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Theory of weak localization in a superlattice
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A theory of weak localization in the parallel and vertical conductivity of a semiconductor super-

lattice is presented. Small-collisional-broadening calculations were performed as quantum correc-
tions to Boltzmann transport. The most interesting result is that the weak-localization corrections
of the conductivity depend on the width of the superlattice miniband. In addition, the derivation

has a form similar to the anisotropic theory of Bhatt, WolAe, and Ramakrishnan for disordered me-

tallic systems.

I. INTRODUCTION

Semiconductor superlattices are multiwell, low-barrier
systems, featuring periodic potentials superimposed on
the natural lattice by molecular-beam epitaxy. ' Disper-
sion along the growth direction causes superlattices to be
very anisotropic, three-dimensional systems. This anisot-
ropy, however, is of a different nature than that found in
other systems. For example, by changing various param-
eters in a superlattice (such as the miniband width, a
feature that is inaccessible in other systems) it is possible
to achieve new insight into quantum transport mecha-
nisms.

From the perspective of device applications the study
of superlattices is quite important, especially for high-
speed, high-mobility structures, perpendicular transport
devices, sequential resonant tunneling structures, ballistic
transistors, and superlattice avalanche photodetectors.
A wealth of applied work now exists on superlattice ap-
plications. On the other hand, with respect to physics
several important new results have been obtained recent-
ly. The AT&T group (Stormer et al. ) observed the
quantized Hall effect (QHE) and a concomitantly vanish-
ing magnetoresistance in a GaAsIAl„Gai As superlat-
tice. Less clear evidence of the QHE in
CdTe/Hg& Cd Te has been published by Rafol, Woo,
and Faurie. The work of Deveaud et al. established ex-
perimentally the existence of well-defined Bloch states
along the superlattice axis. A positive magnetoresistance
due to the suppression of antilocalization in a
CdTe/Hg, ~Cd~ Te superlattice has been studied experi-
mentally by Moyle, Cheung, and Ong. Recently, we
completed new measurements and made extended studies
of negative magnetoresistance effects in a
GaAs/Al Ga& „As superlattice. These experimental
results provide a motive for the theoretical work de-
scribed below.

In this paper we are concerned principally with the
weak-localization aspect of superlattice transport proper-
ties in the low-collision limit. If one uses a two-
dimensional theory of the weak-localization effects, then
one is compelled to introduce an ad hoc parameter,
namely, the number of active layers in order to explain
the experimental results. This approach suggests a

simplistic picture of a stack of n effective, independent,
two-dimensional layers. We do not subscribe to this pic-
ture since n is found to be significantly different from the
number N of real layers. For example, n IN =0.3 —0.42
in measurements by Moyle et al. and n/X =0.46—0.6
in our measurements.

A desirable starting point for low-magnetic-field quan-
tum corrections of transport in superlattices is three-
dimensional weak localization in anisotropic disordered
electronic systems. Kawabata developed a theory of
negative magnetoresistance employing the restrictive as-
sumption of an anisotropic effective mass. A more gen-
eral theory using an anisotropic diffusion tensor was con-
structed by Bhatt, WolAe, and Ramakrishnan. In addi-
tion to an anisotropic effective mass tensor, they also al-
lowed the scattering amplitude to depend on direction.
However, they did not consider the nonzero magnetic
field case (8%0). Yang and Das Sarma' introduced
theoretically a Bloch-type approach (as opposed to ap-
proaches that use transmission coefficients) in the calcula-
tion of vertical conductivity in superlattices.

The aim of this paper is to provide a theoretical model
to interpret experiments that involve weak-localization
effects in superlattices, without the restriction of an
effective-mass tensor. One of the main results we find is
that the conductivity for superlattices is of the form of
the anisotropic theory of Bhatt, WolAe, and Ramakrish-
nan for three-dimensional disordered metallic systems.
However, the diffusion coefficient D, we derive depends
on the width of the miniband. Another interesting result
is that, in contrast to the case of vertical conductivity, the
parallel conductivity obeys Drude's law at least to within
the quasiparticle approximation.

II. PARALLEL CONDUCTANCE

We assume a structure in which the miniband is de-
scribed by a tight-binding model. The three-dimensional
dispersion curve has the following form:

II
Ak

E(k)=E„+Ei, = +w[1 —cos(k, a)],
z 2'

II

where 2w is the bandwidth of the superlattice miniband
and a is the superlattice period. The density of states
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g ( e ) for this system is
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We start with the Kubo formula" for conductivity in
the following form:

Here W +—(k, k'; e, E) is the amplitude of the elastic
scattering from impurities in a particle-hole —particle-
hole channel.

Neglecting the vertex correction [equivalent to putting
I (k)=k. , the approximation used by Yang and Das
Sarma for vertical conductivity] the following expression
for parallel conductivity at temperature T=O is obtained:
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where i,j are x,y; m
~~

is the effective electron mass,
G +—(k, E)=G„,&,d„(k, E),f is the Fermi function, and I +—. —

is the vertex function as defined through the Bethe-
Salpeter equation

d k'
I —++—(k, E)=k + W ——(k, k', E, E)G —(k', E)(2~)'

XG +—(k, E)I ——(k', E) .

where EF is the Fermi energy, and 6 and y are

5=ReX(EF), y= —ImX(E~) .

