic
gap 2A;, i.e., the total gap is 26, +26;. We allow for a
space- and time-dependent 5;(x, t) =4Pu (x, t), where
u„(t) is the . ion displacement at site n, u(x =na, t)
=( —1)"u„(t) is the slowly varying staggered displace-
ment, and P is the electron-phonon coupling constant.
Note that 6, is both space and time independent.

The electrons are described by a spinor
g, (x)=(u,*(x),u,*(x)), where u, (x), u, (x) are right- and
left-moving fields with velocities vz, respectively, and s
is a spin index. The electrons respond to the total gap
function b, (x, t) =b; (x, t)+ b, ; the ubiquitous trans
(CH)„case corresponds to b., =O.

The continuum model Hamiltonian is '

gf= g J dx f, ( x) iuFc—r& +b(x, t)g, P, (x)F 'ax

2E,
ln +-

mvF 6 2

Q2

4A,

2+1 2 +2 +', +
4A,coo

where 6=h(x, t), dot is 8/c)t, and prime is 8/Bx.
We next expand in powers of 5(x, t) where

b(x, t)=50[1+5(x,t)]. The result to order 5 is

Xo= —(2b 0/vru~ )[—
—,
' i) +—,

' g52+ —,
' 5 —

—,', 5

+-,'(a5/ax P —
—,
' q(a5/at )'],

5;(x, t)
+ dx —— 6, x, t+

277K,v F No

where the canonical momentum of b, ; is b, ;/(irkv~coo);
o.„a3 are Pauli matrices, coo is the bare phonon frequen-
cy, and A, -P is a dimensionless electron-phonon cou-
pling constant [see below, Eq. (23)]. The ground state has
a constant b, (x, t) = Ao, the electron spectrum is
+(uzk +b,o)'~ with the momentum k in the range

E, /uF &k &E—, /u~, and hu=b, , +2k,koln(2E, /b, o);
E, /u~ defines a momentum cutoff representing the
discrete lattice.

For a general slowly varying b (x, t) it is possible to find
an effective Lagrangian in terms of A(x, t) and its deriva-
tives. Using a derivative expansion, the electrons'
Greens function is erst found in terms of b, (x, t) and its
derivatives. The equation of motion connecting b(x, t)
and the electrons is then written in terms of h(x, t), i.e. ,
the electron fields are integrated out. Finally, an effective
Lagrangian is found such that the Euler-Lagrange equa-
tion of motion for b, (x, t) recovers the same equation.

This procedure was carried out in detail for the case
of a charge density wave with a complex order parameter
b, (x, t)exp[i/(x, t)]. Our dimerization problem corre-
sponds to a real order parameter. We can therefore take
over the previous result provided that only b(x, t) is a
field (P is fixed) and that we change~ A, ~2k, . The
effective Lagrangian to second order in derivatives is then
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where 7)= 1+b,, /(2Abo), x =x 60&12/u~, t =
italo

X ( 2A,g )', and too « b,o is assumed. The nonlinear
equation of motion is

B5
dt

B5 +g5+ —,
'5' —

—,'5'=0 .
3x

(4)

The linear terms (phonons) are solved by
5-exp(itut iqx—) with to=(1+q /g)' . We expect the
nonlinear terms to bind a localized solution, i.e., an imag-
inary q =is and co=1—(1/2g)e &1 for small e. This
motivates a multiple-scale perturbation expansion such
that

T =~ t, X=cx
and to order c.

5(x, t)=a[A (X, T)e "+c.c.]+E 5,(X, t }+a 52(X, t) .

Note that this expansion is consistent with the order in
the derivative expansion of Eq. (2). The d 5/Bt term in
Eq. (4) is of order e and higher-order derivatives will not
affect the order e. result. [As shown below, 5, depends
on x through A (X, T); hence d 5i/dt =0 (e ). ]

After substituting Eq. (6}in (4}we choose 5, so that the
0 (e ) terms cancel with the result

trans-(CH)„(ri=l} and excitations around the ground
state of cis-(CH)„(ri & 1}.

Note that cis-(CH)„also has a metastable minimum
where the single and double bonds of Fig. 1(b) are inter-
changed. The gap 60 of the metastable state satisfies
b 0

= —b,, +2k b Oln(2E, /50), and b 0=5;—b, Solution
(11) is a valid excitation of the metastable phase with
ri=l —6, /(2A, ZO)&1. The metastable state is a local
minimum only if q&0 [note the q5 term in Eq. (3)];
g & 0 precisely allows the breather solution Eq. (11).

We term solution (11) an "amplitude breather" since it
describes localized oscillations in a charge-density-wave
aInplitude. Charge density waves with commensurability
order higher than 2 have a complex order parameter with
phase variations requiring much less energy than ampli-
tude variations. The equation for the phase field is the fa-
miliar sine-Gordon equation and its breathers might be
called "phase breathers. "

Consider next the breather energy. The Hamiltonian is
obtained from Eq. (3) and substituting 5 and 5 from Eq.
(11) at any convenient time t yields for the breather ener-

gy

7J 16' 3 32
n(5+3') 9'(5+3')

(12)

5,(x, t ) = ( A e "+c.c. ) ——
( A

~

22~ 1
(7)

We then choose 5z so that the harmonics exp(+3it ) can-
cel:

For the trans-(CH)„case (g= 1 ),

Es (Z }=b.o f(1—
—,'e ) .2v 3

(13)

52(x, t ) = A e "+c.c.
48'

Finally, the coefficient of exp(+it ) satisfies

BA BA
Bt (jX

"/ Ai'A =0.
6g

(9)

A =a sech(XX )exp( i Et /2r—i)', (10)

where 'E=ea[(5+3')/12']'~ and a is arbitrary. Com-
bining all the terms we find

' 1/2

5(x, t)= f 48'
5+3' sech(ZX )cos 1 — 'E t

1

2'

sech ('EX')
12 2

5+39

This is the nonlinear (cubic) Schrodinger equation which
has a well-known soliton solution depending on the sign
of the cubic term. In particular, for the negative sign in
Eq. (9) the soliton is

Recall that Z is a continuous parameter and that our ex-
pansion is valid for 'E &(1. By analogy with the solvable
sine-Gordon system we expect that Es('E) is a monotonic
function and that breathers exist up to some critical Z, of
order l. In trans-(CH)„ the breather can unbind into two
solitons each with energy 260/m, i.e., Es (X, )
=46.o/m. Note that 'E, cannot be deduced from Eq. (13),
which is based on a small Y. expansion.