Here X is the retarded self-energy due to the point impur-
ity scattering in the renormalized Born approximation.
In the limit of the quasiparticle approximation (y~0) cT~~

becomes

(e~ —w)cos
e2 7

II g2 g gF w, gF)2w

2
+[eF(2w —e~)]', 0& EF &2w

where vF = c,z —6 and the relaxation time ~=A/2y. If we
make a further assumption that the density of states is
approximated by the free-particle formula so that the
density of carriers n becomes

c~ —5
n = f g(E)dE, (9)

0

then we recover the parallel conductivity (in the semiclas-
sical approximation) as the simple Drude form, viz. ,

n*e r
oz

m

However, the effective carrier density n * is not explicitly
connected with the real carrier density. The superlattice
structure is absolutely essential for vertical conductivity
as shown by Yang and Das Sarma' and for a weak-
localization correction of the conductivity as we demon-
strate in Sec. III.

ne ~

m//
(10) III. %'EAK-LOCALIZATION CORRECTION

TO CONDUCTIVITY

It should be emphasized that even when the mean free
path is smaller than the superlattice period, in which the
Bloch picture fails, the proper two-dimensional limit is
obtained from Eq. (10) when w ~0.

The result as expressed by Eq. (10) should be contrast-
ed with the vertical conductivity expression of Yang and
Das Sarma' in which they used analogous approxima-
tions plus the relatively naive assumption that the
effective mass m, jn the z direction is taken at the bottom
of the miniband. They found

We use the standard Kubo formalism of conductivity
in a spatially uniform field to calculate a quantum correc-
tion of the dynamic conductivity,

o;.(co) =2e de f (E fico) f(s)— —
2~ CO

(2') (2')'
(12)

At the outset we consider the case of small y; hence mu-
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tually canceling divergent parts are omitted in Eq. (12), in
contrast to the previously used expression (3) for the stat-
ic conductivity. The current-current correlation function
II is defined as follows (also see Fig. 1):

=u;(k)u, (k')6+(k, e)6 (k, E —A'co)6+(k', s)

In an analogous way

f ~ f v, (eF, k, )G+6 6+Gd ki) dk,

(2m )

4 gii( ) D,
a

(16b)

XG (k', E —A'co)W+ (k, k';s, c, —A'co), (13)

where u;(k) is the ith component of carrier velocity v(k).
We now specialize to simple cases and use the following
standard approximations: (i) T=O, (ii) co~0, (iii) isotro-
py in x-y plane, i.e., o =cr, (iv) only one miniband is
important for transport, in which EF )2w, (v) isotropic
5-function scattering from impurities in r space, and (vi)
small y. From (iii) it follows that o~~ is proportional to
v~~(k) v~~(k')/2. Also, since the product 6+6 has a
strong maximum at the Fermi energy and backscattering
is responsible for weak localization, then

Here gi(e~) is the projected density of states, which in
general reads

d ki~
g~~(e, k, )=2f 5[E—E(k, —c, k~~)]

P7l
i(, &(e—E(k, )) .

~A

For E&2w, g~~(E, k, )=gi(e). While the effective diffusion
constant DII has the standard form

v (Ey )1
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Similarly,
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Furthermore from (iv)
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Next we find 8'+ by solving the Bethe-Salpeter equa-
tion as diagrammed in Fig. 2 using the assumption of iso-
tropic 6-function scattering at temperature T=O. The re-
sult is

we obtain the important new result that the effective
diffusion constant in the z direction is given by

2

1/2
2E,g

(15a)

8'+ (q; EF, c~ —%co)

d3
1 N, I
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From the maximally crossed diagrams that are responsi-
ble for weak localization, we note that 8'+ is a function
of 4+k'=q. This allows us to separate II+ into two
parts, in which one part does not involve 8'+ . We
evaluate Eq. (13) with the help of (ii)

where X, is the density of scatterers and V is the constant
scattering potential in k space. Use of the Born approxi-
mation yields

d k
ii

dkz vii E,F
(2~)~ 2' 2

r 2
4"gii('F )

a A'
(16a)

Consequently, after some manipulations, for small q
(backscattering)

I

I

Il~

FIG. 1. The diagrammatic expression for correlation func-
tion H vs scattering amplitude W.