B. ( AB)„polymers

Consider Fig. 1(c) where a trans-(CH)„—type chain is
allowed to have an alternating on-site potential ( —1)"a.
For 1 electron per site (in the absence of dimerization)
this yields a gap 2a at the Fermi level. Spontaneous di-
merization is possible if a (ho, where 240 is the gap for
a=0. Unlike cis-(CH), dimerization here is symmetry
breaking (that of inversion symmetry ) and yields degen-
erate bound states, thus allowing topological solitons.

The continuum model for an ( AB)„polymer is '

&= g Jdx g, (x) iuFo3
~

+kg((x,—t}oi+ao2$(x)'8
S Bx

X —,
' cos 2 1 — 7 t —1

1

27/ + Jdx [b,q(x, t)+b, ~(x, t)/co ].0
27TA, VF

(14)

Solution (11) represents a breather, i.e., a spatially lo-
calized, time-periodic nonlinear excitation. The oscilla-
tions have frequency co= 1 —

—,'7, less than 1, as expected.
It is a valid solution if (5+3')/g & 0; this range included h(x, t)exp[i/(x, t)]=b,„(x,t)+i a . (15)

The off-diagonal terms in (14) imply a complex gap func-
tion
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b,d+b, d/coo=2A. I b, cosP In(2E, /5)
—(4h) '(vFP" —P)sing

—(126, ) '[ vF(b, ') —b, —vFEA"

+b, b, ]cosPJ . (16)

Rewriting this in terms of b,d(x, t) and its derivatives
yields an equation which is the variational Euler-
Lagrange equation of the Lagrangian

Thus a, which corresponds to a site-centered density
wave, is out of phase with 6d, which describes a bond-
centered density wave. [Compare with cis-(CH) where
both 6;,6, are bond density waves and 6=6;+6, is ad-
ditive. ]

Since the amplitude b(x, t) and phase P(x, t) in (15) are
constrained by b,(x, t)sing(x, t) =ct, the effective Lagrang-
ian must be rederived. Using Eq. (A17) of Ref. 26 we ob-
tain

4+3y3/2(3 2y )1/2
E~(s)= bo

9—6y —y

X- 1 — 1—
9(9—6y —y') (22)

For y = 1 this reproduces the trans-(CH)„resu1t, Eq. (13).

III. NUMERICAI. BREATHERS

In this section we study breathers by numerical simula-
tions. We show that breathers can be produced by a pho-
toexcited electron-hole pair, and then compare them with
breathers generated by the analytic solution of Sec. II.

Consider the SSH Hamiltonian on a trans-(CH)„
chain, with C„, creating an electron with spin s at site n
and u„ the nth-ion displacement:

.P= —g [to+P(u„—u„+,)][C„+,,C„,+H. c. ]
n, s

2 2 2E, 1
XIbd I

= . —'6 ln +-
7TUp 6 2

+
4~ 4Acoo

+ ,'K g (u„—+,—u„) + —,'M g u ~ . (23)

3a +Ad

246
[vF(bd ) —b, d] (17)

The ground state has hd =6d, where

[(bd) +a ]'/ =ho—:2E,exp( —I/2A. ) .

Clearly b,d%0 only if a(50. We next expand (17)
around the minimum b d (x, t) =b d [ I +5(x, t) /( 3 —2y ) ],
where y =(Ad /b. o) ( 1. To order 5 we obtain

2+2 2
oy

1 t;2+163 127—3—8y'64
mv~(3 —2y) ' ' 24(3 —2y)

1 86'-1 05'
Bx 2 r)t

(19)

where x =[12y/(3 —2y)]'/ xylo/vF, t =theo(2Ay)'
and coo((50 is assumed. Using the expansion (6) with
x, t replacing x, t we obtain the nonlinear Schrodinger
equation

2L'aT (20)
"' 'y y'~~~ ~=0.

3(3—2y)
8 3
BX

For the relevant range 0 & y & 1 the cubic term has a neg-
ative coefticient and amplitude breathers exist. The
breather solution is

6(x, t ) = E(3—y )[12/(9 —6y —y )]'

Xsech( sx )cos[( 1 —
—,
' E )t ]

+ E 3(3—2y) (9—6y —y ) 'sech (Ex)

X [ —,
' cos[2(1—

—,'s )t]—1I, (21)

where s (proportional to e) is a continuous parameter.
The breather energy is obtained by substituting (21) in

the Hamiltonian which corresponds to (19), with the re-
sult

Here, to is the transfer integral, p the electron-phonon
coupling, K the ion spring constant, and M the ion mass.
The continuum version Eq. (1) is identified by
A, =2@ /(vrtoK), v~ =2toa, and the bare-phonon frequen-
cy at wave vector ir/a, coo=2(K/M)'

The adiabatic dynamics simulations' ' are obtained
by a loop of two steps. First solve the electron eigenvec-
tors f,= g„f (n)C„, with eigenvalues e as if the lat-
tice u„(t) is time independent, i.e.,

ej' (n) = —[to+P(u„—u„+i)]f (n + 1)

—[to+@(u„,—u„)]f (n —1) . (24)

Second, evolve u„(t) in time by the classical ion dynamics

aMii„= —K(2u„—u„+,—u„,) — +1,e
a, s

(25)

where /, is the occupancy of level ct with spin s (I,=0
or 1) and is time independent. The last term of (25) is the
force on the ion due to the interaction term in (25); e are
functions of the instantaneous u„(t) via Eq. (24). In-
tegrating Eq. (25) yields a new set of u„(t) for which Eq.
(24) yields new eigenvectors and a new force in (25). This
repeated cycle of solving Eqs. (24) and (25) is termed
"adiabatic dynamics. "

Before considering photoexcitation experiments, it is
necessary to briefly review some aspects of the adiabatic
dynamics of a single kink. Previously we have numeri-
cally shown that for the short-time dynamics of a single
boosted kink there is a maximum propagation velocity
(v ), above which uniform kink translation is not ob-
served and an oscillating tail structure develops. (For
times longer than one phonon period, phonon e6'ects be-
comes important, especially in discrete cases, and the dy-
namics changes somewhat. ) We argued that v, which
can be greater than the sound velocity (depending on the
coherence length vi;/60)„ is determined by the finite
response time of the lattice to changes in its dimerization.
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A simple ansatz calculation confirmed this and gave an
estimate of U in qualitative agreement with that ob-
served numerically. This (short-time) maximum velocity
corresponds to a maximum kinetic energy of -0.16o, ap-
proximately independent of the parameter values in the
SSH Hamiltonian.