FIG. 2. The Bethe-Salpeter equation for particle-hole scatter-
ing amplitude W+ in the maximally crossed diagram approxi-
mation.
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W (q; cF,eF —fico ) = a 1
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For the case we have considered (i.e., eF) 2w), it is
worth mentioning that our results for cr wL (Eq. 22) and

cT~~ (Eq. 8) together with cT, obtained by Yang and Das
Sarma' fulfill a useful scaling relation

Combining Eqs. (3), (13), (14), and (21) we obtain the
weak-localization (WL) conductivity

II WL WL

0
II

0 (26)
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where a =
~~

or z. Thus, the correction to the conductivity
of the superlattice has a form analogous to the correction
for an anisotropic three-dimensional disordered metallic
system first derived by Bhatt„WolAe, and Rarna-
krishran. However, the effective diffusion coeScient
along the z direction D, has a character that is different
from the diffusion coeScients in the other directions.
That is

(3)—g
C Cz

XX XX (27)

The two-dimensional resistivity per period of the super-
lattice is then

It should be noted that Eq. (26) is the same as the 8=0
case of the general relation derived by Bhatt, Wolfe, and
Ramakrishnan although this theory is not concerned
with superlattices.

Our model gives the proper two-dimensional limit for
o

i wi when the width of the miniband tends to zero (or
D, ~O). Denoting c„,c, and c, as the dimensions of the
sample and X as the number of periods of the superlat-
tice, then the three-dimensional resistivity is given by

D, =v, ~,
where

(23)
(2)—g

c X
XX XX

X

z, max 1 Wa

V'2

where R is the measured resistance. Consequently,
(24)

~(2)—~(3)a
xx xx (29)

e D
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where ~ & is a dephasing scattering time.

(25)

is the average Fermi velocity in the z direction, indepen-
dent of the carrier density, and provided that cz & 2w.

D, may be easily controlled over a large range of values
by changing various superlattice parameters such as bar-
rier width and height and well width. D, can also be
measured directly since the scale-dependent part of the
conductivity takes the form

where a =c, /N is the spatial separation of a superlattice
period. Substituting into Eq. (22) D, =0 and using
( irla, ii/a—) as the range of the q, integration, then Eq.
(29) is recovered. In this limit there is no need to keep
the cutoff of q, equal -m/(D, r)'~ because there is no
diffusion in the z direction.

Our main result can be generalized to provide a quan-
tum correction of the magnetoresistance when the mag-
netic field is parallel to the superlattice growth direction.
Taking into account quantization of the electron orbits in
the plane perpendicular to the magnetic field 8, one gets

&.,wL(»=—
dq max

1

'irfi M 2ir n=o D +D 4eB
( +, )+

(30)

where n,„ is the cutoff. After integrating over q,
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z
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z (32) B0=
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I =(fi/e8)'~ is the magnetic length, and the characteris-
tic dephasing field B0 due to scattering is given by
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Finally q, ,„ is the cutoff for diffusive motion in the z
direction; q, ,„-m /(D, ~)'

If we now apply the assumptions that were used by
Kawabata, (co,r, fi!reF « 1, co,:eB—/m~~ ) we obtain the
following expression for the weak-localization contribu-
tion to the magnetoconductivity:

2

b,o (8)=o. w„(8)—cr wL(0)= C F(5),
2~ AE

where

(34)

F(5)= g 2[(n + I+5)'r (n —+5)' ]
n=0

1

(n +-,'+ S)'" (3&)

and

(36)

1 1 Cp1+2cos
Tp 'Ado

exp
c~p

+ ~ ~ ~ (37)

Application of magnetic field, in general, also affects
impurity scattering via the relaxation time [see Eq. (20)],
which is inversely proportional to the density of states
g(eF) evaluated at the Fermi surface. This density of
states oscillates as a function of magnetic field. The effect
could become important at higher fields, ' causing (in the
case of small level broadening) "jumps" of the Fermi en-
ergy from one Landau level to the next as the magnetic
field increases. However, when the magnetic field is weak
(co,r & 1) the oscillations of the density of states are negli-
gible due to the large broadening of Landau levels corn-
pared to the level spacing. As was shown by Ando, ' the
scattering rate in the limit of small magnetic fields is
given by

where ~o is the relaxation time when B=O. The exponen-
tial factor ensures a weak dependence of the relaxation
time on magnetic field. For example, if we consider fields
B ~0.1 T and the relaxation time ~=0.1 ps as estimated
from our recent measurements, then co,~&0.005; conse-
quently, 7 'Tp to extremely high accuracy.

In summary, we have derived formulas for parallel
conductivity in the semiclassical approximation and for
weak-localization corrections of the parallel and vertical
conductivity in superlattices. We find that, subject to all
approximations mentioned in Sec. II, (semiclassical)
parallel conductivity is not sensitive to the superlattice
structure. Instead, only the density of states is modified.

On the other hand the weak-localization correction is
affected much more profoundly by the superlattice struc-
ture. We learn that any theory assuming a stack of in-
dependent, two-dimensional heterostructures is clearly
inadequate because our final result cannot be reduced to a
two-dimensional formula for a finite miniband width.
Also, the weak-localization theory for anisotropic three-
dimensional systems, as presented by Kawabata, is not
applicable to superlattices because the assumption of a
simple anisotropic mass tensor concept is too restrictive
to properly account for anisotropy in superlattices. In-
stead, a theory using an effective difFusion tensor has to
be used. A magnetoconductivity tensor relationship for
superlattices is derived in this work.
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