The parameters used below correspond to to=2. 5 eV,
P=4. 8 eV/A, K =17.3 eV/A . Choosing M =13 a.u.
gives Np=2 25X10' sec ' and the time unit in the plots
is one femtosecond. For classical ions energy, length and
time can be chosen dimensionless; hence a single parame-
ter A, =2p /(atoll ) determines the simulation. For the
parameters above X=0.34, this yields a ground-state adi-
abatic gap of 260= 3.92 eV, and a kink half-width of
v+/Ao-2. 7a.

The ion displacement patterns shown below are
r„=—,'( —1)"[2u„—u„+,—u„&], which is the dimeriza-
tion pattern in u„=(—I)"r„+s„. The s„ field is slowly
varying and represents modulations in the local lattice
constant.

We begin our study of breather production by consid-
ering a simple photoexcitation experiment in trans-
polyacetylene. To simulate an infinite system, a large
number of sites (98) is used and periodic boundary condi-
tions applied. In the dimerized ground state all 49 states
below the gap are doubly occupied and all 49 states above
the gap are empty. Starting from a purely dimerized ring
at r =0, a single electron is photoexcited (i.e., manually
moved) from the top of the valence band to the bottom of
the conduction band, adding energy 2b.o (the full gap en-
ergy). All electrons then remain in these levels
throughout the experiment, i.e., the system evolves adia-
batically.

Figure 2 shows that within one period (2'/coo=28
time units) a rapidly separating kink-antikink pair is
formed. The kink and antikink each have rest energy
-2b,o/rr and maximum kinetic energy -0.1b,o giving a
total energy of —1.56o for the two kinks. In Fig. 2 we
see that a substantial fraction of the remaining energy,
-0.56o, is localized as a nonlinear, dynamic, lattice

excitation —an amplitude breather. By isolating the cen-
tral 42 atoms of the breather, we have shown numerically
that it is long lived, with no appreciable change in fre-
quency or amplitude after 5 psec, i.e., —130 oscillations,
although intermittent interferences and refocusing events
were observed.

Figure 3 shows the 49th eigenvalue (singly occupied)
and the 48th level (doubly occupied) as functions of time.
Note that charge conjugation symmetry ' of Eq. (24)
implies that for each level at E there is a level at —E;
thus E50 E49 E5 $ E48, etc. Figure 3 then shows that
the midgap states associated with the kinks rapidly settle
to zero. The next state is also split signi6cantly from the
continuum states and exhibits large scale oscillations.
These states (48 and 51) are the predominant signature of
the localized breather.

In Fig. 4 we compare the lattice dynamics of the nu-
merical and analytic breathers. Figure 4(a) shows the
evolution of the central 42 atoms of Fig. 2 when they are
placed on a 42-site ring. Figure 4(b) shows a 42-site chain
whose initial condition is the analytic solution [Eq. (11)
with g = 1] with X=0.61 while subsequent dynamics fol-
lows Eqs. (24) and (25). In both cases the 21 lower levels
are doubly occupied while the upper 21 levels are empty.

The choice e=0.61 gave the best fit to the frequency of
the numerical breather. Its energy of -0.S3b,o [Eq. (13)]
accounts for the energy "missing" in the photoexcitation
process. Most of the energy of the numerical breather
[Fig. 4(a)] is localized in a similar way to the analytic
breather [Fig. 4(b)], though some low amplitude oscilla-
tions indicate the formation of additional delocalized
phonons. Note that the symmetry of trans-(CH) allows
r„~—r„and the breather of Fig. 4(b) exists also around
I'~ —+ 1.

It is interesting to consider photoexcitations from
nonuniform structures. Consider, e.g., a single pola-
ron ' ' with rest energy -2&26,o/m. and electronic levels
at +b,o/&2 from midgap. Photoexcitation of an electron
from the lower to the upper polaron level adds energy
V 2b, o. Thus the photoexcited state has energy

g0 0.0—

00

0
14

-0.5

FIG. 2. Time evolution of an excited electron-hole pair in
trans-(CH)„with A. =0.34. This figure shows the dimerization
pattern, normalized to that of the ground state, for a 98-site ring
with 98 electrons occupying the lowest 48 states by pairs and
singly occupying the 49th and 50th states.

—I.O
loo 200 500

FIG. 3. Time dependence of electron levels corresponding to
Fig. 2: (a) the 49th state, rapidly becoming a kink midgap state,
(b) the 48th state, which becomes the intragap breather state.



1844 S. R. PHILLPOT, A. R. BISHOP, AND B. HOROVITZ

-(2&2/~+&2)ho-2. 3bo above that of the ground
state. Consequently this excited polaron can be expected
to be unstable towards formation of a KK pair and a
breather; the midgap states are now singly and doubly oc-
cupied, respectively. Figure 5 shows that indeed a kink
pair is rapidly produced together with a large amplitude
breather. From energy balance the breather energy is
-0.8ho,' its amplitude seems too large to be described by
the low amplitude expansion of Sec. II.

To study cis-(CH) we note that even and odd sites in
Fig. 1(b) differ by their overlap to the third site along the
chain. The Hamiltonian (23) is now supplemented by

20

00

0
14

H„, =t3 g C„+3C„+H.c.
n even

A similar symmetry-breaking term is

H,';, = t ) g ( —)"C„+,C„+H. c.

(26)
FIG. 5. Time evolution of an excited electron-hole pair from

a polaron state in trans-(CH)„. The 98-site ring has 99
electrons —the lowest 48 states doubly occupied, the 49th state
singly occupied, and the 50th state doubly occupied.

Both Eqs. (26) and (27) reduce to the same b,, term in the
continuum model with t, =6, and t 3

=
—,
' A„respectively.

For slowly varying dimerization patterns, forms (26) and
(27) should, therefore, yield similar results.

The presence of the symmetry breaking implies that
the bond pattern of Fig. 1(b) is the ground state; unlike
trans-(CH), interchanging the single and double bonds
leads to a nondegenerate state which for small 6, is
metastable. A significant consequence of this nondegen-
eracy is that isolated topological kinks do not exist —the

energy of a kink-antikink pair increases linearly with
their separation.

Figure 6 shows the numerical dynamics of an initial
electron-hole pair for H+H, ';, [Eqs. (23) and (27)]. Fig-
ure 6(a) shows a case of weak symmetry breaking,
t, /to =0.002 (or ri = 1.0038 ) for which the kinks can
separate sufticiently to allow the formation of a breather.
At longer times the kinks should recombine and interfere
with the breather oscillations. Figure 6(b) shows a

00
20

0i

00

2'
Goo 0

14

42
98

o'

2'
0'

0
14

42
FKs. 4. Dimerization pattern of a 42-site ring with the elec-

trons occupying the lowest 21 states. The initial conditions are
(a) the central 42 sites of Fig. 2 at time 300, (b) the analytic form
[Eq. {11)]with X=0.61, g= l.

98
FIG. 6. Same as Fig. 2 for cis-(CH) with a cis parameter of

(a) t& /to=0. 002 (g=1.0038), (b) t, /to=0. 012 (q=1.0225).
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H„~ =a g ( —1)"C„,C„, .
n, s

(2&)

Figure 8 shows the time evolution of a breather with
a/to =0.12 whose initial conditions are the analytic solu-
tion Eq. (21), with e=0.5. We find that the breather os-
cillations are persistent; some acoustic deformation is,
generated however, and interferes with the breather as it
propagates through the periodic boundaries back to the
origin. There is a tendency to form a double maximum,
but no further splitting or spreading is observed up to
-25 periods.

stronger symmetry breaking t, /to =0.012 (or g=1.0225)
for which separate kinks or a breather cannot be
identi6ed. The resulting object is an electron-hole bound
state, i.e., an exciton. It is interesting, however, that the
exciton levels oscillate periodically and that the kinetic
energy remains localized near the exciton. Simulations of
other values of t& suggest that we can expect dynamical
exciton states for a cis-(CH)„structure if t&/to~0. 015
(or g ~ 1.03).

Figure 7 shows numerical simulations starting with the
analytic form Eq. (11). For a=0.55 and t&=1.0 (or
g=1.75}. In comparing with Fig. 4(b) (where a=0.61
and t, =0) the amplitude is comparable, but the frequen-
cy is increased, in agreement with Eq. (11).

Finally, we consider breather states for an ( AB) poly-
mer [Fig. 1(c)], where the Hamiltonian (23} is supple-
mented by

8,0

0

00

FIG. 7. Dimerization pattern in cis-(CH) with A, =O. 34 for a
breather state. Initial conditions are those of Eq. (11) with
1=0.55 and tj =1.0 (q=1.75).

Figure 9 shows the same evolution for a/to=0. 36. In
addition to generating an acoustic deformation, in this
case there seems to be an inherent instability by which
the number of maxima doubles, i.e., 1~2—+4, and the
overall shape spreads with time. The instability is also
seen in the irregular oscillations of the intragap level (in-
set of Fig. 9) and the fast decay of the oscillation ampli-
tude.

Figures 10 and 11 show the dynamics following a pho-
toexcitation. For a/to=0. 12 (or a/ho=0. 16) there is
sufficient energy to separate the kinks and form a breath-

0

0'

&000

FIG. 8. Dimerization pattern in an {AB) polymer with A, =0.34 and a/to=0. 12 (or a/ho=0. 15). The initial condition is a
breather [Eq. (21)] with K=O. 5. The inset shows the 21st electronic level.
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0 500 }OOO

FIG. 9. Same as Fig. 8 for a/to =0.36 (or a/6 =0.46).

er (Fig. 10). As a increases, the static formation energy
of the kink pair

E~+Eg =(46O/m. )[ (1—a /b. o)'

+ (a/b. o)sin '(a/b. o)]

increases, approaching 2ho as a~ho. Figure 11 shows
the electron-hole dynamics for a/to =0 24 (o.r
a/60=0. 32), where one of the generated kinks remains
near the center, bound to a localized oscillation.

The insets of Figs. 10 and 11 show the highest occu-
pied levels. The 49th and 50th (E5p Eg9) sh—ow the rap-

0

Sao

DH
FIG. 10. Time evolution of an excited electron-hole pair in an (AB) polymer with X=0.34 and a/to=0. 12 (or a/DO=0. 15).

Level occupancy is as in Fig. 2. The inset shows the 48th and 49th levels.
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l 49

tpt t)

JJ&48

300

FIG. 11. Same as Fig. 10 for u/to =0.24 (or a/Ao =0.31).

id formation of kink states at +o.. The 48th state, associ-
ated with the breather, shows persistent oscillations for
a/to =0.12 which become incoherent for a!to=0.24.

To conclude this section, we have found that numerical
adiabatic dynamics confirms to a large extent the analytic
solutions of Sec. II. The dynamic stability of the numeri-
cal breathers is aff'ected by a few ingredients. (a) Lattice
discreteness which allows the generation of low ampli-
tude acoustic waves. Since our studies are on finite rings,
the reentrant effect of these waves limits our ability to
study this effect. In general, however, breathers are
robust objects and survive collision with acoustic waves
as seen in our study of the trans-(CH)„case up to 130 os-
cillations. (b) There may be nonperturbative corrections
to breathers, as in the P theory which limits the breath-
er lifetime even in the continuum model. The acoustic
effect is, however, more significant in the numerical
study. (c) A new dynamic instability appears in the
( AB)„case when a/b, ok 0.2. This may be related to an
instability in the semiclassical quantization of the analyt-
ic solutions, shown in the next section.

IV. QUANTIZED BREATHERS

Periodic classical solutions can be semiclassically quan-
tized by an integer n ~ 0 such that

27T/COB

2M(n + —,
'

) =Idx I 'II(x, t)b, (x, t)dt, (29)
0

where co& is the breather frequency, II(x, t)=5K/5h
with X of Eq. (2), and II(x, t), b, (x, t) evaluated with the
breather solutions, Eq. (11).

Equation (29) yields quantized values to the parameter

( +, )
~~~ 5+3'
~o gv 3g' 2g 9'(5+ 3g)

3

(31)

Substituting (31) in (12) yields the energy spectrum for
quantized breathers

c and quantized breather energies. The small expansion
parameter becomes Z-coo/b. o so that the nonlinear E

terms in (13) become nonadiabatic terms. Thus quantiza-
tion reveals that the expansion in c. is identical to the adi-
abatic expansion in powers of coo/b, o.

A minor alteration in the solutions of Sec. II is now
needed, taking care of a comparable correction to the ki-
netic energy. Equation (2) contains an electronic kinetic
energy -b, /b, which is small compared with the ion
kinetic energy by —(coo/b, o) and is therefore neglected
in the classical adiabatic limit. Since (coo/b, ) b, =0 (s ),
the highest order used in Sec. II, one can replace 6 by 50
in the electron kinetic term. Considering first the trans-
and cis-(CH)„model, the linearized equation for 5(x, t)
has then the renormalized frequency

co =co (2A,g)'~ (1+—,'A, co /b, }

and the breather frequency from Eq. (11) is
co~=coR(1 —s /2'}. The parameter E is determined by
substituting II(x, t)=gh(x, t)/co~ and solution (11) in
quantization (29); the result to order (co+ /b, o) is
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DECOR

~o
(n +—,

')2

For 2)=1, the trans (CH-) case, this yields

E ii( n) =k co2i( n+ —,
'

) 1 ——(921—1)(5+321)2 7T

96
2

(32)

zation shows that the classical solutions are not valid.
An intriguing possibility is that this instability corre-
sponds to the classical dynamic instability which was
seen in the simulations of Sec. III. The latter appeared at
n ~0.36o showing a decay to phonons and to lower am-
plitude breathers (Fig. 9).

V. OPTICAL ABSORPTION
2

E~(n)=fico~(n + —,') 1 — (n + —,')
72 o

(33)

E2i(n}=E2, (n) —Eii(0) . (34)

The leading term in Eti(n) is nh'co+ —the energy of n

phonons. A breather can be interpreted as a bound state
of n phonons, the next term in Eii(n) being the binding
energy. In fact, even a single phonon has now a renor-
maiized energy Eii(1), though practically Eii(1)=A'topi
with a very small correction. The breather is a stable
bound state if it cannot decay into n phonons, i.e.,
Eti(n) &nE2i(1). This implies that the energy correction
in (32) should be negative, i.e., g) 1/9. Thus breathers
in trans-(CH)„(21=1) are stable and those excited from
the ground state of cis (CH)„-(21) 1) are also stable.
Breathers excited from the metastable state of cis-(CH)„
(0(g& 1) have a range 0&2) & 1/9 of instability; al-
though a classical solution exists in this range, quantiza-
tion shows that they are unstable.

Quantization of the (/IB)„solutions proceeds along
similar lines. In Eq. (29), replace b, (x, t) with b d(x, t) and
II(x, t)=oj /5bd with X of Eq. (17) and II(x, t), bd(x, t)
evaluated with the breather solution Eq. (21). The result
to order (co~ /b, o) is

9—6y —ys= ~(n+ —,')
43/3( 3 2y )

i /2y 3/2

1 2(3 —2y)
9(9—6y —y }

QPR 9 6+ ~2
X m(n +—,')

43/3( 3 2y )1/2y3/2

3

(35)

Substituting in (22) yields the quantized spectra

Et'3(n) = Atoti(n +—,
'

)

(9—6y —y )(30y —9—19y )

2(3 —2y)y
2

ACOR
' (n+ —,')

0
X

12
(36)

with the excitation spectra given by (34).
Stability against decay into phonons requires a binding

energy in (36), i.e., in the physical range of 0& y (1 we
need 30y —9—9y &0 or y) 0.403. The corresponding
critical AB parameters is a, =0.756O. For a )a, quanti-

Note that n =0 is the zero-point energy correction to the
ground state. The breather excitation spectrum, relative
to the ground state, is then

ie g [to—+P(u„—u„+,)]

X[f (n)f*(n+1)

f (n+I)f'(n—)]/3/N . (37)

An excitation e is identified by the set [a,y ] where a(y }
is the state that becomes unoccupied (occupied). These
states also define an excitation energy b,E,(t)
=e„(t) e(t). —

The semiclassical formalism shows that most of the
transition intensity corresponds to times t for which
b E, (t) =%co, where co is the frequency of the electric field.
This defines a classically allowed regime ~;„&co&~,„,

A most significant means for observing amplitude
breathers is by their optical absorption. The electron "in-
tragap" states localized at the breather allow for transi-
tions below the adiabatic gap. In fact, even the quantized
ground state (n =0) allows for such transitions. We thus
derive here both an absorption tail of the ground state
and intragap peaks of breather absorptions.

%'e have recently developed a semiclassical formalism
for deriving the optical absorption in the presence of a
time-periodic structure. The formalism assumes the
following. (a) The semiclassical condition for the initial
state which corresponds here to Am~ &&26o. Also the ex-
cited state should be separated by more than Ace~ from
other states. (b) A short memory condition for the excit-
ed state, i.e., the trajectories of optically excited states
diverge away from the initial trajectory within one
period. In our case, electron-hole excitations from the
ground state as well as from a breather state indeed lead
within one period to very different ion trajectories such as
separating kink-antikink states. (c) A large amplitude
condition, i.e., the oscillating difference in electron ener-
gies spans a range larger than A~~. This corresponds to
a large quantum number n. We are mainly interested in
the regime Aco~26o —%cod which is dominated by the
strongly oscillating intragap states and is separated by
more than %cod from other excited states.

The adiabatic eigenfunctions of Eq. (24) and the level
occupancy of the breather define an electron wave func-
tion $2i(l',', u„(t)), where t is the time parameter on the
trajectory and u„(t) solves Eq. (25). Electron-hole excita-
tions change the level occupancy to l", and define excit-
ed states f,(u~"„'u„(t)); note that with the new occupan-
cy, Eq. (25) with the breather trajectory is not satisfied;
the excited state has adiabatic dynamics with different
trajectories. Using the current operator [Eq. (A5)] we ob-
tain for its matrix elements

P, (t)=&y, lJI1{,&
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FICx. 14. Same as Fig. 13 for the n =1 breather (see Table I).

now develops a significant tail at lower frequencies. Most
of this tail is due to the intragap states, shown by the dot-
ted line. The oscillations at A~&2Sp are due to the
discrete nature of the finite chain eigenvalues. The inset
shows this 42—+43 transition in more detail, indicates the
classical regime (Ace;„,fico,„), and shows the positions
%co +nba)~ with n integer.

Figures 14 and 15 show the results for e =0.31 (n =1)
and E=0.55 (n =2), respectively. The increase in Z re-
sults in a distinct peak due to the intragap transition.
The peak position decreases with c and is roughly at the
mean transition energy Am . Rather strong side bands
appear at -fico +2Acoz and weaker oscillations with
spacing A'co& further away from fi~

Figure 16 shows the structure near the gap edge in
more detail as well as the absorption difference of the ex-
cited n =1,2 states relative to the ground-state absorp-
tion. In particular, we propose that the n =2 spectra
correspond to the PA data, which show the HE peak at
1.35 eV. We discuss this further in See. VII. Figure 16(a)
shows the total ground-state absorption as well as the
42~43 transition on a logarithmic scale. The arrows
show the classical regime beyond which the 42~43 ab-
sorption decays faster than exponential. A stationary
phase calculation shows that indeed in the nonclassical
range, e.g., co & co;„,

Reo (co)-exp[ —( —', )(c0;„—co) ~2/d'~~],

where d =[c) bE, (t)/c)t ]/2iri is evaluated at the co;„
turning point. The total absorption also has contribu-
tions from tails of higher excitations and appears roughly
as an exponential decay, as do the data on trans-
(CH )

25 —27

To gain insight into these results we define a Fourier
decomposition

p, (t)exp i f bE, (t')dt'/R iso t—
0

= g g (k)exp(ikcoiit), (41)

Reer

!80-
l 60-
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l20-
I00-
80-
60-
40-

I I I f I I I

2 3 4 5 6 7 8 9 l 0 '4 cu

FIG. 15. Same as Fig. 13 for the n =2 breather (see Table I).

where —oo (k & ao are integers. Equation (39) then be-
comes

exp[ 2iri (u —
cu ) /coi—i ]—1

I,(m)=i gg(k) . (42)
k co co~ keg

We now define two qualitatively different regimes. The
"quantum" regime corresponds to (co,„—co;„)/coii ~1
but not too large; in this regime only a few k terms are
needed in (41) with the largest at k =0. A "classical" re-
gime corresponds to co~ &(cu,„—m;„and therefore
many terms in expansion (41). A stationary phase calcu-
lation shows that (39) is then peaked near i''co, „and
~+min

Figures 13—15 correspond to a quantum regime where
the k =0 and k =+2 terms dominate expansion (41).
Note that a dominant single g (k) in (41) leads to zeros of
I, (co) at co=co +kcoii (kAO) as indeed seen in Figs.
13—15 with lk1~3.

To demonstrate the behavior in the classical regime we
have used the same input data as above except that the
time unit was redefined to be 4 times bigger so that
A'coi, /2b. 0=0.0275. We use the same Z values, although
now they do not correspond to precisely quantized
values; X=0.1 is near the n =2 value (0.125), X=0.31 is
near the n = 5 value (0.283), and Z=O. 55 is near the n =9
value (0.521). Figures 17—19 show the optical absorption
for these cases. The insets demonstrate the classical na-
ture of the intragap transition; as Z increases, the ratio
(co,„co;„)/cori in—creases and the peaks at fico;„,fico,„
increase. Superimposed on this classical structure are os-
cillations with spacing Acoz.

The smaller Ruz is also apparent in the A'co&26p
range —the nonclassical tails are smaller and the discrete
nature of the spectrum is more pronounced. It is worth
pointing out that there is no "natural linewidth' which is
introduced by hand in our formulation. The linewidth is
due only to ion dynamics and is therefore different in
Figs. 13—15 from Figs. 17—19.

In Appendix B we prove a sum rule for Reo(co). We
have used this sum rule [Eq. (B4)] to test our numerical
matrix elements at any given time on the trajectory with
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FIG. 16. Absorption near the gap edge for the states of Table I. (a) n =0 absorption from intragap states (lower line) and total ab-
sorption (upper line) on a logarithmic scale; the arrows show Ace;„,A'co, „. (b) Total optical absorption for n =0 (solid line), n =1
(dashed line), and n =2 {dotted line). (c) Absorption difference of n =1 and n =0 {dashed line) and that of n =2 and n =0 (dotted
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agreement to better than —,'%%uo. We cannot test our final

form [Eq. (38)] since we have not attempted to evaluate
the right-hand side of Eq. (B4) in a dynamic case. We
have, however, evaluated the integrated intensity of the
intragap transition Xii (which is close to our HE feature
intensity) relative to the total intensity XT and found

Xri /XT -7.Intia, where nti = 1/84a is the breather densi-
ty in our simulations; this intensity ratio hardly depends
on iricori/bp or the quantum number n. For comParison,
the midgap intensity for a kink Xz satisfies
Xx/XT=2. 8mkg, where ntc is the kink density. Since
g =Uz /hp ——7a in trans-(CH ) we obtain
Xx/X~=2. 8nk!nii, i.e., similar intensity of a breather
HE peak and a kink rnidgap peak.

To extend these results to the cis-(CH)„and (AB)
cases, we note that in the quantum regime (Figs. 13—15)
the position of the intragap peak is determined mainly by
the mean transition energy Ace of the intragap states.

We can estimate m to first order in c by noting that the
local dimerization, Eq. (11), at x =0 gives a bound state
at energy b.p(1+5) when 5(0 and an extended state at
60 when 5)0. The time average then yields

%co (ri)=26p(il)I 1 —(Z/m)[48rI/(5+3il)]'~

+0('E )] . 3)

In terms of the trans (CH), va-lues hp(l), co~(1) we have
kp(rI )=kp( 1 )exP(ri ) and coir ( il ) =cori ( 1 )v'ri; exPressing
the quantized 'E(ri) in terms of s(l) finally yields

irtco (rI) =2bp(1)[ 1 —i/6Z(1)/ir

+ (r) —1)[1+13&67(1)/16m ]
+O(s, (ri —1) )] . (44)

The efFect of increasing the cis-polymer parameter (r) —1)
is to increase co, and the rate of increase is higher for
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FICx. 17. Same as Fig. 13 for'K=0. 1 and Ace& =Ace&=0. 108;
Ace& is 4 times smaller than that of Fig. 13.
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FIG. 18. Same as Fig. 17 fort=0. 31 (Acoz =0.106).
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FIG. 19. Same as Fig. 17 for K=0.55 (A'co& =0.105).

larger E (or higher n ). For the ground state with
s(l)=0. 1 (Table I), A'co essentially defines the observed
gap with

[iilai (il) —irido ( I )]/2b, o(1)= 1.06(i) —1), (45)

while for an n =2 breather with s(1)=0.55 (although E

terms could be important here)

[Ace (rt) fico (I )]/2—b,o(1)=1.35(il —1) . (46)

Thus the ground-state gap decreases slowly with a while
the higher breather states decrease more rapidly with a.
Thus the distance of n =2 and n =0 peaks (i.e., gap
minus HE peak) increase with a, in contrast with the cis
(CH)„where the distance decreases with (ii —1).

Unlike the cis polymer pa-rameter, the (AB)„parame-
ter could not yet be experimentally controlled. However,
the single studied case' of poly(1, 6-heptadyine) shows a
HE-like feature at —1 eV whose distance from the gap at
-2 eV is indeed much larger than the corresponding dis-
tance in trans (CH)-

To conclude this section, we have shown that breathers
have specific signatures in optical absorption. Depending
on the ratio of breather amplitude to frequency, it can be
in a quantum regime with a main absorption peak near
iiico (Figs. 13—15), or in a classical regime with main
peaks near A'cu;„and Ace,„, the classical turning points.

The increased dependence of the HE peak on (i)—1)
was in fact seen experimentally. ' In a cis trans (CH)-
mixture, the cis chains induce a symmetry-beaking term
g on the trans chains which increases with the cis-to-trans
ratio ' and (il —1) is determined by the Raman data. '

The observed HE peak indeed increases faster than
(ii —1) consistent with (46), although a &i)—1 depen-
dence has been suggested. '

The same procedure can be applied to find the effect of
an ( AB)„parameter a added to a trans-(CH), -type
chain. The result is (recall y = 1 —a /b. o)

irido (y)=2bo[1 —&6s(1)(5—4y)/ir+O(E, (1 —y) )] .

(47)

We have shown the existence of breathers in a large
class of conjugated polymers by an analytic expansion
and by numerical simulations. In general, breathers are
found to be dynamically stable, except when an ( AB),
type parameter is too large, i.e., a/b. o~0.2. The long
time stability is limited by lattice discreteness in the nu-
merical study and by a possible nonanalytic term even in
the continuum theory. The numerical studies, however,
show that the breather is a fairly robust object and sur-
vives collisions with acoustic phonons. This allows for
persistance of breathers in our finite chain simulations.
In fact, if the breather is narrow compared with the chain
length it exists even for short chains. We have found that
an E=0.6 breather (width at 2.5 lattice constants) sur-
vives even in a 10-site chain for at least 25 oscillation and
is therefore relevant even to finite polyenes. We have also
explored the effect of model intrinsic defects in trans-
(CH)„and found breathers to be both copiously pro-
duced and long lived.

We have used a tight-binding electron-phonon Hamil-
tonian which neglects direct Coulomb interactions be-
tween electrons. These interactions can be included in a
Hartree-Fock scheme which shows that the breather
solutions are still valid. Exact calculations of excited
states are limited to finite chains and to static ions. These
calculations have shown ' that the lowest excitation is
an A state; the lowest one-photon absorption yields a
higher-energy B„state. Two-photon absorption experi-
ments have indeed shown the presence of this A state
in short polyenes.

Breather excitations also have an A symmetry; thus
A states below the B„optical gap can bind by either
Coulomb correlations in a static lattice, or by nonlinear
lattice dynamics in the absence of Coulomb correlations.
We expect that the physical A states will bind by both
mechanisms. In short chains only the highly localized
breathers are possible, whose high excitation energies are
close to those observed in short polyenes. In long chains,
however, the breather Ag states form a spectrum from
about 2A'coii (co+ is practically the Raman frequency) up
to -4b, o/ir, above which a breather can decay to a pair
of kinks. Since phonon data are consistent with the
electron-phonon model, ' ' we expect the low-lying
breather states of the long chains to be well described by
the electron-phonon Hamiltonian.

We proceed to compare available data with our results.
We focus mainly on the HE peak in PA experiments, as
seen in trans-(CH) and related polymers. ' ' For a
gap of 2b,o= 1.7 eV (Ref. 33) the position of the HE peak
in trans-(CH) is 1.35 eV=0.79X2b,o. Absorption polar-
ized perpendicular to the chains' (which eliminates non-
HE features) shows that the HE peak is asymmetric with
a significant tail down to —1.1 eV=0.65X26p. Our re-
sults show that the n =1 breather (i.e. , an excited pho-
non) has an induced absorption peak [Fig. 16(c)] at
3.32=0.85 X26p. The n =2 breather has an induced ab-
sorption peak at 3.16=0.81X26p and a significant side
peak at 2.48=0.63X25p. Thus the peak position at the
n =2 breather is consistent with the HE peak data and its
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sideband can account for the pronounced tail at lower
frequencies. We note that the n =2 breather is the most
energetic one allowed by the photogeneration process of
electron-hole decaying to kink-antikink plus a breather.
Breathers may, however, be photogenerated via other
channels which do not involve kink production.

An additional key for the identification of the HE
feature is its lifetime, which becomes considerably shorter
above 200 K. We note from Table I that the binding en-
ergy of an n =2 breather relative to two n = 1 phonons is
0.016X2b,c. For trans-(CH)„ this binding is -300 K;
the data above 200 K thus indicate the onset of a breath-
er decay into two phonons. Note also that the A sym-
metry of a breather does not allow for a radiative decay,
implying a long lifetime at low temperatures.

The HE feature was studied in trans cis (CH-)» mix-
tures. ' The signal comes from the trans chains which
acquire a symmetry-breaking term g —1%0 from the cis
environment. * By analyzing the Raman data' it was
found that changing the cis-trans ratio amounts to chang-
ing g in the range 1(g & 1.04; this is mostly in the re-
girne allowing direct photogeneration as in Fig. 6(a). The
optical gap is expected to change as in Eq. (45) amount-
ing to a 55 meV change at 80%%uo cis The .HE peak, how-
ever, is shifting more, changing by 95 meV at 80% cis.
This is consistent with the increased slope of Eq. (46).
Data on fully cis-(CH) have shown a further shift' ' of
the HE peak to 1.5 eV, though it may be due to remnant
trans material.

The unique example so far of an (AB) -type polymer
with degenerate minima is poly(1, 6-heptadyine). Its PA
shows' a wide HE-like feature at —1 eV and a shoulder
at -0.5 eV. The trend to lower energies is opposite to
that of cis (CH)» and-is consistent with Eq. (47). Howev-
er, the studied sample is amorphous with a second struc-
ture probably coexisting. ' Further studies on better
samples should be illuminating.

An alternative explanation of the HE peak is the A
state stabilized by Coulomb correlations, ' known to ex-
ist in short polyenes. ' As discussed previously, both
ion dynamics and Coulomb correlations can contribute to
stabilize low-lying A states. It would therefore be ex-
tremely interesting to follow PA experiments in short po-
lyenes and watch for a HE feature.

The HE feature has also been assigned to neutral soli-
tons which may be photogenerated directly or via a
triplet state. ' Being topological objects, neutral solitons
cannot be singly produced on long chains; hence a bound
state of neutral solitons was proposed, ' ' ' ' although
the precise nature of the binding was not specified. Note
that a breather can also be viewed as a dynamic bound
state of neutral solitons.

The second relevant type of data are the ground-state
absorption data. As shown in Fig. 13, the zero-point
motion of the ground state leads to a pronounced tail
below the adiabatic gap, A'co&26, ~. Figure 16(a) shows
the gap-edge region on a logarithmic scale. While the in-
tragap transition (lower line) decays faster than exponen-
tial [Eq. (40)], the total absorption appears roughly as an
exponential, decaying by a factor of -50 in the energy
range 3. 1 —3.9. Data on trans-(CH)„have shown a simi-

lar pronounced absorption tail decaying by —100
from 1.7 to 1.3 eV.

It was suggested that this is an Urbach tail due to dis-
order. While disorder can contribute, we find that most
of the tail is accounted for by the nonadiabatic terms.
Another contribution to this tail can come from nonadia-
batic tunneling into a kink-antikink pair. This pro-
cess is neglected in the short-memory approach which
treats the dominant effects in the classical and near-
classical regimes. Far from the classical regime, i.e.,
co «tom;„& 2b, ~, both Eq. (40) and the kink-antikink pro-
cess are extremely weak.

We next discuss a few other experiments which can
probe the breather states. The Ag symmetry allows
breather production by a two-photon process from the
ground state. As for short polyenes, this should yield
essential information on long polymers. An A state can
also appear as a resonance in third-order optical suscepti-
bility y' '. The limited data on trans (CH )„-indicate a
state at 1.8 eV which is above the gap. Photons in the
range 0.2 —0.5 eV ( —,

' the breather energies) are needed to
excite breather states in a two-photon process.

Inelastic neutron scattering provides an ideal tool for
probing breathers, which involve large ion oscillations.
The cross section should be comparable to that of scatter-
ing from phonons while the energy shifts are higher; e.g. ,
the n =2 breather in trans (CH)„(T-able I) has an excita-
tion energy of -0.34 eV. The n =3 breather has an exci-
tation energy of 0.456'-0.4 eV (note, however, that our
7. expansion may not be sufficient for this case). We hope
that these experiments on trans-(CH)„and related poly-
mers will enhance our understanding of nonlinear dy-
namics in conjugated polymers.

The continuum kinetic energy has been replaced by
discrete tight-binding terms in Eq. (23), i.e.,

X~ o+~" "n +i ~)( a+i+ +i ) ~

(A 1)
The corresponding current operator is now derived. The
discrete version of the charge density operator is

p(n) =eC„"C„. (A2)

The current operator J(n) is defined on the bond between
sites n and n + 1 so that current conservation is given by
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APPENDIX A: CURRENT OPERATORS
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—cip(n)/cit =J(n) —J(n —1) . (A3) p (q) = ie g [t()+p(u„—u„+i)]
Using the Hamiltonian (23) and fermion commutations
for C„we obtain

(i/e)c}p(n)/c}t = [to+p(u„—u„+,)]C„+,C„

X[f (n)f'(n+1)
—f (n +1)fr*(n)]e'~"/&N

(A 1 1)+ [to+P(u„,—u„)]C„,C„

—[t()+P(u„—u„+i )]C„C„+,

—[t()+p(u„ i
—u„)]C„C„ (A4)

Reer(q, co) is obtained by substituting (Al 1) and
E, Eo—=er e—in Eq. (A7), where e, er are the single-
particle eigenvalues.

APPENDIX B: CONDUCTIVITY SUM RULE
The solution of (A3) and (A4) (up to site independent
terms) is

J(n) = ie[to+—P(u„—u„+&)](CtC„+&—C„+&C„) .

The commutator (p(n), H, &
& is given by Eq. (A4). It is

straightforward to evaluate the nested commutator and
obtain the operator identity

(A5) g [p(m), [p(n), H, i]e'q'" '=4e sin (q/2)H,
&

.
n, m

(Bl)

Note that the presence of direct electron-electron
terms

H, t,t
= g V(n —m)p(n)p(m)

n, m

(A6)

Reo(q, cv) =(rr/co) g I)tc, (q)l'&(E, —Eo —&cv), (A7)

in addition to the Hamiltonian (23) does not change the
result (A5) since [p(n), H,&,1]=0.

The conductivity is given in terms of initial state
I 11(0 &,

final states Ig, &, and their eigenvalues Eo and E„respec-
tively. Standard linear-response theory then yields (at
zero temperature)

This commutation can also be calculated from Eq. (A3)
from which i [p(n), H, |]=j(n) j(n ——1) is used for the
inner commutator. The outer commutator is evaluated
by substituting a complete intermediate set and using

. ( . j(n) —j(n —1) I p&

P a

Equating both results of the double commutator and tak-
ing an expectation value in state P yields

I @.IJ, lttp I'

Ep E—
where

= —e'si n'(q /2)(P. IH.&lqp& . (B3)

N

p, (q)=(4'olJ~lg. )—:(()0 N ' ' x J(n)e'~" (),)n=1
(AS)

and X is the number of sites.
As an example, consider the Hamiltonian (23) in the

adiabatic limit, i.e., static u„. The eigenoperators have
the form

f =gf (n)C„ (A9)

which can be inverted to

C„=g f '(n)f (A10)

since f (n ) form a complete set. The many-electron
eigenstates are given by II++ IO&, where Ia] is a set of
occupied states. The operator (A5) can transfer an elec-
tron from an occupied state a to an empty state y with
the matrix element

I dcv RecT(q, co)=e v~, (B5)

where vF =2toa is the Fermi velocity. Equation (B5) was
also derived directly from the continuum model.

Note that we must keep q&0 up to this point. Canceling
sin (q/2) and using Eq. (AS) yields the conductivity sum
rule (assuming E, )Eo )

I dcoReo(q, co)= (n/2N)e (g—
l oH&l 1((0&. (B4)

Note that the presence of direct Coulomb interactions
[Eq. (A6)] does not affect this sum rule since
[p(n), H„„]=0.The form (A5) of the current operator
which satisfies (A3) is essential in deriving the sum rule.

In the continuum limit to~ ac, a —+0, and the effects of
dimerization or that of Coulomb terms (A6) can be
neglected when evaluating (H, i &; the leading term is the
tight-binding spectrum —2tocos(ka) with occupied states
in the wave-vector range lkl (m/a. Equation (B4) then
reduces to
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